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Abstract—To manage design complexity and provide veri-
fication tractability, models of complex cyber-physical systems
are typically hierarchically organized into multiple abstraction
layers. High-level analysis explores interactions of the system with
its physical environment, while embedded software is developed
separately based on derived requirements. This separation of low-
level and high-level analysis also gives hope to scalability, because
we are able to use tools that are appropriate for each level.
When attempting to perform compositional reasoning in such an
environment, care must be taken to ensure that results from one
tool can be used in another to avoid errors due to “mismatches”
in the semantics of the underlying formalisms. This paper
proposes a formal approach for linking high-level continuous
time models and lower-level discrete time models. Specifically,
we lift a discrete-time controller specified using synchronous
observer properties into continuous time for proof using timed
automata (UPPAAL). To define semantic compatibility between
the models, we propose a direct semantics for a network of
timed automata with a discrete-time component called Contract-
Extended Network of Timed Automata (CENTA) and examine
semantic issues involving timing and events with the combination.
We then propose a translation of the discrete-time controller into
a timed automata state machine and show the equivalence of the
translation with the CENTA formulation. We demonstrate the
usefulness of the approach by proving that a complex medical
infusion pump controller is safe with respect to a continuous time
clinical scenario.

I. INTRODUCTION

Modern cyber-physical systems are extraordinarily com-
plex, involving interactions between multiple distributed soft-
ware controllers, sensors, actuators, and the physical environ-
ment. In order to cope with this complexity and understand
how systems will work in their intended environment, sys-
tem behavioral models are constructed and analyzed. These
models are typically hierarchically organized into multiple
abstraction layers: high-level models explore interactions of the
system with its physical environment, while detailed models
of embedded software are developed separately based on
derived requirements. This separation of low-level and high-
level models also gives hope to scalability, because we are able
to use tools that are appropriate for each level.
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For example, consider next-generation medical systems,
in which several medical devices communicate in order to
provide optimal patient care. To model a clinical scenario,
one must monitor the behavior of the patient (physical envi-
ronment), a variety patient sensors and actuators, and control
and coordination software. Researchers and developers often
construct continuous time models of system interactions to
perform verification (e.g., [1], [2]). While such models are
very useful, the software controller models usually describe
“toy” controllers that contain very little modal behavior and
error handling found in realistic medical devices.

On the other hand, it is possible to construct and verify
models of realistic software controllers using discrete time
analysis tools. This is the reasoning approach used by commer-
cial model-checking tools for SCADE [3] and Simulink [4],
as well as code-level model checkers for C and Java ( [5],
[6]). To perform reasoning, the user usually defines an asser-
tion (equivalently a synchronous observer [7] for SCADE or
Simulink) in the same design notation as the modeled system.
In this analysis, real time is abstracted away and the behavior
over a number of discrete computational “steps” is examined.

At issue is the notion of time: At the system level, time
is often best represented as a continuous quantity to accu-
rately describe the inherently continuous, controlled physical
environment. Timed Automata [8] are a standard approach
for modeling and reasoning about these systems, and tools
such as UPPAAL [9] allow scalable analysis of networks of
timed automata. However, rewriting existing complex software
controllers into timed automata is impractical; there is no
straightforward mapping between implementation notations
such as Simulink or C code to timed automata. Alternately,
one could derive software controllers from UPPAAL controller
models. Unfortunately, while tools such as UPPAAL are scal-
able, they are not nearly as scalable for complex software
controllers as discrete time analysis tools.

What is necessary is a principled way to split the analysis
so that we can prove the requirements of a complex discrete-
time controller using scalable (and compositional) discrete
time tools, then lift these requirements into continuous time
to be the representation of the controller component when
proving continuous time system-level properties.

In this paper, we describe an approach for lifting discrete
time symbolic transition systems into timed automata. The



discrete time systems are specified using contracts containing
assumptions that the component expects of the environment
and guarantees that the component will fulfill if the as-
sumptions are true. The contract notation is called AGREE
(Assume-Guarantee REasoning Environment) [10], and both
the assumptions and guarantees are specified as synchronous
observers. We have used this notation to reason about complex
avionics and medical controllers.

To describe the composition, we first propose a direct
semantics for a network of timed automata extended with
a discrete-time contract called Contract-Extended Network
of Timed Automata (CENTA) and examine semantic issues
involving timing and events with such a combination. We then
define a scheme to translate a discrete-time contract into a
timed automata state machine and show that the translation is
equivalent to the CENTA formulation.

Previously, we have explored semi-formal approaches for
determining whether results in different notations could be
composed [11]. In this paper, we both generalize the work
from [11] and place it on a proper foundation. Thus, the
contributions of this paper are:

• an approach for embedding discrete-time contracts in
timed automata,

• a provably correct translation of discrete time compo-
nents into timed automata, and

• a demonstration of this approach’s practical value in
reasoning about case example involving a complex and
clinically interesting medical device scenario.

The paper is organized as follows. Section II describes
the motivation for this work using a simple medical CPS
as an example. Section III provides the necessary formal
background. Section IV presents the main contributions of this
paper; we formalize the semantics of Contract Extended Net-
work of Timed Automata (CENTA) which enables embedding
a discrete-time contract in a continuous time model, describe
a scheme to translate a contract directly into timed automata,
and then sketch a proof to show that the resulting automata
behaviour is equivalent to the CENTA formulation. Section VI
briefly discusses the verification of a medical CPS clinical
scenario example using translated timed automata obtained as
defined by our approach. Section V discusses the limitations
of our approach and provides an informal explanation for
generalizing timing models. Section VII discusses the relevant
related work and finally Section VIII concludes the paper.

II. MOTIVATION AND SIMPLE EXAMPLE

In previous work in both medical and avionics domains, we
have analyzed complex software controllers implemented via
periodic polling systems, where the software periodically reads
inputs, calculates its current state and emits outputs. In these
systems, real time can be abstracted into discrete time and it
is therefore possible to demonstrate that software implementa-
tions meet their requirements for industrial-scale models [12],
[13]. For these systems, requirements are often specified as
shall statements that define expected behaviors under different
combinations of system-state and input configurations. When
analyzing the system, these requirements take the form of

expressions over sequences of time steps, and can be formal-
ized in, for example, LTL [14] or Synchronous Observers [7].
In order to scale discrete-time analysis, Rockwell Collins
and the University of Minnesota have developed the AGREE
(Assume Guarantee Reasoning Environment) tool suite [15]
that allows reasoning about software architectures specified
in AADL [16]. This tool suite allows us to compositionally
reason about assume-guarantee contracts, composing results
from leaf-level components within the software architecture to
prove properties of the software as a whole. Figure 1 shows a
simple example of an AGREE contract specification.

While AGREE enables reasoning about the software con-
troller, we would like to know that the software interacting
with its physical environment will achieve the intended effect
– i.e., we would like to examine system-level properties rather
than software-level properties. For this, we need to account for
the continuous nature of the physical environment, either by
direct representation of time as a continuous quantity (such as
Timed Automata [8]) or through a sound over-approximation
of continuous behaviors in discrete time — ultimately, we
want to ascertain whether the software, as specified by its
requirements, is adequate to control the physical system as
desired. What we propose in this paper is a (formally justified)
mechanism for lifting a set of discrete-time requirements in the
controller domain into a Timed Automata representation in the
system domain, to perform such system-level analysis.

Fig. 1. Toy monitor contract in AGREE

We present a toy example in order to motivate the approach
and explain it informally.1 Consider a hypothetical monitor-
ing device for a process control system that—among other
functions—periodically checks to see whether it has received
a “heartbeat” signal from another (monitored) device. Figure 1
shows the model of this controller in AGREE. One of the
properties of the system is as follows: If the monitor does
not receive a heartbeat signal within 0.5 seconds, the monitor
shall signal an alarm until the heartbeat signal is received.
Assuming that the monitor runs at 10Hz, this translates into
a simple discrete time property that references a heartbeat
counter; the counter resets when a heartbeat is received. If the
counter reaches the value 5 (0.5s = 5 ∗ 100ms, where 100ms
is the sample rate), an alarm will be raised. Note that we are

1The formal semantics of timed automata and AGREE will be explained in
Section III.



not assigning the Alarm variable, we are simply checking
whether it behaves as intended.

Fig. 2. Toy monitor contract in UPPAAL

We can represent the same contract in UPPAAL as shown
in Figure 2. Informally, in order to represent the discrete time
contract in UPPAAL, we must (1) define a period for the
contract and a clock to cause it to periodically evaluate, (2)
latch UPPAAL input events as they occur into corresponding
Boolean variables in the contract, (3) “execute” the contract
by non-deterministically assigning outputs in such a way that
the contract is satisfied, and (4) emit output events for each
Boolean variable in the contract corresponding to an event. In
the translated UPPAAL machine, we use select statements to
make the non-deterministic assignments and make the contract
relation monitor rel part of the state invariant for the UPPAAL
state machine. This invariant ensures that the non-deterministic
assignment to outputs satisfies the contract. Intuitively, this
timed automaton represents a component that upholds the
requirement (raise alarm if no heartbeat for 0.5 sec), in much
the same way as the AGREE specification. In the sequel, this
notion of equivalence will be formalized.

III. BACKGROUND

In this section, we provide a formal overview of two topics
that merit coverage as background for the work presented in
this paper - Timed Automata and AGREE Automata.

A. Timed Automata with Data Variables

A timed automaton [17] is a finite-state machine extended
with a notion of dense-time modeled as a finite collection of
synchronously progressing real-valued clock variables. Tran-
sitions between states (called locations), may be constrained
using simple conditions over the clock variables. Often, the
automaton is also extended with bounded discrete-valued data
variables, which can also be used to constrain transitions
between locations. Clock variables may be reset and data
variables may be assigned values on transitions (called firing

of edges). A system can be modeled as a network of timed
automata (NTA) that may synchronize transitions through
rendezvous channels and communicate through data variables.
The state of the system modeled by such a network of timed
automata is defined by the locations, the clock constraints and
the values of the data variables. We first provide a formal
definition of a network of timed automata with data variables.

Notation. Let C denote the set of all clocks. A clock valuation
is a function u : C → R+; we use RC to denote the set of
all clock valuations. A simple clock valuation is the function
u0(x) = 0, for all x ∈ C. For clock valuation u, u+d denotes
the valuation where (u + d)(x) = u(x) + d, for x ∈ C.
Furthermore, let B(C) denote the set of conjunctions over
simple clock conditions of the form x ./ n or x − y ./ n,
where n ∈ N0, x, y ∈ C, and ./ ∈ {≤,≥,=, <,>}. We use
K to denote the set of all channels and A = {α? | α ∈ K} ∪
{α! | α ∈ K} ∪ {τ} the set of all actions. Let V denote the
set of variables, T denote the set of types, V alt be the set of
values for type t, V al =

⋃
{V alt | t ∈ T} denote the universe

of values for variables, and Φ be the set of expressions over
variables:

Φ = {φ | φ ::= c | v | ite φ φ φ | uop φ | φ bop φ}

where c and v denote constants and variables, respectively;
ite is an if/then/else expression; uop ∈ {¬,−} and bop ∈
{+,−,×, /,=, 6=, <,≤, >,≥,∧,∨, =⇒ } define unary and
binary operators with the usual semantics. A function ν : V →
V al maps variables to values; we use V alV to denote the set of
all variable valuations. A function ty : V → T maps variables
to types. We assume that models are well-typed.

Definition 1 (Timed Automaton [17]). An automaton A is
a tuple (L, l0, A,C, V,E, I), where L denotes the set of
locations in the timed automaton, l0 is the initial location,
A is a set of actions, C a set of clocks, V the set of variables,
and E ⊆ L × A × G × Y × 2C × L denotes the set of
edges (between locations, with an action a ∈ A, a guard
g = (φc, φd) ∈ G : B(C)×Φ, a sequence of variable updates
y = (v, φ) ∈ Y : V × Φ, and a subset of clocks to be reset),
while I : L→ B(C)× Φ assigns invariants to locations.

For notational convenience, we write l1
a,g,y,r−−−−→ l2 when-

ever (l1, a, g, y, r, l2) ∈ E.

A network of n timed automata is obtained by composing
automata Ai = (Li, l

0
i , A,C, V,Ei, Ii), i ∈ {1, ..., n}. In

this case, a location vector is defined as l̄ = (l1, l2, ..., ln).
In addition, an invariant for location vector l̄ is defined as
I(l̄) = ∧iIi(li). To denote the vector where ith element of
vector l̄ (i.e., li) is substituted with l′i we use notation l̄[l′i/li]. If
clock valuation u and variable valuation ν satisfy the invariant
at location l, we abuse the notation and write (u, ν) ∈ I(l).
Similarly, if valuation (u, ν) satisfies condition g = (φc, φd)
where g ∈ (B(C),Φ), and satisfaction means u satisfies φc
and ν satisfies φd, we write (u, ν) ∈ g. r(u) denotes the
clock valuation obtained from u when all clocks from the set
r ⊆ C are reset to zero, and y(ν) denotes the variable valuation
obtained from ν from sequentially evaluating the assignment
list from head to tail in y. dom(y) defines the set of variables
to be assigned in the sequence y.



Definition 2 (Semantics of NTA [17]). Let A =
{A1,A2...,An} be a network of n timed automata, and let
l̄0 = (l01, l

0
2, ..., l

0
n) be the initial location vector, and v0 be the

initial variable state. The semantics is defined as a transition
system 〈S, s0,→〉, where S = (L1×L2×...×Ln)×RC×V alV
is the set of states, s0 = (l̄0, u0, ν0) is the initial state, and
→⊆ S × S is the transition relation defined by:

1) (l̄, u, ν) → (l̄, u + d, ν) if ∀d′, 0 ≤ d′ ≤ d ⇒ (u +
d′, ν) ∈ I(l̄).

2) (l̄, u, ν)→ (l̄[l′i/li], u
′, ν′) if there exists li

τ,g,y,r−−−−→ l′i
s.t. (u, ν) ∈ g, u′ = r(u), ν′ = y(ν) and (u′, ν′) ∈
I(l̄[l′i/li]).

3) (l̄, u, ν) → (l̄[l′j/lj , l
′
i/li], u

′, ν′) if there exists

li
c?,gi,yi,ri−−−−−−→ l′i and lj

c!,gj ,yj ,rj−−−−−−→ l′j , s.t. i 6= j,
(u, ν) ∈ gi, (u, ν) ∈ gj , (yj(yi(ν))) = (yi(yj(ν))),
u′ = (ri ∪ rj)(u), ν′ = (yj(yi(ν))), and (u′, ν′) ∈
I(l̄[l′j/lj , l

′
i/li]).

Given a transition system 〈S, s0,→〉, a sequence R :=
(l̄0, u0, ν0)→ (l̄1, u1, ν1)→ ...→ (l̄i, ui, νi)→ ..., is called a
run. The set of all runs for a transition system TS is designated
RTS .

B. AGREE Automata

The Assume Guarantee Reasoning Environment
(AGREE) [10] is a discrete compositional reasoning
framework based on the notion of assume-guarantee
contracts [10], where guarantees correspond to component
requirements, and assumptions correspond to the
environmental constraints that are used in verifying the
component requirements. A contract (assume-guarantee pair)
specifies precisely the information that is needed to reason
about the component’s interaction with other parts of the
system.

An AGREE contract Λ is a 4-tuple (VA, VA0, AA, PA)
containing the variables, initial variable valuation, assumption,
and promise (guarantee) of the contract, respectively. Variables
are partitioned into input and output variables: VA = I ∪ O
that are disjoint sets: (I ∩O) = ∅. Each variable has an initial
value that is assigned by VA0 : VA → V al. After removing
several layers of syntactic sugar, assumptions and promises are
defined by Boolean expressions drawn from a slight extension
to the expression grammar in the previous section:

Φ′ = {φ′ | φ′ ::= c | v | ite φ′ φ′ φ′

| uop φ′ | φ′ bop φ′ | pre(v)}

Pre-expressions allow state to be introduced; in the initial
execution step, pre(v) has the value VA0(v) and thereafter it
has the previous value of variable v. When writing concrete
expressions, we write them within double braces: [[a + b]] to
distinguish the expression language from the metalanguage.

As with timed automata, a variable valuation νA is a
mapping from VA → V al, and a trace is a mapping from time
instants to valuations: σ : N → νA. The contract is satisfied
for a trace σ if the following past time LTL (PLTL) property
is true of the assumptions and guarantees:

σ ` G(H(AA) =⇒ PA);

The past time Historically operator H(α) states that α has
been true from the initial instant up until the current instant
in the trace. In order to construct a two-state relation from
the contract, we add fresh output variable vhistA which is
initialized to true in VA0. The contract formula is already a
two-state invariant other than the “historically” operator, which
we can define by [[vhistA = AA ∧ pre(vhistA)]]. The two-state
expression defining contract satisfaction C2S then becomes:

[[(vhistA = (AA ∧ pre(vhistA))) ∧ (vhistA =⇒ PA)]]

A trace σ satisfies a contract when ∀i ∈ N, C2S(σi, σi+1).
The set of all traces satisfying the contract is ΣA.

IV. EMBEDDING AGREE IN UPPAAL

This section describes how we map a discrete-time model
(AGREE) to a continuous-time model (timed automata). Al-
though we use timed automata as the target semantics, similar
translations could be performed to richer notations, such as
hybrid automata. Section IV-A first presents a direct for-
malization of an AGREE contract into a network of timed
automata (NTA). The formalization can be considered as a
way of embedding AGREE into UPPAAL, where the discrete
controller can be viewed as a state machine in UPPAAL
that runs at a fixed rate, latches all inputs prior to beginning
computation, computes its next state, and then emits outputs.
Then, it is quiescent until its period elapses. Also, transitions
into a “new state” can be represented by the valuations of the
variables in the AGREE model. A direct semantics provides
the most direct way to specify the properties that should hold
of the combined model.

Nevertheless, as there is no tool that can analyze the
embedding semantics, we provide a translation from AGREE
contracts directly into a timed automaton. This allows analysis
of the combined model. Section IV-B describes a translation
of an AGREE contract into a timed automata, whereby a pure
NTA is obtained and can be verified using existing tools like
UPPAAL. This AGREE contract represents a set of “software
level” properties that are true of a complex controller. In
Section IV-C, we prove that two approaches are equivalent,
and that the translation matches the embedding semantics.

The primary complexity in translation comes from differ-
ences in time representation and synchronization. There are
several possible semantic choices related to the responsiveness
of the environment to output events generated by the AGREE
component: when should synchronization be enforced. In the
presented semantics (and translation) the environment must
respond to output events (via synchronization) before the
AGREE component can execute its next cycle. UPPAAL uses
events to synchronize parallel state machines, while AGREE
uses only variables. Much of the translation involves mediating
this boundary.

A. A Direct Semantics of AGREE Contracts in UPPAAL

In order to create a direct semantics of AGREE contracts in
timed automata, we introduce some notation. We must define
the period of the AGREE model, κ. To be compatible with
UPPAAL, κ must be a positive integer; it is assumed to be



scaled appropriately for the model. We split the variables in
the AGREE contract VA ⊆ V into input and output event
and data variables VA = IE ∪ ID ∪ OE ∪ OD, where each
of IE , ID, OE , OD is pairwise disjoint, I = IE ∪ ID and
O = OE ∪OD. The event variables are used to record input
or output events from/to the timed automata network and the
data variables are used for communicating data between the
AGREE model and in the network. We assume user-provided
partial one-to-one functions ι : K → IE and ρ : K → OE to
map the timed automata events to variables in AGREE.

The state of a contract embedded in a timed automata is
a pair Ψ : V alV × 2A, written ψ = (νp, o). The νp element
is the previous state valuations of variables and o is the set of
output events generated by the contract at the current instant.
To express non-deterministic assignment of outputs, we define
the set of all possible AGREE output valuations given an
existing valuation ν as follows: V alO(ν) = { ν′ | (x /∈ O =⇒
ν′(x) = ν(x)) ∧ (x ∈ O =⇒ ν′(x) ∈ ty(x))}. We also de-
fine the set of outputs corresponding to ‘true’ output variables:
θ(ν) = { c! | x ∈ dom ρ∧ρ(x) = c∧ν(x) = true}. Finally, we
introduce notation for functions: the notation x 7→ y defines
a function with a single element, and ⊕ defines function
override: F ⊕G = G ∪ {(x, y) | (x, y) ∈ F ∧ x /∈ domG}.

Given the definitions above, a contract-extended network
of n timed automata (CENTA) is obtained by composing a
network of automata where Ai = (Li, l

0
i , A,C, V,Ei, Ii), i ∈

{1, ..., n} with a timed AGREE contract (Λ, κ). All definitions
and substitutions over automata are defined as in Section III-A.
We assume the existence of a clock cκ ∈ C that is not assigned
or referenced by the automata. The semantics of the CENTA
AC(A, ν0,Λ) are as follows:

Definition 3 (CENTA). Let

• A = {A1,A2...,An} be a network of n timed au-
tomata,

• Λ = (VA, VA0, A, P ) be an AGREE contract,

• l̄0 = (l01, l
0
2, ..., l

0
n) be the initial location vector.

• ν0 = νa ∪ VA0 be the initial variable valuation. An
initial state is valid if ν0 is a function.

The semantics is defined as a transition system
〈SC , s0,→〉, where SC = (L1×L2×...×Ln)×RC×V alV ×Ψ
is the set of states, s0 = (l̄0, u0, ν0, (ν0, ∅)) is the initial state,
and →⊆ SC × SC is the transition relation defined by:

1) (l̄, u, ν, ψ) → (l̄, u + d, ν, ψ) if ∀d′, 0 ≤ d′ ≤ d ⇒
(u+ d′, ν) ∈ I(l̄) and u(cκ) + d ≤ κ.

2) (l̄, u, ν, ψ) → (l̄[l′i/li], u
′, ν′, ψ) if there exists

li
τ,g,y,r−−−−→ l′i s.t. (u, ν) ∈ g, u′ = r(u), ν′ = y(ν)

and (u′, ν′) ∈ I(l̄[l′i/li]).
3) (l̄, u, ν, ψ) → (l̄[l′j/lj , l

′
i/li], u

′, ν′, ψ) if there exists

li
c?,gi,yi,ri−−−−−−→ l′i and lj

c!,gj ,yj ,rj−−−−−−→ l′j , s.t. i 6= j,
(u, ν) ∈ gi, (u, ν) ∈ gj , (yj(yi(ν))) = (yi(yj(ν))),
u′ = (ri ∪ rj)(u), ν′ = (yj(yi(ν))), and (u′, ν′) ∈
I(l̄[l′j/lj , l

′
i/li]).

4) (l̄, u, ν, ψ) → (l̄[l′i/li], u
′, ν′′, ψ) if there exists

li
c!,g,y,r−−−−→ l′i s.t. (u, ν) ∈ g, u′ = r(u), ν′ = y(ν),

c ∈ dom(ι), y(ν) ⊕ (vie 7→ true) = y(ν ⊕ (vie 7→

true)), ι(c) = vie, ν′′ = ν′ ⊕ (vie 7→ true), and
(u′, ν′′) ∈ I(l̄[l′i/li]).

5) (l̄, u, ν, (νp, ∅)) → (l̄, u′, ν′′, (ν′, o′)) if ν′ ∈
V alO(ν), u(cκ) = κ, C2S(νp, ν

′), ν′′ = ν′ ⊕
{(v, false) | v ∈ VIE}, u′ = u ⊕ (cκ 7→ 0),
o′ = θ(ν′), and (u′, ν′′) ∈ I(l̄).

6) (l̄, u, ν, (νp, o)) → (l̄[l′i/li], u
′, ν′, (νp, o

′)) if there
exists li

c?,g,y,r−−−−−→ l′i s.t. (u, ν) ∈ g, u′ = r(u), ν′ =
y(ν), c! ∈ o, o′ = o−{c!}, and (u′, ν′′) ∈ I(l̄[l′i/li]).

The first three rules are nearly unchanged from the Defini-
tion 1. The only change is that these rules have an additional
state component ψ for the AGREE contract state. Rules (4),(5),
and (6) define the input, compute, and output rules for the
contract. Rule 4 latches an input event for the contract into a
variable in IE . Rule 5 non-deterministically assigns the output
variables from the AGREE component such that the resulting
state satisfies the AGREE two-state relation, resets the clock
cκ, creates a set of pending output events that will be emitted
by the component based on the assignments to OE variables,
and resets the input event latches. This rule can only fire when
the period has elapsed and there are no pending outputs (all
outputs from the previous step have been consumed). Rule
6 emits any one of a set of pending output events from the
AGREE contract.

Given a transition system TSC = 〈SC , s0,→〉, a list s :=
(l̄0, u0, ν0, ψ0) → (l̄1, u1, ν1, ψ1) → . . . → (l̄i, ui, νi, ψi) →
. . ., is called a run. We refer to states in the run using
subscripts: s0, s1. The set of all runs for a transition system
TSC is designated RTSC .

1) Properties of Extended Model: There are some desirable
properties that are straightforward to establish to show that
the embedding of the AGREE contract is consistent with its
discrete-time semantics.

To do so, we define notation for lists. Lists can be formed
using the cons operator ::, or defined using bracket notation:
[a, b, c] is the list a :: b :: c :: nil. List concatenation is
notated l0 _ l1. Lists can be constructed from other lists
using list comprehensions: [f(x) | x in L], which map the
elements of the list x to a value f(x). We can also define lists
through filter comprehensions [f(x) | x in L and P (x)] in
which only elements satisfying P (x) are stored in the resulting
list. Finally, sets can be converted to lists using a list-choice
operator Υ which provides an (arbitrary) ordering of the set
elements. We also introduce domain restriction of functions:
F � D : {(x, y) | (x, y) ∈ F ∧ x ∈ D}.

To describe equivalence, we extend the idea of a run to
store the rule used to generate the next state: ζ : (r0, s0) →
(r1, s1) → . . ., where the rule r is 0 in the first step and
thereafter 1..6 depending on the rule used. The set of all
extended runs of transition system TSC is designated RETSC .

Given an extended run ζ, we can define a function compress
that extracts a discrete time AGREE trace from its embedding
in UPPAAL as follows:

compress(ζ) = [(ν � VA) | (r, (l̄, u, ν, ψ)) in ζ and r = 5]

and we can define the set of compressed runs ΣTSC as
ΣTSC = {compress(ζ) | ζ ∈ RETSC}.



We can now describe a handful of properties about the
model:

• Timeliness: By construction, the AGREE model must
update at the moment of its period κ. Rule (1) will
not allow time to advance if the AGREE period clock
cκ exceeds its period. In addition, Rule (5), which
evaluates the AGREE contract, can only occur when
cκ = κ. Finally, by assumption, no other automata can
reset or reference clock cκ.

• Soundness: The set of compressed runs ΣTSC is
a subset of the contract-satisfying traces: ΣTSC ⊆
ΣA. We first note that, for any extended trace, the
compressed initial state matches the initial state of
the AGREE contract. Subsequently, by construction,
the states in the compressed trace are produced by
rule (5). Rule 5 requires that the pre- and post-state
must satisfy the same predicate C2S that is used
to determine acceptability of pre- and post-state for
traces for AGREE. Therefore any valuation produced
by rule 5 is acceptable for ΣA. Note that soundness
does not depend on other processes modifying outputs
of the machine (these are latched into the AGREE state
for the pre-state, and for the post-state, they will be
recomputed).

• Relative Completeness: It is not usually the case
that the CENTA embedding of the AGREE contract
exhibits all behaviors of ΣA, because the embedding
restricts the valuation of contract inputs. In addition,
some traces of the CENTA are finite, because of
possible deadlocks. If the CENTA is deadlock-free and
non-Zeno, then we can talk of relative completeness,
in which we restrict the traces of ΣA to only those that
share an input sequence with a trace in ΣTSC . (call it
ΣIA). For this set, ΣIA = ΣTSC , by a similar argument
as for soundness; Rule (5) allows any output value
that satisfies C2S, and deadlock freedom and non-
Zeno restrictions ensure that the guard for rule (5) is
eventually satisfied.

• Assumption Consistency: When embedding AGREE
contracts within an environment, we want to ensure
that the assumptions of the contract are true whenever
the contract is evaluated. Otherwise, the AGREE con-
tract can produce any output value and is essentially
meaningless. This can be checked: ∀σ ∈ ΣTSC . ∀i ∈
N . AA(σi, σi+1). Operationally, once the assumption
is translated into UPPAAL (call it A∗), this property
can be checked using the invariant formula A[] (A∗).
The assumption translation is described in the follow-
ing section.

For formal arguments, see [18].

B. Translation of AGREE Contracts into Timed Automata

To perform analysis, we want to translate AGREE con-
tracts directly into timed automata. This can be accomplished
schematically as defined in Figure 3. In Figure 3, given
AGREE contract (Λ, κ), we define the components of automa-
ton Aa = (L, l0, A,C, V,E, I) based on the structure of the
AGREE contract. Our model has only one state: lw: the ‘wait’

Aa = (L, l0, A,C, V,E, I)

L = {lw}
l0 = lw
A = Ain ∪Aout
C = {cκ}
V = VA ∪ VP ∪ VOL ∪ {vsat}
E = EI ∪ ET ∪ EO
I = {(lw, ([[cκ ≤ κ]], [[vsat = true]]))}

where:

Ain = {α? | x ∈ IE ∧ (α, x) ∈ ι}
Aout = {α! | x ∈ OE ∧ (α, x) ∈ ρ}
VP = {vpre | v ∈ VA}
VOL = {vol | vo ∈ (range ρ)}
C2S∗ = [[(vhistA = (A∗A ∧ vpre histA)) ∧ (vhistA =⇒ P ∗A)]]

YTP = [(vpre, [[v]]) | v in Υ(VA)]

YTA = {[(v0, c0), (v1, c1), . . . , (vk, ck)] | vi ∈ O ∧
c0 ∈ ty(v0) ∧ c1 ∈ ty(v1) ∧ . . . ∧ ck ∈ ty(vk)}

YTS = [(vsat, C2S∗)]

YTO = [(vol, [[vo]]) | vo in Υ(range ρ)]

YTI = [(v, [[false]]) | v ∈ VIE ]

YT = {yTA _ YTS _ YTO _ YTP _ YTI | yTA ∈ YTA}
EI = {(lw, αi?, ([[true]], [[true]]), {(vi, [[true]])}, ∅, lw) |

(αi, vi) ∈ ι}
ET = {(lw, τ, ([[cκ = κ]],

∧
{[[vol = false]] | vo ∈ range ρ}),

y, {cκ}, lw) | y ∈ YT }
EO = {(lw, αo!, ([[true]], [[vol]]), {(vol, [[false]])}, ∅, lw) |

(αo, vo) ∈ ρ}

Fig. 3. Translation Rules for AGREE Contracts

state in which the machine waits for the AGREE period to
elapse. The actions performed are Ain and Aout, which are the
actions corresponding to the input and output event variables,
respectively. The variables V consist of the variables in the
original AGREE contract (VA, including the vhistA used in the
definition of the C2S relation), the set of previous values of
these variables VP , the ‘latched output’ variables VOL, which
we use for tracking pending output events, and a variable
vsat, which, we will see, will be equated to the satisfaction
implication vhistA =⇒ vP . All of the sets of variables are
assumed disjoint. To construct the sets VP and VOL, we create
fresh variables in correspondence with the original variables:
for example, the notation {vol | vo ∈ (range ρ)} means that
for each variable vo ∈ (range ρ) we construct a corresponding
fresh variable vol.

The edge set E contains edges for input assignments
EI , output assignments EO, and AGREE contract next-state
computation ET . The computation ET is mapped to a set
of transitions, one for each valuation of the set of variable
valuations for variables in VO. Each of these transitions in
ET perform a sequence of assignments YT . In YT , we first
assign values to the ‘current’ output variables in YTA. Next,



we assign the variables associated with the transition system
in YTS . Finally, we latch the ‘current’ value of variables into
the ‘pre’ variables (YTP ) for use in the next computation. We
define A∗A and P ∗A to be the result of replacing every expression
of the form pre(v) with vpre in AA and PA, respectively. We
can take any transition from ET (i.e., any valuation of variables
in VA) that satisfies vsat (and therefore the invariant for state
lw).

The initial variable state for the automaton is as follows:

νa0 = {(v, VA0(v)) | v ∈ VA} ∪ {(vpre, VA0(v)) | v ∈ VA}
∪ {(vsat, true)} ∪ {(v, false) | v ∈ VOL}

Given a network of n timed automata with initial vari-
able state ν0: (A, ν0), where Ai = (Li, l

0
i , A,C, V,Ei, Ii),

i ∈ {1, ..., n} and the translation (Aa, νa0) of an AGREE
contract (Λ, κ), the result is a network of n+1 timed automata
with initial state νt0: (AT , νt0), where the n + 1th automata
is Aa, and νt0 = ν0 ∪ νa0.

In order to be a correct embedding, νt0 must be a function,
and we make the restriction that only the AGREE automaton
can assign variables in the set of output events OE and
pre-variables VP . We assume the existence of a predicate
assigns : A → 2V that given an automaton Ai returns the
set of variables that are assigned by the edges (transitions) of
the automaton. Given the definition of assigns, the restriction
on output assignment is designated by assigns ok as follows:

assigns ok(A) ≡ (∀Ai ∈ A . ((Ai 6= Aa) =⇒
(assigns(Ai) ∩ (OE ∪ VP ∪ VOL ∪ {vsat}) = ∅)))

C. Proof of Equivalence

To prove equivalence, we define state equivalence ≡s
between a CENTA state sC = (l̄c, uc, νc, (νpc, oc)) and a
translated state sT = (l̄t, ut, νt) as follows:

(l̄c, uc, νc, (νpc, oc)) ≡s (l̄t, ut, νt) iff:
(a.) l̄c = l̄t−a ∧
(b.) uc = ut ∧
(c.) (∀x ∈ dom νc . νc(x) = νt(x)) ∧
(d.) (∀x ∈ VA . νpc(x) = νt(xpre)) ∧
(e.) (∀(αo, vo) ∈ ρ . (αo! ∈ oc ⇐⇒ νt(vol) = true)) ∧
(f.) νt(vsat) = true

where l̄t−a is the vector of locations of lt without la: lt =
(l1, . . . , lk, la) ⇐⇒ lt−a = (l1, . . . , lk).

One can immediately lift state equivalence to trace equiv-
alence ≡σ by requiring state equivalence for all states in an
infinite trace. We also define prefix equivalence ≡k as state
equivalence for the first k states of a path: (σc ≡k σt) ⇐⇒
(∀x : 0 ≤ x ≤ k . σcx ≡s σtx).

Theorem 1 (Trace Equivalence). Given

• an AGREE contract Λ,

• an original network of timed automata with ini-
tial variable state ν0: TA = (A, ν0) where A =
{A1,A2, . . . ,An}

• a contract-extended network of timed automata TAC =
(A, νc0,Λ), with νc0 a valid initial state, and associ-
ated transition system TSC .

• From Λ, a translated automata Aa with initial vari-
able state νa0.

• a network of timed automata with initial vari-
able state νt0: TAT = (AT , νt0), where AT =
{A1,A2, . . . ,An,Aa}, νt0 = νa0 ∪ ν0, with νt0 a
function, and assigns ok(AT ), yielding an associ-
ated transition system TST .

Then (1) for every trace tc in RTSC there exists a trace tt in
RTST such that tc ≡σ tt, and (2) for every trace tt in RTST ,
there exists a trace tc in RTSC such that tc ≡σ tt.

Proof: (1) by construction. Given an arbitrary trace σc
we construct an equivalent trace σt. We construct σt using
induction over the natural numbers, assuming that we have
constructed σt1 . . . σtk and then extending the trace to σtk+1.

The proof decomposes into two cases. First, we must show
that the initial states match (base case). By the initial state
construction lc = lt−a = (l01, l

0
2, ..., l

0
n) and uc = ut = u0. By

construction, the domain of νc consists of dom(VA)∪dom(v0),
and for x ∈ νc . νc(x) = νt(x) = ν0(x), and for x ∈ VA,
we have νc(x) = νt(x) = νpc(x) = νt(xpre) = VA0(x). We
initialize νt(vsat) to true. Finally, oc = ∅ and {(v, false) | v ∈
VOL}, so (∀(o, vo) ∈ ρ . (o ∈ oc ⇐⇒ νt(vol) = true)).

Suppose alternately that we have k > 0. We show that we
can extend the trace σt to match σc at step k + 1.

Given state σck, σck+1 must be reached by one of the
six transition rules in Definition 3. Suppose CENTA rule (1)
is used. In this case, time advances by d. But in this case,
we can apply NTA rule 1 for σtk for the same value of
d. This is immediate for any of the invariants for machines
{A1,A2, . . . ,An} because from the pre-state equivalence ≡s
the states have the same valuations for locations, variables, and
clocks. For the valuation of Aa, there is only one state (lw)
with invariant ([[cκ ≤ κ]], [[vsat = true]]). vsat is true in state k
and remains true in k+1 since no variables change value during
a time update. It remains to show that ut(cκ) + d ≤ κ, which
is straightforward since ut(cκ) = uc(cκ) and (1) contains a
constraint: u(cκ) + d ≤ κ. Therefore σck+1 ≡s σtk+1.

Suppose CENTA rule (2) is used. In this case, a τ transition
occurs in one of the machines {A1,A2, . . . ,An}. In this
case, same transition can occur in the translated model using
rule (2), yielding the same destination state, clock resets and
variable valuations, so (a), (b), (c) are immediately satisfied.
Furthermore, ψ is not modified by rule (2), so the definitions
vpc and oc remain the same. By assigns ok, it is also the
case that no variables in the sets VP and OE or variable
vsat will be modified, so (d), (e), and (f) are maintained, and
σck+1 ≡s σtk+1.

Suppose CENTA rule (3) is used. In this case, the reasoning
is very similar to rule (2).

Suppose CENTA rule (4) is used. In this case, we are
latching an input signal into an input variable related to the
AGREE contract. By rule (4), there exists an event (αi, vie) ∈
ι. Therefore, we can apply rule (3) with the EI transition:



(lw, αi?, ([[true]], [[true]]), ∅, {(vi, [[true]])}, lw). The result of
the application of rule (3) to the translation and rule (4) to
the AGREE model performs the same variable modifications
and clock resets, satisfying (a), (b), (c). By assigns ok, no
variables in the sets VP and OE or variable vsat will be
modified, so (d), (e), and (f) are maintained and the state
invariant for lw is maintained, and σck+1 ≡s σtk+1.

Suppose CENTA rule (5) is used. This rule has the form:

(l̄c, uc, νc, (νpc, ∅)) → (l̄c, u
′
c, ν
′′
c , (ν

′
c, o
′
c)) if ν′c ∈

V alO(νc), uc(cκ) = κ, C2S(νc, ν
′
c), u′c = uc ⊕ (cκ 7→

0), and o′c = θ(ν′c). We note that ν′c is constructed from
νc by nondeterministically assigning a value to each of
the m output variables from their types V alO(νc). For the
moment, we will call these additional assignments νO =
{(v0, c0), (v1, c1), . . . , (vm, cm)}, and note that ν′c = νc⊕ νO.
In the construction of the translated automata, we create
an assignment for every such valuation of outputs in the
YTA rule. We choose the edge eto that has the matching
assignment ν′c from YTA: Ytao. This edge is defined in the
translation as: (lw, τ, ([[cκ = κ]],

∧
{[[vo = false]] | vo ∈

range ρ}), {cκ}, y, lw), where y = Ytao _ YTS _ YTO _
YTP _ YTI .

We first note that the guard for eto is satisfied due to
state equivalence on pre-states sC and sT (b) and (e). We
then examine transition post-states. First, the valuations of
lc and lt−a are unchanged in both rules and that the reset
clocks are the same, satisfying equivalence parts (a) and (b)
on the post-states. To determine equivalence of variable maps,
we first describe intermediate variable maps during evaluation
of y, noting that ν′t = y(νt) is equivalent to ν1t = Ytao(ν),
ν2t = YTS(ν1), ν3t = YTO(ν2t ), ν4t = YTP (ν3t ), and ν′t =
YTI(ν

4
t ), and that each of the lists assign a disjoint set of

variables. Because ν1t = νt ⊕ νO, (∀x ∈ dom ν′c . ν
′
c(x) =

ν1t (x)), satisfying (c). By disjointness of assignments, (c) is
also satisfied for ν′t. Since Ytao does not assign any ‘pre’
variables, (∀x ∈ VA . νpc(x) = ν1t (xpre)) holds. From these
equivalences of valuations of current and pre variables ν′c, νpc
with ν1t , we claim2 that C2S(νpc, ν

′
c) = C2S∗(ν1t ). Therefore,

ν2t (vsat) = ν
′

t(vsat) = true, so we satisfy (f) and the state
invariant of lw. Next, we assign output latch variables to match
outputs in ν3 (satisfying (e)), and finally assign ‘pre’ variables
based on current valuations in ν4 (satisfying (d)). Finally, to
satisfy (c) for ν′t and ν′′c , we reset all latched input variables
to false using YTI . Since variables other than latched inputs
are unchanged, the properties (d) (e) (f) still hold.

Suppose finally that CENTA rule (6) is used. The proof
here is very similar (and symmetric) to the proof of rule (4).

Since σck+1 must be derived from σck through one of the
six CENTA rules, and we demonstrate that any rule CENTA
application has an analogous NTA rule for the translated
AGREE model, it is possible to extend σtk to σtk+1 such that
σck+1 ≡s σtk+1.

Proof: (2) By construction. The proof is similar to the
proof of (1). Given an arbitrary trace σt, an equivalent trace σc
is constructed by induction over the natural numbers. That is to

2A complete argument would require translation rules for replacing ‘pre’
expressions and expression evaluation semantics; this is a lengthy but not
difficult argument.

say, we assume that σc1 . . . σck has been constructed, and then
we are extending it to σck+1. The base case is established in a
similar way described for 1. Given state σtk, state σtk+1 must
be reached by one of the three rules in the definition of NTA.
We show that, for each rule whereby σtk+1 is reached, we can
construct σck+1 using CENTA rules such that σck+1 ≡s σtk+1.
Suppose that we have reached σtk+1 using NTA rule (1);
using this rule, (l̄t, ut, νt) → (l̄t, ut + d, νt) such that, I(l̄t)
is satisfied after adding d to ut. Therefore, we know that,
in σtk+1, for every Ai ∈ {A1,A2, . . . ,An,Aa}, invariants
are satisfied. Since the invariant of Aa is I = {(lw, ([[cκ ≤
κ]], [[νsat = true]]))}, we have ut(cκ)+d ≤ κ. Then, here, with
the same value of d, we can apply CENTA rule (1) to σck. Due
to pre-state equivalence for every Ai ∈ {A1,A2, . . . ,An},
the states have the same valuation for locations, variables,
and clocks. For Aa, we have only one state lw, where νsat
remains true because, during the time update, no variables
have changed. As ut(cκ) = uc(cκ), the clocks are the same in
state k+1 after adding the same amount of d to cκ. Therefore,
σck+1 ≡s σtk+1.

Suppose we construct σtk+1 using NTA rule (2); hence,
there is an action τ by which a transition occurs in one of the
automata of {A1,A2, . . . ,An,Aa}. The proof is decomposed
into two parts:

(2A.) Suppose τ occurs in one of the machines in
{A1,A2, . . . ,An}. In this case, the same transition can occur
in the CENTA by applying CENTA rule (2). So, we will
get the same destination states, clock resets, and variable
valuations. Therefore, (a), (b), (c) are immediately established.
As ψ is not modified by applying τ , valuation of νpc and oc
remain unchanged. By assigns ok, vsat and variables of VP
and OE will be unmodified so (d), (e), (f) are satisfied, and
σck+1 ≡s σtk+1.

(2B.) Suppose alternately that a τ transition occurs in Aa.
Such a transition must be derived using rule ET . Suppose it is
the (arbitrary) edge et ∈ ET = {(lw, τ, ([[cκ = κ]],

∧
{[[vol =

false]] | vol ∈ range ρ}), {cκ}, y, lw) | y ∈ YT }, where
y = Ytao _ YTS _ YTO _ YTP _ YTI for some
assignment sequence Ytao that assigns all output variables
(VO) in the AGREE model. Since all the assignments in
the sequence Ytao are disjoint, we can view them as a set
νO = {(v0, c0), (v1, c1), . . . , (vm, cm)}. We choose the as-
signment in V alO(ν) matching the assignments to be ν′c, i.e.,
ν′c = νc ⊕ νO.

Because this transition occurred, the state invariant vsat
must be true in v′t, so (f) holds. Now we will match the post-
state by applying CENTA rule (5). To execute this rule, we first
demonstrate the precondition oc = ∅ holds in state k. To do so,
we note that the guard of this transition states that all variables
vol are false; by equivalence of pre-states (e), this means that
the set oc = ∅. We also must demonstrate C2S(νc, ν

′
c) is true.

For this, we again describe intermediate variable maps during
evaluation of y, noting that ν′t = y(νt) is equivalent to ν1t =
Ytao(ν), ν2t = YTS(ν1), ν3t = YTO(ν2t ), ν4t = YTP (ν3t ), and
ν′t = YTI(ν

4
t ), and that each of the lists assign a disjoint set

of variables. We (again) note that ν1t = νt ⊕ νO, so part (c)
of the state equivalence holds between variable states ν′c and
ν1t , and also, by disjointness of assignments, that part (d) of
the state equivalence holds between νpc and ν1t . From these



equivalences and the assignment vsat to true by evaluating
C2S∗ in ν1t , we claim that C2S(νc, ν

′
c).

We then examine transition post-states. First, the valuations
of lc and lt−a are unchanged in both rules and that the
reset clocks are the same, satisfying equivalence parts (a)
and (b) on the post-states. By disjointness of assignments,
(c) continues to hold up between ν4t and ν′c. Next, we assign
output latch variables to match outputs in ν3 (satisfying (e)),
and finally assign ‘pre’ variables based on current valuations in
ν4 (satisfying (d)). Finally, to satisfy (c) for ν′t and ν′′c , we reset
all latched input variables to false using YTI . Since variables
other than latched inputs are unchanged, the properties (d) (e)
(f) still hold.

Suppose NTA rule (3) is used for the construction of
σtk+1; therefore, there exists a transition from (l̄t, ut, νt)

to (l̄t[l
′
tj/ltj , l

′
ti/lti], u

′
t, ν
′
t) s.t. lti

c?,gi,yi,ri−−−−−−→ l′ti and

ltj
c!,gj ,yj ,rj−−−−−−→ l′tj , i 6= j, (ut, νt) ∈ gi, (ut, νt) ∈ gj ,

(yj(yi(νt))) = (yi(yj(νt))), u′t = (ri ∪ rj)(ut), ν′t =
(yj(yi(νt))), and (u′t, ν

′
t) ∈ I(l̄t[l

′
tj/ltj , l

′
ti/lti]). In this case,

there are three possibilities. First, both sender and receiver
belong to {A1,A2, . . . ,An}. Here, we can apply CENTA
rule (3) to construct σck+1. As ψ does not change, rule (3)
of both CENTA and NTA work in the same way, which
immediately implies σck+1 ≡s σtk+1. Second, the receiver
is Aa; then we can construct σck+1 using CENTA rule (4).
By NTA rule (3), there is a transition in EI of the form
(lw, αi?, ([[true]], [[true]]), ∅, {(νi, [[true]])lw}), for which there
is an equivalent event (αi, νie) in CENTA rule (4). These
two perform the same variable modifications and clock resets.
Therefore, (a), (b), (c) hold. In light of assigns ok, (d), (e),
(f) also hold, consequently σck+1 ≡s σtk+1. Finally, suppose
the sender is Aa; in this case, we can apply CENTA rule (6)
to construct σck+1. The proof here is analogous to the second
case.

V. DISCUSSION

Most of the interesting aspects of translation (unsurpris-
ingly) have to do with timing. In the current translation the
environment must respond to output events (via synchroniza-
tion) before the AGREE component can execute its next cycle.
We also considered requiring immediate synchronization (the
environment must respond to all output events before time
can advance) and removing the requirements on output event
synchronization entirely. The translation can be easily adapted
to these semantics.

For the modeling and proofs that are performed in this
paper, the behavior of the controller (specified by its contract)
is timely and synchronous: the controller executes exactly
when its period elapses and requires no computation time.
When reasoning about controller implementations, each of
these timing assumptions is faulty (though often reasonable,
as in our GPCA example, given the relative time scales of the
controller vs. its environment).

To account for drift, rather than defining a definite instant
at which the controller must execute, we could instead define
a time range that includes the maximum amount of per-cycle
drift, and modify the translation rules accordingly. This change
(1) adds non-determinism to the model, significantly increasing

the model state space, and (2) may require a re-basing of the
UPPAAL unit time value: since UPPAAL only allows integer
time constants, depending on the accuracy bounds on the drift,
the mapping from the UPPAAL unit time scale to real time
may need to be made significantly more dense.

Similarly, computation time within the implementation can
be modeled using an additional “computing” state to describe
the computation time of the implementation. The contract
outputs are stored in local variables and “released” to the
outputs when the computation is complete. Again, this poses
no theoretical difficulty but makes the analysis considerably
more expensive.

VI. CASE EXAMPLE

In this section we illustrate our approach using a Patient
Controlled Analgesic (PCA) infusion pump, a medical device
that is used to infuse liquid drug into a patient’s bloodstream.
PCA is an approach used to accurately infuse liquid pain
medication, typically an opiate such as morphine, in post-
operative patients.

A. Closed Loop System and Infusion Pump Controller

Consider a clinical scenario for critical care patients where
PCA infusion pump is used for infusing pain medication. A
serious side effect of opiate is that an overdose can lead to
respiratory failure in patients. Hence a sensor, such as a pulse
oximeter, continuously monitors the patient and raises an alarm
if it senses signs of respiratory problems. Caregivers manually
control the infusion of drug in response to such alarms.
However, to improve the quality of care, a safety interlock
device could be used in the system, as shown in Figure 4, that
continuously monitors the pulse oximeter readings and stops
the pump once a pre-set threshold is crossed. This system
was modeled using Timed Automata and was verified for
safety properties using UPPAAL model checker [19]. In an
independent effort, we modeled an elaborate software con-
troller of a generic PCA (GPCA) infusion pump using discrete
notations such as AADL, AGREE and Simulink/Stateflow.
Using AGREE tools we also demonstrated that the controller
satisfies critical safety properties [13].

Fig. 4. Overview of the closed-loop system

B. Linking Abstraction

In a previous effort [20], we demonstrated a semi-formal
approach to show that the particular infusion pump controller
when used as part of closed-loop system can be guaranteed to
uphold critical safety properties. In this work, we have defined



an embedding that is proven to preserve the semantics of the
discrete time contract in order to place the linking on a formal
foundation.

Fig. 5. PCA Architecture in AADL

In order to embed the GPCA controller into UPPAAL, we
first had to unify the interfaces between the GPCA controller
and the PCA UPPAAL model that was used for the closed-
loop scenario. In order to adapt the properties that were
proven over the original GPCA model to the new interface,
we constructed an AADL model, shown in Figure 5, that
normalized the interface between the two systems. We then
used the properties proved about the GPCA model to prove
new “architecture level” properties over the PCA interface
using AGREE. Because the size of the generated UPPAAL
model is directly related to the number of AADL properties,
we included only properties that were relevant to the clinical
scenario; otherwise we encountered scalability limits when
using UPPAAL.

Using the rules defined in our approach and the contracts
of GPCA we created the timed automata of the GPCA system
as shown in Figure 6. This model was derived from four
AGREE properties: (1) a mode-to-rate property that describes
the infusion rate for different modes of operation, (2) a mode
transition property that describes how the system mode is up-
dated by different environmental stimuli, (3) and (4) properties
that define the counters used for patient bolus length and bolus
lockout. To verify this model, we replaced this automata in
the place of the original PCA automata in the closed loop
system and using the UPPAAL model checker, we verified all
the system level properties (15 properties) of the closed loop
system. This way, we were able to successfully demonstrate
that the verified GPCA controller can be used in the closed
loop system safely.

The translation of the AGREE contract was performed
by hand using the rules in Section IV. Two fairly trivial
optimizations were made after the schematic translation: First
we did not define ‘pre ’ variables for variables that are not
used in pre-expressions (these needlessly expand the UPPAAL
state space). Second, we defined the behavior of the counters
as UPPAAL assignments rather than as part of the next-
state predicate (PCA prop) to avoid the computational cost
of additional select statements. This is sound if (a) a predicate
for the variable is an equality with one side being the variable
and the other side being an expression and (b) the assignment
can be placed in dataflow order either before or after the

Fig. 6. AGREE Properties modeled as a Timed Automata

evaluation of the next-state predicate. It is possible to provably
establish the soundness of the optimizations by using (for
example) simulation relation checking between the optimized
and unoptimized models, but we did not do this.

VII. RELATED WORK

In the context of multi-formalism modeling, frameworks
have been developed to integrate models specified using dif-
ferent formalisms. The Möbius approach [21], provides a com-
prehensive infrastructure to support interacting formalisms and
solvers. Metropolis [22] provides a meta-model with formal
semantics to capture and analyze electronic system designs
at multiple levels of abstractions. The Ptolemy project [23]
seeks to address the problem of heterogeneous mixtures of
models of computation for modeling and analyzing CPS.
Synchronous language principles are exploited for hierarchical
composition [24], a strategy also adopted here. Similarly, the
OsMoSys approach [25] and AToM3 [26], require the formal-
ism (graph based) to be defined in terms of an XML based



meta-language. The main drawback of these approaches is
requiring the formalism to be defined using common semantics
which may restrict the freedom of the designer to models using
only those notations the framework.

Two-level approaches to the verification of embedded soft-
ware, similar to the one considered in this paper, are commonly
used; for example [27]. However, most of this work takes
an informal approach to matching the semantics of the two
levels. Our approach can serve as the formal foundation for
most of those efforts as well. While the mapping depends on
the formalisms used in each case, it can be constructed for a
variety of formalisms, including hybrid systems specifications.
Rajhans and Krogh [28], on the other hand, use behavioral
semantics to derive a set of general conditions for com-
positionality across heterogeneous abstractions. In contrast,
the present work provides a complete approach for the two
specific formalisms considered (timed automata and AGREE
automata).

An approach for the analysis of globally-asynchronous,
locally synchronous (GALS) systems is proposed in [29]. The
specification logic used in this work is similar to AGREE.
However, they are focused only on the problem of asyn-
chronous composition of synchronous systems without an
asynchronous “environment”, whereas in our work, the en-
vironment is a first-class consideration. Also, no formal argu-
ment as to the correctness of their translation is provided.

There are several streams of research on translating por-
tions of AADL into model checkers, e.g., [30]–[33]. One
immediate difference between all of these works and our
work is the property notation used for specifying behavior;
primarily these papers target subsets of the AADL behavioral
annex which allows specification of partial implementations.
We have instead focused on a declarative formalism (AGREE)
which we feel provides a more natural formalism for ”shall”
requirements, as commonly used in avionics and medical
device systems. For example, [31] provides a translation of
AADL into FIACRE although, because of the conceptual gap
between two languages, only a common subset of ADDL and
FIACRE was considered. In [30], a technique for verifying the
consistency/conformity of AADL specifications with the end
product has been proposed. This work is primarily focused on
flow and deadlock analysis rather than behaviorial specifica-
tion. Chkouri et al., in [33], proposed a method for translating
AADL models into BIP, which makes it possible to make use
of the BIP toolset for verification. Although this work supports
behavioral reasoning over AADL models, no arguments are
provided as to the correctness of their translation and there is
no discussion about the scalability of the approach. In [32],
authors provided a framework which verifies the correctness
of an integrated model obtained from independent AADL
specifications. Although they also considered assumptions and
guarantees, they reason only in discrete time, and do not
consider real-time issues.

Modeling and analysis of closed-loop medical systems have
been primarily studied in the context of diabetes care. Much
attention is given to modeling patient physiology and design
of algorithms for glucose control; see, for example, [34], [35].
A closed-loop safety interlock for PCA infusion, similar to the
one studied in this paper, has been proposed in [36], however,
the authors do not show any analysis results. Similarly, the

GPCA pump has been used in a number of case studies that
involved a variety of formal methods to model different aspects
of the pump behavior. In [37], code for a simple infusion
controller has been generated from UPPAAL-verified code.

VIII. CONCLUSION

When systems become complex, multiple analyses must
be utilized to demonstrate their correct behavior. One natural
division is across multiple notions of time: software controllers
can often be analyzed in discrete time, while determining
their effect on the physical world requires continuous time. In
this paper, we introduced a formal approach for embedding
discrete time contracts into continuous timed models via a
direct embedding semantics (CENTA). We then defined rules
to translate a discrete-time contract into a timed automata
state machine, and proved the two descriptions equivalent. The
utility of the approach has been demonstrated on a clinical
scenario involving a large-scale discrete time medical device
controller.

While techniques used in this paper are specific to the two
formalisms considered, we believe that this work can form the
basis for a general, scalable and practical approach to layered
verification of properties in complex cyber-physical systems.
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