
ar
X

iv
:0

71
0.

33
32

v4
 [

cs
.L

O
]

 1
5

A
pr

 2
00

8

Model and Program Repair via SAT Solving∗

Paul Attie†§ and Jad Saklawi†

†Department of Computer Science

American University of Beirut
§Center for Advanced Mathematical Sciences

American University of Beirut

{paul.attie, jad.saklawi}@aub.edu.lb

October 30, 2018

Abstract

We consider the following model repair problem: given a finite
Kripke structure M and a specification formula η in some modal or
temporal logic, determine if M contains a substructure M ′ (with the
same initial state) that satisfies η. Thus, M can be “repaired” to
satisfy the specification η by deleting some transitions.

We map an instance (M, η) of model repair to a boolean formula
repair (M, η) such that (M, η) has a solution iff repair (M, η) is satis-
fiable. Furthermore, a satisfying assignment determines which transi-
tions must be removed from M to generate a model M ′ of η. Thus,
we can use any SAT solver to repair Kripke structures. Furthermore,
using a complete SAT solver yields a complete algorithm: it always
finds a repair if one exists.

We extend our method to repair finite-state shared memory concur-
rent programs, to solve the discrete event supervisory control problem
[18, 19], to check for the existence of symmettric solutions [12], and
to accomodate any boolean constraint on the existence of states and
transitions in the repaired model.

Finally, we show that model repair is NP-complete for CTL, and
logics with polynomial model checking algorithms to which CTL can
be reduced in polynomial time. A notable example of such a logic is
Alternating-Time Temporal Logic (ATL).

∗This research was supported by NSF under Subcontract No. GA10551-124962

1

http://arxiv.org/abs/0710.3332v4

1 Introduction and Motivation

Counterexample generation in model checking produces an example behav-
ior that violates the formula being checked, and so facilitates debugging
the model. However, there could be many counterexamples, and they may
have to be dealt with by making different fixes manually, thus increasing
debugging effort. In this paper we deal with all counterexamples at once, by
“repairing” the model: we present a method for automatically fixing Kripke
structures and shared memory concurrent programs with respect to CTL
[11] and ATL [1] specifications.

Our contribution. We first present a “subtractive” repair algorithm:
fix a Kripke structure only by removing transitions and states (roughly
speaking, those transitions and states that “cause” violation of the spec-
ification). If the initial state is not deleted, then the resulting structure (or
program) satisfies the specification. We show that this algorithm is sound
and relatively complete. An advantage of subtractive repair is that it does
not introduce new behaviors, and thus any missing (i.e., not part of the
formula being repaired against) conjuncts of the specification that are ex-
pressible in a universal temporal logic (no existential path quantifier) are
still satisfied (if they originally were). Hence we can fix w.r.t. incomplete
specifications.

We also extend the subtractive repair method in several directions: to ac-
commodate the addition of states and transitions, to solve the discrete event
supervisory control problem [18, 19], to accommodate arbitrary boolean con-
straints on the existence of states and transitions in the repaired model, and
to repair atomic read/write shared memory concurrent programs. Finally,
we show that the model repair problem is NP-complete.

Formally, we consider the model repair problem: given a Kripke structure
M and a CTL or ATL formula η, does there exist a substructure M ′ of M
(obtained by removing transitions and states fromM) such thatM ′ satisfies
η? In this case, we say that M is repairable w.r.t, η, or that a repair exists.

Our algorithm computes (in deterministic time polynomial in the size
of M times the size of η) a propositional formula repair (M,η) such that
repair (M.η) is satisfiable iff M contains a substructure M ′ that satisfies
η. Furthermore, a satisfying assignment for repair (M.η) determines which
transitions must be removed fromM to produceM ′. Thus, a single run of a
complete SAT solver is sufficient to find a repair, if one exists. Our approach
leverages the research investment in SAT solvers to attack the model repair
problem.

Soundness of our repair algorithm means that the resulting M ′ (if it ex-

2

ists) satisfies η. Completeness means that if the initial structureM contains
a substructure that satisfies η, then our algorithm will find such a substruc-
ture, provided that a complete SAT solver is used to check satisfaction of
repair (M.η).

While our method has a worst case running time exponential in the num-
ber of global states, this occurs only if the underlying SAT solver uses expo-
nential time. SAT-solvers have proved to be efficient in practice, as demon-
strated by the success of SAT-solver based tools such as Alloy, NuSMV,
and Isabelle/HOL. The success of SAT solvers in practice indicates that our
method will be applicable to reasonable size models, just as, for example,
Alloy [15] is.

Related work. The use of transition deletion to repair Kripke struc-
tures was suggested in [4, 5] in the context of atomicity refinement: a large
grain concurrent program is refined naively (e.g., by replacing a test and set
by the test, followed nonatomically by the set). In general, this may intro-
duce new computations (corresponding to “bad interleavings”) that violate
the specification. These are removed by deleting some transitions.

The use of model checking to generate counterexamples was suggested
by Clarke et. al. [9] and Hojati et. al. [14]. [9] presents an algorithm for gen-
erating counterexamples for symbolic model checking. [14] presents BDD-
based algorithms for generating counterexamples (“error traces”) for both
language containment and fair CTL model checking. Game-based model
checking [23, 20] provides a method for extracting counterexamples from a
model checking run. The core idea is a coloring algorithm that colors nodes
in the model-checking game graph that contribute to violation of the formula
being checked.

The idea of generating a propositional formula from a model checking
problem was presented in [6]. That paper considers LTL specifications and
bounded model checking: given an LTL formula f , a propositional formula
is generated that is satisfiable iff f can be verified within a fixed number
k of transitions along some path (Ef). By setting f to the negation of
the required property, counterexamples can be generated. Repair is not
discussed.

Some authors [16, 22, 21] have considered algorithms for solving the
repair problem: given a program (or circuit), and a specification, how to
automatically modify the program (or circuit), so that the specification is
satisfied. There appears to be no automatic repair method that is (1) com-
plete (i.e., if a repair exists, then find a repair) for a full temporal logic (e.g.,
CTL, LTL), and (2) repairs all faults in a single run, i.e., deals implicitly
with all counterexamples “at once.” For example, Jobstmann et. al. [16]

3

considers only one repair at a time, and their method is complete only for
invariants. In [21], the approach of [16] is extended so that multiple faults
are considered at once, but at the price of exponential complexity in the
number of faults.

In [7] the repair problem for CTL is considered and solved using adduc-
tive reasoning. The method generates repair suggestions that must then be
verified by model checking, one at a time. In contrast, we fix all faults at
once.

Antoniotti [2] has shown that the related problem of discrete event su-
pervisory control is also NP-complete.

The rest of the paper is as follows. Section 2 provides brief technical pre-
liminaries. Section 3 is the core of the paper: it presents our model repair
method for CTL in detail, discuses how the method is modified to handle
ATL. Section 4 presents the various extensions discussed above. Section 5
presents several example applications of the method. Section 6 discusses
our implementation, including experimental performance data. Section 7
discusses future work and concludes. Appendix A presents a manual sim-
plification of an example repair formula, Appendix B provides proofs for all
theorems, and Appendix C provides full technical preliminaries.

2 Preliminaries

We assume basic of knowledge of CTL [10, 11] and ATL [1]. The logic CTL
is given by the following grammar:

ϕ ::= true | false | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | EXϕ | A[ϕVϕ] | E[ϕVϕ]

where p ∈ AP, a set of atomic propositions. The semantics of a CTL formula
are given with respect to a Kripke structure M = (s0, S,R,L) where s0 is
the start state,S is the set of states, R ⊆ S × S is the transition relation
and L : S 7→ 2AP is the labeling function. We use M |= ϕ to abbreviate
M,s0 |= ϕ. We use the abbreviations A[φUψ] for ¬E[¬ϕV¬ψ], E[φUψ] for
¬A[¬ϕV¬ψ], AFϕ for A[trueUϕ], EFϕ for E[trueUϕ], AGϕ for A[falseVϕ], EGϕ
for E[falseVϕ].

Definition 1 (Formula expansion). Given a CTL formula ϕ, its set of
subformulae sub(ϕ) is defined as follows:

• sub(p) = p where p is true, false, or an atomic proposition

• sub(¬ϕ) = {¬ϕ} ∪ sub(ϕ)

4

• sub(ϕ ∧ ψ) = {ϕ ∧ ψ} ∪ sub(ϕ) ∪ sub(ψ)

• sub(ϕ ∨ ψ) = {ϕ ∨ ψ} ∪ sub(ϕ) ∪ sub(ψ)

• sub(AXϕ) = {AXϕ} ∪ sub(ϕ)

• sub(EXϕ) = {EXϕ} ∪ sub(ϕ)

• sub(A[ϕVψ]) = {A[ϕVψ],AXA[ϕVψ], ϕ∨AXA[ϕVψ], ψ∧(ϕ∨AXA[ϕVψ])}∪
sub(ϕ) ∪ sub(ψ)

• sub(E[ϕVψ]) = {E[ϕVψ],EXE[ϕVψ], ϕ∨EXE[ϕVψ], ψ∧(ϕ∨EXE[ϕVψ])}∪
sub(ϕ) ∪ sub(ψ)

The logic ATL is given by the following grammar:

ϕ ::= true | false | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ |≪A≫ Xϕ |≪A≫ [ϕVϕ]

where p ∈ AP, A ⊆ Σ. Σ denotes the set of players. ≪A≫ ϕ holds iff the
players in A have a collective strategy to enforce the truth of ϕ.

3 The Model Repair Problem

Given Kripke structure M and a specification formula ϕ, we consider the
problem of removing parts of M , resulting in a substructure M ′ such that
M ′ |= ϕ.

Definition 2 (Substructure). Given a Kripke structure M = (s0, S,R,L)
and a structure M ′ = (s′0, S

′, R′, L′) we say thatM ⊆M ′ iff S ⊆ S′, s0 = s′0,
R′ ⊆ R, and L′ = L ↾ S′.

Definition 3 (Repairable). Given Kripke structure M = (s0, S,R,L) and a
formula η. M is repairable with respect to η if there exists a Kripke structure
M ′ = (s′0, S

′, R′, L′) such that M ′ is total, M ′ ⊆M , and M ′, s0 |= η.

Recall that a Kripke strucutre is total iff every state has at least one
outgoing transition.

Definition 4 (Model Repair Problem). Given a Kripke structure M =
(s0, S,R,L), and a formula η, the repair problem is to decide if M is re-
pairable with respect to η.

The model repair problem is defined for any temporal or modal logic for
which the |= relation is defined, e.g µ-calculus , CTL*, CTL, etc. So, for
example, we speak of the model repair problem for CTL (CTL model repair
for short). An instance of model repair is then the pair (M,ϕ).

5

3.1 Complexity of the Model Repair Problem

Theorem 1. The model repair problem for CTL is NP-complete.

Corollary 1. Let L be any temporal logic interpreted in Kripke structures
such that (1) model checking for L is in polynomial time, and (2) there exists
a polynomial time reduction from CTL model checking to L model checking.
Then the model repair problem for L is NP-complete.

An immediate consequence is that model repair for alternating-time tem-
poral logic (ATL) is NP-complete.

3.2 CTL Model Repair using SAT solvers

Given an instance of model repair (M,η), where M = (s0, S,R,L) and η

is a CTL formula, we define a propositional formula repair (M,η) such that
repair (M,η) is satisfiable iff (M,η) has a solution. repair (M,η) is defined
over the following propositions:

1. Es,t : (s, t) ∈ R

2. Xs,ψ : s ∈ S,ψ ∈ sub(η)

3. Xn
s,ψ : s ∈ S, 0 ≤ n ≤ |S|, and ψ ∈ sub(η) has the form A[ϕVϕ′] or

E[ϕVϕ′]

The meaning of Es,t is that the transition (s, t) is retained in the fixed
model M ′ iff Es,t is assigned tt (“true”) by the satisfying valuation V for
repair (M,η). The meaning of Xs,ψ is that ψ holds in state s. Xn

s,ψ is used to
propagate release formula (AV or EV) for as long as necessary to determine
their truth, i.e., |S| in the worst case.

A solution for satisfiability of repair (M,η), e.g., as given by a SAT
solver, gives directly a solution to model repair. Denote this solution by
model (M,V). Thenmodel (M,V) = (s′0, S

′, R′, L′), whereR′ = {(s, t)|V(Es,t) =
tt}, S′ consists of all states reachable from s0 via paths of transitions in R′,
and L′ = L ↾ S′. Note that model (M,V) does not depend directly on η.

Essentially, repair (M,η) encodes all of the usual local constraints, e.g.,
AXϕ holds in s iff ϕ holds in all successors of s. We modify these however,
to take transition deletion into account. So, the local constraint for AX

becomes AXϕ holds in s iff ϕ holds in all successors of s after transitions
have been deleted (to effect the repair). More precisely, instead of Xs,AXϕ ≡
∧

t|s→tXt,ϕ, we have Xs,AXϕ ≡
∧

t|s→t(Es,t ⇒ Xt,ϕ). Here s→ t abbreviates
(s, t) ∈ R. The other modalities (EX,AV,EV) are treated similarly. We deal

6

with AU,EU by reducing them to EV,AV using duality. We require that the
repaired structure M ′ be total by requiring that every state has at least one
outgoing transition.

Definition 5 (repair (M,η)). Let M = (s0, S,R,L) be a Kripke structure
and η a CTL formula. Let s → t abbreviate (s, t) ∈ R. repair (M,η) is the
conjunction of all the propositional formulae listed below. These are grouped
into sections, where each section deals with one issue, e.g., propositional
consistency. s, t implicitly range over S. Other ranges are explicitly given.

M ′ satisfies η: Xs0,η

M ′ is total, i.e., each state has an outgoing transition
for all s ∈ S :

∨

t|s→tEs,t

Propositional labeling
for all p ∈ AP ∩ L(s): Xs,p

for all p ∈ AP − L(s) : ¬Xs,p

Propositional consistency
for all ¬ϕ ∈ sub(η): Xs,¬ϕ ≡ ¬Xs,ϕ

for all ϕ ∨ ψ ∈ sub(η): Xs,ϕ∨ψ ≡ Xs,ϕ ∨Xs,ψ

for all ϕ ∧ ψ ∈ sub(η): Xs,ϕ∧ψ ≡ Xs,ϕ ∧Xs,ψ

Nexttime formulae
for all AXϕ ∈ sub(η): Xs,AXϕ ≡

∧

t|s→t(Es,t ⇒ Xt,ϕ)
for all EXϕ ∈ sub(η): Xs,EXϕ ≡

∨

t|s→t(Es,t ∧Xt,ϕ)

Release formulae. Let n = |S|, i.e., the number of states in M .
for all A[ϕVψ] ∈ sub(η): Xs,A[ϕVψ] ≡ Xn

s,A[ϕVψ]

for all A[ϕVψ] ∈ sub(η), m ∈ {1...n}:
Xm
s,A[ϕVψ] ≡ Xs,ψ ∧ (Xs,ϕ ∨

∧

t|s→t(Es,t ⇒ Xm−1
t,A[ϕVψ]))

for all A[ϕVψ] ∈ sub(η): X0
s,A[ϕVψ] ≡ Xs,ψ

for all E[ϕVψ] ∈ sub(η): Xs,E[ϕVψ] ≡ Xn
s,E[ϕVψ]

for all E[ϕVψ] ∈ sub(η), m ∈ {1...n}:
Xm
s,E[ϕVψ] ≡ Xs,ψ ∧ (Xs,ϕ ∨

∨

t|s→t(Es,t ∧X
m−1
t,E[ϕVψ]))

for all E[ϕVψ] ∈ sub(η): X0
s,E[ϕVψ] ≡ Xs,ψ

We handle the “ϕ releases ψ” modality [ϕVψ] as follows. Along each
path, either (1) a state is reached where [ϕVψ] is discharged (ϕ ∧ ψ), or
(2) [ϕVψ] is shown to be false (¬ϕ ∧ ¬ψ), or (3) some state eventually
repeats. In case (3), we know that release also holds along this path. Thus,
by expanding the release modality up to n times, where n is the number
of states in the original structure M , we ensure that the third case holds

7

if the first two have not yet resolved the truth of (ϕVψ) along the path in
question. To carry out the expansion correctly, we use a version of Xs,A[ϕVψ]

that is superscripted with an integer between 0 and n. This imposes a “well
foundedness” on the Xm

s,A[ϕVψ] propositions, and prevents for example, a
cycle along which ψ holds in all states and yet the Xs,A[ϕVψ] are assigned
false in all states s along the cycle.

Note that the above requires all states, even those rendered unreachable
by transition deletion, to have some outgoing transition. This “extra” re-
quirement on the unreachable states does not affect the method however,
since there will actually remain a satisfying assignment which allows un-
reachable state to retain all their outgoing transitions, if some M ′ ⊆ M

exists that satisfies η. For s unreachable from s0 in M ′, assign the value to
Xs,ϕ that results from model checking M ′, s |= ϕ. This gives a consistent
assignment that satsifies repair (M,η). Clearly, Xs,ϕ does not affect Xs0,η

since s is unreachable from s0.
In each state s ∈ S, there are O(|η|×|S|) formulae to check, each of which

has length O(d), where d is the maximum number of succesors that any state
in S has. The sum of lengths of all these formulae is O(|η| × |S|2 × d). The
propositional labelling formulae add O(|S| × |AP|) length, and so the size
of repair (M,ϕ) is O(|η| × |S|2 × d+ |S| × |AP|), and so is polynomial in the
size of (M,η). Clearly, repair (M,η) can be constructed in polynomial time.
Figure 1 presents our model repair algorithm, Repair(M,ϕ), which we show
is sound, and complete provided that a complete SAT-solver is used. Recall
that we use model (M,V) to denote the structureM ′ derived from the repair
of M w.r.t. η, i.e., M ′ = (s′0, S

′, R′, L′), where R′ = {(s, t)|V(Es,t) = tt},
S′ consists of all states reachable from s0 via paths of transitions in R′, and
L′ = L ↾ S′.

Theorem 2 (Soundness). Let M = (s0, S,R,L) be a Kripke structure, η a
CTL formula, and n = |S|. Suppose that repair (M,η) is satisfiable and that
V is a satisfying truth assignment for it. Let M ′ = model (M,V), Then for
all reachable states s ∈ S′ and CTL formulae ξ ∈ sub(η):

V(Xs,ξ) = tt iff M ′, s |= ξ and
for m ∈ {1...n} : V(Xm

s,ξ) = tt iff M ′, s |= ξ.

Corollary 2 (Soundness). If Repair(M,η) returns a structureM ′ = (s′0, S
′, R′, L′),

then (1) M ′ is total, (2) M ′ ⊆M , (3) M ′, s0 |= η, and (4) M is repairable.

Theorem 3 (Completness). IfM is repairable with respect to η then Repair(M,η)
returns a Kripke structureM ′′ such thatM ′′ is total, M ′′ ⊆M , andM ′′, s0 |=
η.

8

Since M ′ results by removing transitions and unreachable states from
M , the relation mapping each state in M ′ to “itself” in M is a simulation
relation [13] from M ′ to M . Hence the following, where ACTL∗ [13] is the
universal fragment (no existential path quantifier) of CTL∗, and clause (2)
follows from [13].

Proposition 1. If Repair(M,η) returns a structure M ′, then (1) there is
a simulation relation from M ′ to M , and (2) for all ACTL∗ formulae f ,
M |= f implies M ′ |= f .

Repair(M,η):

model check M,s0 |= η;
if successful, then return M

else

compute repair (M,η) as given in Section 3;
submit repair (M,η) to a sound and complete SAT-solver;
if the SAT-solver returns “not satisfiable” then

return “failure”
else

the solver returns a satisfying assignment V;
return M ′ = model (M,V)

Figure 1: The model repair algorithm.

3.3 ATL Model Repair using SAT solvers

We adapt Definition 5 for ATL as follows.
We omit the conjuncts for AXϕ, EXϕ, A[ϕVψ], E[ϕVψ], and add the fol-

lowing conjuncts. Here σ(s) is the player whose turn it is to move in state
s.

Nexttime formulae

for all Xϕ ∈ sub(η) : Xs,≪A≫Xϕ ≡

{

∨

t|s→t(Es,t ∧Xt,≪A≫ϕ) if σ(s) ∈ A
∧

t|s→t(Es,t ⇒ Xt,≪A≫ϕ) if σ(s) 6∈ A

Release formulae. Let n = |S| and m ∈ {1...n}. Then, for all ≪ A ≫
[ϕVψ] ∈ sub(η) we have the following conjuncts:
Xs,≪A≫[ϕVψ] ≡ Xn

s,≪A≫[ϕVψ]

9

Xm
s,≪A≫[ϕVψ] ≡ Xs,≪A≫ψ∧(Xs,≪A≫ϕ∨

∨

t|s→t(Es,t∧X
m−1
t,≪A≫[ϕVψ])) if σ(s) ∈ A

Xm
s,≪A≫[ϕVψ] ≡ Xs,≪A≫ψ∧ (Xs,≪A≫ϕ∨

∧

t|s→t(Es,t ⇒ Xm−1
t,≪A≫[ϕVψ])) if σ(s) 6∈

A

X0
s,≪A≫[ϕVψ] ≡ Xs,≪A≫ψ

As in Definition 5, the above formula encodes the possibilities for val-
uation of η and all its subformulae on M , and the possible substructures
resulting from deleting transitions from M . We can still reduce until to re-
lease, since ≪A≫ [ϕUψ] ≡ ≪Σ−A≫ [¬ϕV¬ψ] in turn-based synchronous
games [17].

4 Extensions of the Subtractive Repair Algorithm

We now present several extensions to the subtractive repair algorithm given
in the previous section.

4.1 Addition of States and Transitions

The subtractive repair algorithm performs repair by deleting transitions,
with states being implicitly deleted if they become unreachable. Let M =
(s0, S,R,L) be a Kripke structure with underlying set of atomic propositions
AP . By adding some states and transitions to M before performing repair,
we can end up with a substructure M ′ that includes some of the added
states. Thus, we have addiditve repair : repair performed by adding states
and transitions,

Let S+ be a finite set of states such that S ∩ S+ = ∅, let L+ be an
extension of L to S∪S+, and let R+ be a subset of (S ∪S+)× (S∪S+)−R.
Let M+ = (s0, S ∪ S+, R ∪ R+, L+). So, S+ represents the states that are
added to M , and R+ represents the transitions that are added. Note that
added transitions can involve only the original state (S), only the added
state (S+), or one state from each of S, S+. We now execute the algorithm
subtractive repair algorithm of Figure 1, i.e., Repair(M+, η).

In practice, the added states and transitions would be determined either
manually, by the user of the repair tool, or mechanically using heuristics.
While it seems possible to modify the repair formula directly to accommo-
date state/transition addition (e.g., by introducing new propositions for the
added states and transitions), doing so does not seem to be any better than
adding to the structure M and then regenerating the repair formula using
the existing Definition 5. Note that proposition 1 no longer holds when we
add states and transitions.

10

4.2 Discrete Event Supervisory Control

In the well-know discrete event supervisory control problem (DESC) [18, 19],
a Kripke structure is given in which the transitions are labelled as “con-
trollable” and “not controllable”. The problem is to delete (disable) only
controllable transitions so that the resulting structure satisfies a property,
e.g., expressed in CTL. We easily subsume DESC when the property is ex-
pressed in CTL as follows. Conjoin to the repair formula Repair(M,η)
the transition propositions Es,t for all uncontrollable transitions s → t.
Thus, we submit the following formula to the SAT solver: Repair(M,η) ∧
(
∧

(s→t)is uncontrollableEs,t). The resulting assignment produced by the SAT
solver must then assign tt to all Es,t for all uncontrollable transitions s→ t,
and so none of these transitions are deleted. By Theorem 3 (completeness),
our repair method will then find a solution that involves deleting only con-
trollable transitions, if such a solution exists. Thus, we subsume the discrete
event supervisory control problem.

4.3 Generalized Boolean Constraints on Transition and State

Deletion

The reduction given above used only simple conjunctions of Es,t proposi-
tions. We can conjoin arbitrary boolean formulae over the Es,t toRepair(M,η),
e.g., Es,t ≡ Es′,t′ ∧ Es′,t′ ≡ Es”,t” adds the constraint that either all three
transitions s → t, s′ → t′, s′′ → t′′ are deleted, or none are. This is useful
in enforcing atomic read/write semantics in shared memory, as discussed
below.

We can also add constraints on deleting states as follows. We can intro-
duce a proposition Ns (N for “node”) for each each state s with meaning
that s is retained in the final model iff Ns is assigned tt . We now modify the
clause for M ′ being total to: for all s ∈ S : Ns =⇒

∨

t|s→tEs,t, and we add
as conjunct: for all s ∈ S : ¬Ns =⇒ (

∧

t|s→t ¬Es,t)∧ (
∧

t|t→s ¬Et,s), that is,
a nondeleted state must have some outgoing transition, and a deleted state
has no transitions, either incoming or outgoing.

Suppose we have a Kripke structure for two processes P1 and P2 exe-
cuting some protocol, e.g., mutual exclusion. We can both fix the protocol
and require the result to be symmetric in P1 and P2 (i.e., the code for P2

results from interchanging the process indices 1 and 2 in the code for P1

[3]) by adding the conjunct Ns ≡ Nt for every pair of symmetric state s, t,
i.e., such that t results from s by interchanging the process indices 1 and 2,
and likewise for symmetric transitions (start and end states are symmetric).

11

Thus, we can check for the existence of symmetric concurrent algorithms.
Note that these more general constraints cannot be dealt with by discrete
event supervisory control, which only allows to specify individual transi-
tions as controllable or not, and does not allow relating the deletion of one
transition to the deletion of another.

4.4 Concurrent Program Repair

We now extend our approach to the repair of shared memory concurrent
programs P = P1 ‖ · · · ‖ PK , where processes atomically read, write one
shared variable at a time. We provide repair w.r.t, CTL specifications. We
partition AP into AP1, . . . ,APK , where AP i consists of the atomic propo-
sitions that can only be written by Pi (but can be read by other processes).
There are also shared variables x1, . . . , xm (with finite domains) that can be
read and written by all processes.

We use the atomic read/write notation introduced in [4, 5] for atomic
read/write programs. Each process Pi is a synchronization skeleton [11],
i.e., a directed graph where the nodes are local states that determine a truth
assignment for the propositions in AP i, and the arcs between nodes are
labeled with guarded commands; the guard reads atomic propositions of
other processes and shared variables, the body is a parallel assignment that
updates shared variables.

The atomic propositions in APi are consolidated into a single variable
Li (the “externally visible location counter”) owned by Pi (i.e., written by
Pi and read by other processes), so that the value of Li in si is the set of
all propositions in APi that hold in si. Li provides incomplete information
to other processes about the current local state of Pi: when Pi writes to
Li, its change of local state is visible to other processes. When Pi writes
to a shared variable x, or reads, then its change of local state is not visible
to other processes. Since Li encodes location information, a single machine
word is usually sufficient to store Li.

(si, B → A, ti) denotes an arc in Pi from local state si to local state ti
that is labeled with guarded command B → A. The restrictions to atomic
read/write syntax (cf. Definition 3.1.4 in [5]) are that each arc (si, B → A, ti)
of Pi is either:
– unguarded and single-writing : there is no guard (i.e., B is “true”) and A

either writes to Li (i.e., Li has different values in si and ti, so its value
in ti must be written into it by A) or it writes to a single shared variable
x (i.e., has the form x := c, where c is a value from the domain of x, in
which case Li must have the same value in si and ti,).

12

– single-reading and nonwriting : there is no assignment (i.e., A is “skip”),
Li has the same value in si and ti, and B has the form Qj ∈ Lj where
Qj ∈ APj , j 6= i or the form x = c. We call such a form for B a simple
term.
A global state s is a tuple 〈s1, . . . , sK , v1, . . . , vm〉 where si is the current

local state of Pi, and vj is the current value of shared variable xj. We write
s ↾ i for the component of s that gives the local state of Pi.

An arc arc = (si, B → A, ti) of Pi is enabled in global state s iff s ↾ i = si
and s(B) = true. Execution of (si, B → A, ti) in a global state s where it
is enabled generates a transition s

arc
→ t, where t results from s by changing

the local state of Pi from si to ti, and changing the value of x to c if A has
the form x := c. In general, an arc can be enabled in several global states.
In the global state transition diagram M generated by execution of P , the
set of all transitions generated by a single arc is called a family. We label
every transition by the name of the family that it belongs to. Two different
families do not intersect, since their transitions have different labels, even if
the transitions have the same “effect” on the global state. This makes the
technical development more convenient and does not cause loss of generality.
Thus, the set of transitions in M is partitioned into families.

Let P be a shared memory atomic read/write concurrent program, and
η a CTL specification for P . We generate the global state transition dia-
gram M = (s0, S,R,L) of P . Suppose that repair (M,η) has a satisfying
assignment V, and that V(Es,t) = ff for some transition (s, t) in M . Let
F be the family that (s, t) belongs to, and Pi be the process in which the
arc arc generating F occurs. To preclude executing arc in global state s,
the repaired Pi must detect that s is actually the current global state (and
then not execute arc). This requires that Pi read enough externally visible
location counters Lj , j 6= i, and shared variables, so that it can determine
a pattern of assignment of values to these that is unique to s. In general,
this may require that Pi read several location counters and shared variables
atomically.

We now have two cases, depending on arc. First, suppose that arc is
unguarded and single-writing, Then we cannot modify arc to read any in-
formation without violating the atomic read/write syntax restriction (ef-
fectively, arc becomes a test-and-set operation). We are thus left with
two options: either make s unreachable, by deleting other transitions, or
delete all the transitions in F . This can be expressed as (

∧

(s,t)∈F (¬Es,t ⇒
¬rs)) ∨ (

∧

(s,t)∈F ¬Es,t), where rs is the “reachability” proposition given in
Definition 5. The first disjunct states that deletion of (s, t) requires that
s be unreachable. The second disjunct states that all transitions in F are

13

deleted. We add the above as a conjunct to repair (M,η).
The second case is that arc = (si, B → A, ti) is single-reading and non-

writing. Since B holds in s, the repair cannot allow B to continue being
used as the guard for arc, unless s is made unreachable (in which case B
is never evaluated in s), or the entire family F is deleted, in which case
the arc arc is removed from Pi. However, it is possible that a simple term
other than B could be used to effect a repair, namely one that holds in the
initial states of all transitions in F except for the transition (s, t), i.e., in all
states s′ such that s′ 6= s ∧ ∃t′ : (s′, t′) ∈ F , and also does not hold in any
other global state. In [5], an algorithm for finding a suitable simple term, if
it exists, is presented. Essentially, the algorithm checks all possible simple
terms (their number is O(|M |)). While our approach is not able to replace
the guard B by another guard, it is capable of deleting unsuitable simple
terms, by removing the family corresponding to the arc in which the simple
term is used as a guard. This encourages an experimental style, where we
add extra arcs to the synchronization skeletons in the initial program, if we
think they may contain suitable guards. Since this does not increase the
number of local states of any process, nor the number of shared variables,
the number of global states is unaffected. Thus, we could even add arcs for
every possible simple term. Note however that Proposition 1 could be vio-
lated, as the additional arcs may induce additional transitions inM ′ that are
not simulated by M . The conclusion of the preceding discussion is that we
use the same idea for repair as we did for the unguarded and single-writing
case, namely add (

∧

(s,t)∈F (¬Es,t ⇒ ¬rs)) ∨ (
∧

(s,t)∈F ¬Es,t), a conjunct to
repair (M,η), with the possibility that we add “extra arcs” before repairing,
to increase the possibilities for the repair.

5 Examples

5.1 Simple Example for CTL Model Repair

Consider the model in Figure 2 and the formula η = (AGp∨AGq)∧EXp. Man-
ual simplification of repair (M,η) yields Xs,η ≡ ¬Es,t∧Es,u, so Repair(M,η)
will remove the edge (s, t) as shown. Our implementation produces the fol-
lowing truth assignment:

A_A_A & s_u & ~s_t & u_s & t_s & ~u_5_0 & ~t_1_0 & s_10_0 & s_7_0 &

s_9_0 & s_0_0 & ~t_4_0 & ~s_5_0 & ~u_1_0 & ~s_6_0 & t_2_0 & ~u_2_0 &

t_0_0 & ~s_1_0 & ~t_3_0 & s_2_0 & s_8_0 & u_4_0 & ~s_3_0 & t_5_0 &

u_3_0 & s_4_0 & u_0_0

14

normal-transitions

deleted states

t
¬p q

p q

s

p ¬qu

deleted-transitions

Figure 2: Input Kripke structure.

The variable s t represents the edge from s to t, etc. Note that s t is
negated, indicating an assignment of ff , i.e., the edge should be deleted, as
required.

We also ran our implementation with repair formula AXp ∧ AX¬p. As
expected, it returned “unsatisfiable,” indicating that no repair exists.

5.2 Barrier Synchronization Problem Repair

In this problem, each process Pi is a cyclic sequence of two terminating
phases, phase A and phase B. Pii, (i ∈ {1, 2}), is in exactly one of four local
states, SAi, EAi, SBi, EBi, corresponding to the start of phase A, then the
end of phase A, then the start of phase B, and then the end of phase B,
afterwards cycling back to SAi. The CTL specification is the conjunction
of the following:
1. Initially both processes are at the start of phase A: SA1 ∧ SA2

2. P1 and P2 are never simultaneously at the start of different phases:
AG(¬(SA1 ∧ SB2)) ∧ AG(¬(SA2 ∧ SB1))

3. P1 and P2 are never simultaneously at the end of different phases:
AG(¬(EA1 ∧ EB2)) ∧ AG(¬(EA2 ∧EB1))

(2) and (3) together specify the synchronization aspect of the problem: P1

can never get one whole phase ahead of P2 and vice-versa.
The structure in Figure 3 is repaired by removing edges and states that

cause the violation of the synchronization rules (2) and (3)1 Our implemen-
tation produced exactly this repair. The repair formula in CNF contained
236 propositions and 401 clauses.

1Note that the bottom [SA1SA2] state is the same as the top [SA1SA2] state, and is
repeated only for clarity of the figure.

15

deleted states

normal-transitions

SA1 SA2

EA1 SA2 SA1 EA2

EA1 EA2 SA1 SB2

SB1 EA2 EA1 SB2

SB1 SA2

EB1 EA2 SB1 SB2 EA1 EB2

EB1 SB2 SB1 EB2

EB1 EB2

SA1 EB2 EB1 SA2

SA1 SA2

deleted-transitions

Figure 3: Barrier synchronization repair.

6 Implementation of the Repair Method

We implemented the method in Python. Our implementation takes a Kripke
structure M and CTL formula η as input, generates repair (M,η) as given
by Definition 5, converts it to CNF, and then invokes the SAT solver zChaff.
The implementation is available at http://www.cs.aub.edu.lb/pa07/pca/Eshmun.html.

Table 1 gives performance figures for our implementation, running on
a PC with Pentium 4 CPU at 3.00GHz, and 512MB RAM. For M , we
generated transitions graphs randomly, specifying the number of nodes N
and the probability P that there is a transition from some given node to
some other given node. We used a constant probability P = 0.1. In M , we
used AP = {p, q}, and the propositional labels were generated randomly for
each state.

16

http://www.cs.aub.edu.lb/pa07/pca/Eshmun.html

We show the number of propositions and clauses in the CNF form of
repair (M,η), and the total time our implementation takes to produce a
satisfying assignment. This shows a typically expected increase with the
number of nodes in the graph.

For N = 20, 30 we used η = AXA[pVq]∧EXq. For N = 40 to 80, we used
η = A[pVq].

Table 1: Model Repair Results

N Propositions Clauses Time

30 309 3506 2.437s
40 449 3986 3.563s
50 608 13909 9.228s
60 781 47665 31.223s
70 993 106136 1m52.231s
80 1183 174107 3m17.140s

7 Conclusions

We presented a method for repairing Kripke structures and concurrent pro-
grams so that they satisfy a CTL formula η, by deleting transitions that
“cause” violation of η. Our method is sound, and is complete relative to our
transition deletion strategy. We address the NP-completeness of our model
repair problem by translating it (in polynomial time) into a propositional
formula, such that a satisfying assignment determines a solution to model
repair. Thus, we can bring SAT solvers to bear, which leads us to believe
that our method will apply to nontrivial structures and programs, despite
the NP-completeness. Unlike other methods, ours both fixes all counterex-
amples at once, and is complete for temporal properties, specifically full
CTL. We extended our method in various directions, to allow addition of
states and transitions, to solve discrete event supervisory control, and to
repair shared memory concurrent programs. We also provided experimental
results from our implementation.

Future work includes application of our implementation to larger exam-
ples and case studies, and extension to hierarchical Kripke structures. Our
implementation is useful in model construction, where it provides a check
that the constructed structure contains a model.

References

[1] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49:672–713, 2002.

17

[2] M. Antoniotti and B. Mishra. Np-completeness of the supervisor synthesis
problem for unrestricted CTL specifications. In Workshop on Discrete Event
Systems, 1996.

[3] P. C. Attie and E. A. Emerson. Synthesis of concurrent systems with many
similar processes. ACM Trans. Program. Lang. Syst., 20(1):51–115, Jan. 1998.

[4] P.C. Attie and E.A. Emerson. Synthesis of concurrent systems for an atomic
read / atomic write model of computation (extended abstract). In PODC,
1996.

[5] P.C. Attie and E.A. Emerson. Synthesis of concurrent programs for an atomic
read/write model of computation. TOPLAS, 23(2):187–242, 2001.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking
without BDDs. In TACAS’99, LNCS number 1579, 1999.

[7] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. Enhancing model checking
in verification by AI techniques. Artif. Intell., 1999.

[8] E. M. Clarke, E. A. Emerson, and P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. TOPLAS, 1986.

[9] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao. Efficient genera-
tion of counterexamples and witnesses in symbolic model checking. In Design
Automation Conference. ACM Press, 1995.

[10] E. A. Emerson. Temporal and modal logic. Handbook of Theoretical Computer
Science, pages 997–1072, 1990.

[11] E. A. Emerson and E. M. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of Computer Programming,
2(3):241–266, 1982.

[12] E. A. Emerson and A. P. Sistla. Symmetry and model checking. In Computer-
Aided Verification, 1993.

[13] O Grumberg and D.E. Long. Model checking and modular verification.
TOPLAS, 16(3):843–871, 1994.

[14] R. Hojati, R. K. Brayton, and R. P. Kurshan. Bdd-based debugging of design
using language containment and fair CTL. In Computer Aided Verification,
1993.

[15] D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology, 11(2):256–290, 2002.

[16] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In
CAV, pages 226–238, 2005.

[17] F. Laroussinie, N. Markey, and G.Oreiby. On the expressiveness and complex-
ity of ATL. In FoSSaCS, 2007.

18

[18] P. J. G. Ramadge and W. M. Wonham. Supervisory control of a class of
discrete event processes. SIAM, 25(25), Jan. 1987.

[19] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(1):81–98, 1989.

[20] S Shoham and O Grumberg. A game-based framework for CTL counterexam-
ples and 3-valued abstraction-refinement. In CAV, pages 275–287, 2003.

[21] S. Staber, B. Jobstmann, and R. Bloem. Diagnosis is repair. In Intl. Workshop
on Principles of Diagnosis, June 2005.

[22] S. Staber, B. Jobstmann, and R. Bloem. Finding and fixing faults. In
CHARME ’05, 2005. Springer LNCS no. 3725.

[23] C. Stirling and D. Walker. Local model checking in the modal mu-calculus.
Theor. Comput. Sci., 89(1), 1991.

19

A Manual Simplification of the Repair Formula of

the First Example

We show how repair (M,η). for our first example in Section 5 is simplified
manually. We omit the clauses dealing with reachability.

Xs,η ≡ Xs,(AGp∨AGq)∧EXp

Xs,(AGp∨AGq)∧EXp ≡ Xs,AGp∨AGq ∧ Xs,EXp

Xs,AGp∨AGq ≡ Xs,AGp ∨Xs,AGq

We start by solving for Xs,AGp.
Xs,AGp ≡ X3

s,AGp

X3
s,AGp ≡ Xs,p ∧ (Es,t ⇒ X2

t,AGp) ∧ (Es,u ⇒ X2
u,AGp)

X2
t,AGp ≡ Xt,p ∧ (Et,s ⇒ X1

s,AGp)

X2
u,AGp ≡ Xu,p ∧ (Eu,s ⇒ X1

s,AGp)

X1
s,AGp ≡ Xs,p ∧ (Es,t ⇒ X0

t,AGp) ∧ (Es,u ⇒ X0
u,AGp)

X0
t,AGp ≡ Xt,p ≡ ff

X0
u,AGp ≡ Xu,p ≡ tt

By replacing Xs,p etc. by their truth values, we can simplify the above as
follows. It is more intuitive to work “bottom up”

X1
s,AGp ≡ ¬Es,t

X2
u,AGp ≡ (Eu,s ⇒ X1

s,AGp)

X2
u,AGp ≡ Eu,s ⇒ ¬Es,t

X3
s,AGp ≡ ¬Es,t ∧ (Es,u ⇒ X2

u,AGp)

X3
s,AGp ≡ ¬Es,t ∧ (Es,u ⇒ (Eu,s ⇒ ¬Es,t)) ≡ ¬Es,t

Xs,AGp ≡ ¬Es,t
Symmetrically, we have:

Xs,AGq ≡ ¬Es,u
It remains to solve for Xs,EXp.

Xs,EXp ≡ (Es,t ∧Xt,p) ∨ (Es,u ∧Xu,p)
By replacing Xt,p and Xu,p by their values we get:

Xs,EXp ≡ (Es,t ∧ ff) ∨ (Es,u ∧ tt) ≡ Es,u
Therefore, we now can solve for Xs,η producing:

Xs,η ≡ (¬Es,t ∨ ¬Es,u) ∧ Es,u ≡ ¬Es,t ∧ Es,u
The above solution implies that Repair(M,η) will remove the edge (s, t)

and all the resulting unreachable states as shown in figure 2.
Note that for η = (AGp∨ AGq), we obtain Xs,η ≡ (¬Es,t ∨¬Es,u), which

admits two satisfying valuations, i.e., removing either (s, t) or (s, u) produces
the needed repair.

20

B Proofs

B.1 Proof of Theorem 1.

Proof. Let (M,η) be an arbitrary instance of the CTL model repair problem.
NP-membership: Given a candidate solution M ′, the condition M ′ ⊆M

is easily verified in polynomial time. M ′, s0 |= η is verified in linear time
using the CTL model checking algorithm of [8].

NP-hardness: We reduce 3SAT to CTL model repair.
Given a Boolean formula f =

∧

1≤i≤n(ai ∨ bi ∨ ci) in 3cnf, where ai, bi, ci
are literals over the a set x1, . . . , xm of propositions, i.e each of ai, bi, ci is xj
or ¬xj, for some j ∈ 1 . . . m. We reduce f to (M,η) whereM = (s0, S,R,L),
S = {s0, s1, . . . , sm, t1, . . . , tm}, andR = {(s0, s1), . . . , (s0, sm), (s1, t1), . . . , (sm, tm)},
i.e., transitions from s0 to each of s1, . . . , sm, and a transition from each si
to ti for i = 1, . . . ,m. The underlying set AP of atomic propositions is
{p1, . . . pm, q1, . . . , qm}. These propositions are distinct from the x1, . . . , xm
used in the 3cnf formula f . L is given by:

• L(s0) = ∅

• L(sj) = pj where 1 ≤ j ≤ m

• L(tj) = qj where 1 ≤ j ≤ m

η is given by:

η =
∧

1≤i≤n

(ϕ1
i ∨ ϕ

2
i ∨ ϕ

3
i)

where:

• if ai = xj then ϕ
1
i = AG(pj ⇒ EXqj)

• if ai = ¬xj then ϕ
1
i = AG(pj ⇒ AX¬qj)

• if bi = xj then ϕ
2
i = AG(pj ⇒ EXqj)

• if bi = ¬xj then ϕ
2
i = AG(pj ⇒ AX¬qj)

• if ci = xj then ϕ
3
i = AG(pj ⇒ EXqj)

• if ci = ¬xj then ϕ
3
i = AG(pj ⇒ AX¬qj)

Thus, if a1i = xi, then the transition from si to ti (which we write as si → ti
must be retained in M ′, and if ai = ¬xi, then the transition si → ti must
not appear in M ′. It is obvious that the reduction can be computed in

21

polynomial time.
It remains to show that:

f is satisfiable iff (M,η) can be fixed. The proof is by double implication.
f is satisfiable implies that (M,η) can be fixed : Let V : {x1, . . . , xm} 7→

{tt ,ff } be a satisfying truth assignment for f . Define R′ as follows. R′ =
{(s0, si), (si, si), (ti, ti) | 1 ≤ i ≤ m} ∪ {(si, ti) | V(xi) = tt}, i.e., the tran-
sition si → ti is present in M ′ if V(xi) = tt and si → ti is deleted in M

′

if V(xi) = F . We show that M ′, s0 |= η. Since V is satisfying assignment,
we have

∧

1≤i≤n(V(ai) ∨ V(bi) ∨ V(ci)). Without loss of generality, assume
that V(ai) = tt (similar argument for V(bi) = tt and V(ci) = tt). We have
two cases. Case 1 is ai = xj. Then V(xj) = tt , so (sj, tj) ∈ R′. Also since
ai = xj, ϕ

1
i = AG(pj ⇒ EXqj). Since (sj , tj) ∈ R′, M ′, s0 |= ϕ1

i . Hence
M ′, s0 |= η. Case 2 is ai = ¬xj. Then V(xj) = ff , so (sj , tj) 6∈ R′. Also
since ai = ¬xj, ϕ

1
i = AG(pj ⇒ AX¬qj). Since (sj , tj) 6∈ R

′

, M ′, s0 |= ϕ1
i .

Hence M ′, s0 |= η.
f is satisfiable follows from (M,η) can be fixed : Let M ′ = (s′0, S

′, R′, L′)
be such that M ′ ⊆ M , M ′, s0 |= η. We define a truth assignment V as
follows: V(xj) = tt iff (sj, tj) ∈ R′. We show that V(f) = tt , i.e., V(ai) ∨
V(bi)∨V(ci) for all i = 1 . . . n. SinceM,s0 |= η we haveM,s0 |= ϕ1

i ∨ϕ
2
i ∨ϕ

3
i

for all i = 1 . . . n. Without loss of generality, suppose that M,s0 |= ϕ1
i

(similar argument for M,s0 |= ϕ2
i and M,s0 |= ϕ3

i). We have two cases.
Case 1 is ai = xj . Then ϕ1

i = AG(pj ⇒ EXqj). Since M ′, s0 |= ϕ1
i , we

must have (sj , tj) ∈ R′. Hence V(xj) = tt by definition of V. Therefore
V(ai) = tt . Hence V(ai) ∨ V(bi) ∨ V(ci). Case 2 is ai = ¬xj. Then ϕ1

i =
AG(pj ⇒ AX¬qj). Since M ′, s0 |= ¬ϕ1

i , we must have (sj , tj) 6∈ R′. Hence
V(xj) = ff . Therefore V(ai) = tt . Hence V(ai) ∨ V(bi) ∨ V(ci).

B.2 Proof of Corollary 1.

Proof. NP-membership: guess the substructure M ′ of M and then check
M |= η in polynomial time using a polynomial time model checking algo-
rithm.
NP-hardness: use the reduction from 3SAT to CTL model checking given
in the proof of Theorem 1, and then use the assumed reduction to L model
checking.

B.3 Proof of Theorem 2.

Proof. We proceed by induction on the structure of ξ. We sometimes write
V(Xs,ξ) instead of V(Xs,ξ) = tt and ¬V(Xs,ξ) instead of V(Xs,ξ) = ff .

22

Case ξ = ¬ϕ:
V(Xs,ξ) = tt iff
V(Xs,¬ϕ) = tt iff (by propositional consistency clause of Definition 5)
V(Xs,ϕ) = ff iff (by the induction hypothesis)
not(M ′, s |= ϕ) iff
M ′, s |= ¬ϕ iff
M ′, s |= ξ

Case ξ = ϕ ∨ ψ:
V(Xs,ξ) = tt iff
V(Xs,ϕ∨ψ) = tt iff (by propositional consistency clause of Definition 5)
V(Xs,ϕ) = tt or V(Xs,ψ) = tt iff (by the induction hypothesis)
(M ′, s |= ϕ) or (M ′, s |= ψ) iff M ′, s |= ϕ ∨ ψ iff M ′, s |= ξ

Case ξ = ϕ ∧ ψ:
V(Xs,ξ) = tt iff
V(Xs,ϕ∧ψ) = tt iff (by propositional consistency clause of Definition 5)
V(Xs,ϕ) = tt and V(Xs,ψ) = tt iff (by the induction hypothesis)
(M ′, s |= ϕ) and (M ′, s |= ψ) iff M ′, s |= ϕ ∧ ψ iff M ′, s |= ξ

Case ξ = AXϕ:
V(Xs,ξ) = tt iff
V(Xs,AXϕ) = tt iff
∧

t|s→t V(Es,t ⇒ Xt,ϕ) = tt iff
∧

t|s→t V(Es,t) = tt ⇒ V(Xt,ϕ) = tt iff (since s is reachable by assumption,
Es,t implies that t also reachable, and apply the induction hypothesis)
∧

t|s→t(s, t) ∈ R′ ⇒M ′, t |= ϕ iff

M ′, s |= AXϕ iff
M ′, s |= ξ

Case ξ = EXϕ:
V(Xs,ξ) = tt iff
V(Xs,EXϕ) = tt iff
∨

t|s→t V(Es,t ∧Xt,ϕ) = tt iff
∨

t|s→t V(Es,t) = tt ∧V(Xt,ϕ) = tt iff (since t is reachable from s by assump-
tion, and apply the induction hypothesis)
∨

t|s→t(s, t) ∈ R′ ∧M ′, t |= ϕ iff

M ′, s |= EXϕ iff

23

M ′, s |= ξ

Case ξ = A[ϕVψ]: We do the proof for each direction separatly.

Left to right, i.e., V(Xs,A[ϕVψ]) implies M ′, s |= A[ϕVψ]:
V(Xs,A[ϕVψ]) iff
V(Xn

s,A[ϕVψ]) iff

V(Xs,ψ ∧ (Xs,ϕ ∨
∧

t|s→t(Es,t ⇒ Xn−1
t,A[ϕVψ]))) iff

(since V is a valuation function, and so distributes over boolean connectives)
V(Xs,ψ)∧(V(Xs,ϕ1

)∨(
∧

t|s→t V(Es,t) ⇒ V(Xn−1
t,A[ϕ1Vψ]

))) iff (by the induction

hypothesis)
M ′, s |= ψ ∧ (M ′, s |= ϕ ∨

∧

t|s→t((s, t) ∈ R′ ⇒ V(Xn−1
t,A[ϕVψ])).

We now have two cases

1. M ′, s |= ϕ. In this case, M ′, s |= A[ϕVψ], and so M ′, s |= ξ.

2.
∧

t|s→t(s, t) ∈ R′ ⇒ V(Xn−1
t,A[ϕVψ]).

For case 2, we proceed as follows. Let t be an arbitrary state such that
(s, t) ∈ R′. Then V(Xn−1

t,A[ϕVψ]). If we show that V(Xn−1
t,A[ϕVψ]) implies M ′, s |=

A[ϕVψ] then we are done, by CTL semantics. The argument is essentially a
repetition of the above argument for V(Xs,A[ϕVψ]) implies M ′, s |= A[ϕVψ].
Proceeding as above, we conclude M ′, t |= ψ and one of the same two cases
as above:

• M ′, t |= ϕ

•
∧

u|t→u(t, u) ∈ R′ ⇒ V(Xn−2
u,A[ϕVψ])

However note that, in case 2, we are “counting down.” Since we count down
for n = |S|, then along every path starting from s, either case (1) occurs,
which “terminates” that path, as far as valuation of [ϕVψ] is concerned, or
we will repeat a state before (or when) the counter reaches 0. Along such a
path (from s to the repeated state), ψ holds at all states, and so [ϕVψ] holds
along this path. We conclude that [ϕVψ] holds along all paths starting in
s, and so M ′, s |= A[ϕVψ].

Right to left, i.e., V(Xs,A[ϕVψ]) follows from M ′, s |= A[ϕVψ]:
Assume that M ′, s |= A[ϕVψ] holds. Hence M ′, s |= ψ ∧ (M ′, s |= ϕ ∨
∧

t|t→s((s, t) ∈ R′ ⇒ M ′, t |= A[ϕVψ])). By the induction hypothesis,

V(Xs,ψ) ∧ (V(Xs,ϕ) ∨
∧

t|t→s((s, t) ∈ R′ ⇒ M ′, t |= A[ϕVψ])). We now
have two cases

24

1. V(Xs,ϕ). Since we have V(Xs,ψ) ∧ V(Xs,ϕ) we conclude V(Xs,A[ϕVψ]),
and so we are done.

2.
∧

t|s→t(s, t) ∈ R′ ⇒M ′, t |= A[ϕVψ]

For case 2, we proceed as follows. Let t be an arbitrary state such that
(s, t) ∈ R′. ThenM ′, t |= A[ϕVψ]. If we show that V(Xn−1

t,A[ϕVψ]) follows from M ′, t |=

A[ϕVψ] then we can conclude V(Xs,A[ϕVψ]) by Definition 5. Proceeding as
above, we conclude V(Xt,ψ) and one of the same two cases as above:

• V(Xt,ϕ), so by Definition 5, V(Xn−1
t,A[ϕVψ]) holds.

•
∧

u|t→u(t, u) ∈ R′ ⇒ V(Xn−2
u,A[ϕVψ])

As before, in case 2 we are “counting down.” Since we count down for
n = |S|, then along every path starting from s, either case (1) occurs, which
“terminates” that path, as far as establishment of V(Xt,ϕ) is concerned, or
we will repeat a state before (or when) the counter reaches 0. Along such a
path (from s to the repeated state, call it v), ψ holds at all states. By Defi-
nition 5, X0

v,A[ϕVψ] ≡ Xv,ψ. From M ′, v |= ψ and the induction hypothesis,

V(Xv,ψ) holds. Hence X
0
v,A[ϕVψ] holds. Thus, along every path starting from

s, we reach a state w such that V(Xm
w,A[ϕVψ]) holds for some m ∈ {0, . . . , n}.

Hence by Definition 5, V(Xs,A[ϕVψ]) holds.

Case ξ = E[ϕVψ]: this is argued in the same way as the above case for
ξ = A[ϕVψ], except that we expand along one path starting in s, rather
than all paths. The differences with the AV case are straightforward, and
we omit the details.

B.4 Proof of Corollary 2.

Proof. Let V be the truth assignment for repair (M,η) that was returned by
the SAT-solver in the execution of Repair(M,η). Since the SAT-solver is
assumed sound, V is actually a satisfying assignment for repair (M,η). For
(1), let u be an arbitrary reachable state inM ′. Consider a path from s0 to u.
By definition of repair (M,η), we have V(Es,t) = tt for every transition (s, t)
along this path. Hence V(

∨

v|u→v Eu,v) = tt . Hence u has some outgoing

transition in M ′. (2) holds by construction of M ′, which is derived from M

by deleting transitions and (subsequently) unreachable states. For (3), note
that Xs0,η is a conjunct of repair (M,η) by definition of repair (M,η). Hence
V(Xs0,η) = tt . Hence, by Theorem 2, M ′, s0 |= η. Finally, (4) follows from
(1)–(3) and Definition 3.

25

B.5 Proof of Theorem 3.

Proof. Assume that M is repairable with respect to η. By Definition 3,
there exists a total substructure M ′ of M such that M ′, s0 |= η. We define
a satisfying valuation V for repair (M,η) as follows.

Assign tt to Es,t for every edge (s, t) ∈ R′ and ff to every Es,t for every
edge (s, t) 6∈ R′. Since M ′ is total, the “M ′ is total” section is satisfied by
this assignment.

Assign tt to Xs0,η. Consider an execution of the CTL model checking
algorithm of [8] for checking M ′, s0 |= η. This algorithm will assign a value
to every formula ϕ in sub(η) in every reachable state s of M ′. Set V(Xs,ϕ to
this value. By construction of the [8] model checking algorithm, these valua-
tions will satisfy all of the constraints given in the “propositional labeling,”
“propositional consistency,” “nexttime formulae,” and “release formulae”
sections of Definition 5. Hence all conjuncts of repair (M,η) are assigned tt
by V. Hence V(repair (M,η)) = tt , and so repair (M,η) is satisfiable.

Now the SAT-solver used is assumed to be complete, and so will return
some satisfying assignment for repair (M,η) (not necessarily V, since there
may be more than one satisfying assignment). Thus, Repair(M,η) returns
a structureM ′, rather than “failure.” By corollary 2,M ′′ is total, M ′′ ⊆M ,
and M ′′, s0 |= η.

C Technical Background

C.1 Computation Tree Logic

Let AP be a set of atomic propositions. including the constants true and
false. We use true, false as “constant” propositions whose interpretation is
always the truth values tt , ff , respectively.

The logic CTL [11] is given by the following grammar:

ϕ ::= true | false | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | EXϕ | A[ϕVϕ] | E[ϕVϕ]

where p ∈ AP.
The semantics of formulae are defined with respect to a Kripke structure.

Definition 6. A Kripke structure is a tuple M = (s0, S,R,L) where S is a
finite state of states, s0 ∈ S is a single initial state, R ⊆ S×S is a transition
relation, and L : S 7→ 2AP is a labeling function that associates each state
s ∈ S with a subset of atomic propositions, namely those that hold in the
state.

26

We assume that a Kripke structure M = (s0, S,R,L) is total, i.e., ∀s ∈
S,∃s′ ∈ S : (s, s′) ∈ R. A path in M is a (finite or infinite) sequence of
states, π = s0, s1, . . . such that ∀i ≥ 0 : (si, si+1) ∈ R. A fullpath is an
infinite path.

Definition 7. M,s |= ϕ means that formula ϕ is true in state s of structure
M and M,s 6|= ϕ means that formula ϕ is false in state s of structure M .
We define |= inductively as usual:

• M,s |= true

• M,s 6|= false

• M,s |= p iff p ∈ L(s) where atomic proposition p ∈ AP

• M,s |= ¬ϕ iff M,s 6|= ϕ

• M,s |= ϕ ∧ ψ iff M,s |= ϕ and M,s |= ψ

• M,s |= ϕ ∨ ψ iff M,s |= ϕ or M,s |= ψ

• M,s |= AXϕ iff for all t such that (s, t) ∈ R : (M, t) |= ϕ

• M,s |= EXϕ iff there exists t such that (s, t) ∈ R and (M, t) |= ϕ

• M,s |= A[ϕVψ] iff for all fullpaths π = s0, s1, . . . starting from s = s0:
∀k ≥ 0 : (∀j < k : (M,sj 6|= ϕ) implies M,sk |= ψ

• M,s |= E[ϕVψ] iff for some fullpath π = s0, s1, . . . starting from s = s0:
∀k ≥ 0 : (∀j < k : (M,sj 6|= ϕ) implies M,sk |= ψ

We useM |= ϕ to abbreviateM,s0 |= ϕ. We introduce the abbreviations
A[φUψ] for ¬E[¬ϕV¬ψ], E[φUψ] for ¬A[¬ϕV¬ψ], AFϕ for A[trueUϕ], EFϕ
for E[trueUϕ], AGϕ for A[falseVϕ], EGϕ for E[falseVϕ].

C.2 Alternating-Time Temporal Logic

We review Alternating-Time Temporal Logic (ATL)[1]. ATL extends the
existential and universal quantification over paths of CTL by offering se-
lective path quantification by a set of players, i.e., paths along which the
set of players can “enforce” the satisfaction of a formula. In general, ATL
is interpreted over concurrent game structures where every state transition
results from each player choosing it’s move, and then all players moving
“at the same time.” There are also several kinds of restricted structures in

27

which ATL can be interpreted. Turn-based synchronous games are games
where in each step only one player makes a move, and the current player
is determined by the current state. Moore synchronous games are games
where the state space is partitioned according to the players, and in each
step, every player updates its own components of the state independently
of other players. Turn-based asynchronous are games in which in each step
only one player has a choice of moves and that player is determined by a
fair scheduler. In this paper we restrict ourselves to turn-based synchronous
games. The results obtained still apply to other types of games since they
can be reduced to turn-based synchronous games in polynomial time [1].

Let AP be a set of atomic propositions including the constants true and
false. Let Σ denote the set of players. The logic ATL is given by the following
grammar:

ϕ ::= true | false | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ |≪A≫ Xϕ |≪A≫ [ϕVϕ]

where p ∈ AP, A ⊆ Σ
We useM |= ϕ to abbreviateM,s0 |= ϕ. We introduce the abbreviations

≪A≫ [φUψ] for ¬ ≪Σ − A≫ [¬ϕV¬ψ], ≪A≫ Fϕ for ≪A≫ [trueUϕ],
≪A≫ Gϕ for ≪A≫ [falseVϕ].

Definition 8 (ATL formula subformulae). Given an ATL formula ϕ, its
subformulae sub(ϕ) is defined as follows:

• sub(p) := p where p is true, false, or an atomic proposition

• sub(ϕ ∧ ψ) := {ϕ ∧ ψ} ∪ sub(ϕ) ∪ sub(ψ)

• sub(ϕ ∨ ψ) := {ϕ ∨ ψ} ∪ sub(ϕ) ∪ sub(ψ)

• sub(≪A≫ Xϕ) := {≪A≫ Xϕ} ∪ sub(ϕ)

• sub(≪A≫ (ϕVψ)) := exp(≪A≫ (ϕVψ)) ∪ sub(ϕ) ∪ sub(ψ)

In [1], the semantics of ATL is defined with respect to concurrent game
structures. Since we consider only turn-based synchronous game structures,
we provide a (simpler) definition for ATL semantics with respect to turn-
based synchronous game structures.

Definition 9. A turn-based synchronous game structure is a tuple M =
(s0, S,R,L, σ) where S is a finite state of states, s0 is the single initial state,
R ⊆ S × S is a transition relation and L : S → 2AP is a labeling function
that associates each state s ∈ S with a subset of atomic propositions, namely
those that hold in the state. σ is the turn function σ : S 7→ Σ that maps
each state to a player (whose turn it is to make a move).

28

We assume that each structure M = (s0, S,R,L, σ) is total, i.e., ∀s ∈
S,∃s′ ∈ S : (s, s′) ∈ R. A path in M is a (finite or infinite) sequence of
states, π = s0, s1, . . . such that ∀i ≥ 0 : (si, si+1) ∈ R. A fullpath is an
infinite path.

For a path π and a position i ≥ 0, we use π[i] to denote the ith state of
π. A strategy for a player a ∈ Σ is a mapping fa : S∗ 7→ S that assigns to
every finite path π a successor state s ∈ S. Given a state s ∈ S and a set
A ⊆ Σ of players, an A-strategy FA = {fa | a ∈ A} is a set of strategies,
one for each player in A. We define the outcomes of FA from s to be the
set out(s, FA) of all fullpaths that the players in A can enforce when they
follow the strategies in FA, i.e., a fullpath π = s0, s1, . . . is in out(s, FA) if
s0 = s and for all i ≥ 0, if a = σ(π[i]) then si+1 = fa(π[0, i]).

Definition 10 (ATL semantics). M,s |= ϕ means that ϕ is true in state s
of game structure M = (s0, S,R,L, σ). M,s 6|= ϕ means that formula ϕ is
false in state s of game structure M . We define |= inductively as usual:

• M,s |= true

• M,s 6|= false

• M,s |= p iff p ∈ L(s) where atomic proposition p ∈ AP

• M,s |= ¬ϕ iff M,s 6|= ϕ

• M,s |= ϕ ∧ ψ iff M,s |= ϕ and M,s |= ψ

• M,s |= ϕ ∨ ψ iff M,s |= ϕ or M,s |= ψ

• M,s |=≪ A ≫ Xϕ iff there exists a set FA of strategies, one for
each player in A, such that for all fullpaths π ∈ out(s, FA), we have
M,π[1] |= ϕ

• M,s |=≪ A≫ [ϕVψ] iff there exists a set FA of strategies, one for
each player in A, such that for all fullpaths π ∈ out(s, FA):
∀k ≥ 0 : (∀j < k : (M,π[j] 6|= ϕ) implies M,π[k] |= ψ

29

	Introduction and Motivation
	Preliminaries
	The Model Repair Problem
	Complexity of the Model Repair Problem
	CTL Model Repair using SAT solvers
	ATL Model Repair using SAT solvers

	Extensions of the Subtractive Repair Algorithm
	Addition of States and Transitions
	Discrete Event Supervisory Control
	Generalized Boolean Constraints on Transition and State Deletion
	Concurrent Program Repair

	Examples
	Simple Example for CTL Model Repair
	Barrier Synchronization Problem Repair

	Implementation of the Repair Method
	Conclusions
	Manual Simplification of the Repair Formula of the First Example
	Proofs
	Proof of Theorem ??.
	Proof of Corollary ??.
	Proof of Theorem ??.
	Proof of Corollary ??.
	Proof of Theorem ??.

	Technical Background
	Computation Tree Logic
	Alternating-Time Temporal Logic

