
Parallel Reachability Analysis for Hybrid
Systems

Amit Gurung1, Arup Kumar Deka1,
Ezio Bartocci2, Sergiy Bogomolov3, Radu Grosu2, and Rajarshi Ray1?

1 National Institute of Technology Meghalaya, India
2 Vienna University of Technology, Austria

3 Institute of Science and Technology Austria, Austria

Abstract. We propose two parallel state-space exploration algorithms
for hybrid systems with the goal of enhancing performance on multi-core
shared memory systems. The first is an adaption of the parallel breadth
first search in the SPIN model checker. We show that the adapted al-
gorithm does not provide the desired load balancing for many hybrid
systems benchmarks. The second is a task parallel algorithm based on
cheaply precomputing cost of post (continuous and discrete) operations
for effective load balancing. We illustrate the task parallel algorithm and
the cost precomputation of post operators on a support-function-based
algorithm for state-space exploration. The performance comparison of
the two algorithms displays a better CPU utilization/load-balancing of
the second over the first, except for certain cases. The algorithms are
implemented in the model checker XSpeed and our experiments show a
maximum speed-up of 900× on a navigation benchmark with respect to
SpaceEx LGG scenario, comparing on the basis of equal number of post
operations evaluated.

1 Introduction

Hybrid systems are a popular formal framework to model and verify safety prop-
erties in biological [2,3] and cyber-physical systems [19]. This formalism combines
the classical discrete state-based representation of finite automata with a con-
tinuous dynamics semantics in each state (or mode). A hybrid system is called
safe if a given set of bad states are not reachable from a set of initial states.
Hence, safety can be proved by performing a reachability analysis that is in gen-
eral undecidable [15] for hybrid systems. SpaceEx [11,6,5,4] is one of the most
popular reachability-analysis tools for hybrid systems using semi-decision proce-
dures based on over-approximation techniques [13,12]. The reachable states are

0 Acknowledgements. This work was supported in part by DST-SERB, GoI under
Project No. YSS/2014/000623 and by the European Research Council (ERC) under
grant 267989 (QUAREM) and by the Austrian Science Fund (FWF) under grants
S11402-N23, S11405-N23 and S11412-N23 (RiSE/SHiNE) and Z211-N23 (Wittgen-
stein Award).

? Corresponding author e-mail address: rajarshi.ray@nitm.ac.in

ar
X

iv
:1

60
6.

05
47

3v
1

 [
cs

.D
C

]
 1

7
Ju

n
20

16

represented as a collection of continuous sets, each one symbolically represented.
The main two challenges to address with such set-based methods are precision
and scalability. Recently, algorithms using convex sets represented using support
functions [13,14] and zonotopes [12] have shown a very good scalability. How-
ever, all these techniques were originally conceived to run sequentially. Hence,
they are currently not suitable to exploit the modern and powerful multi-core
architectures that would enable them to improve further their scalability.

Our contribution In this work, we provide two parallel algorithms for reachabil-
ity analysis of hybrid systems that can leverage CPU multi-core architectures
to speed-up the performance of the current technology. Our approach relies on
the adaptation of Holzmann’s lock-free parallel breadth first exploration algo-
rithm [16] recently implemented in the SPIN model checker. We first extend the
original algorithm to deal with the symbolic reachable states and flowpipe com-
putations that are the necessary ingredients of reachability analysis of hybrid sys-
tems. However, we notice that this first approach often results not ideal concern-
ing the CPU’s cores utilization and the load balancing. This happens when the
number of symbolic states to be explored is less than the number of processor’s
cores or when the cost of flowpipe computation varies drastically for different
reachable states. For this reason, we provide a second algorithm that improves
considerably the load balancing by efficiently precomputing the cost of certain
operations. The two algorithms are implemented in XSpeed [22] tool that is now
able to handle also SpaceEx models using the Hyst [1] model transformation and
translation tool for hybrid automaton models. Our experiments show a speed-up
of up to 900× on a navigation benchmark instance with respect to SpaceEx LGG
scenario, comparing on the basis of equal number of post operations evaluated.
The tool and the benchmarks reported in the paper can be downloaded from
http://nitmeghalaya.in/nitm_web/fp/cse_dept/XSpeed/index_new.html

Related Work In the last decade, there has been an increasing interest in de-
veloping techniques for reachability analysis for hybrid systems. The tools cur-
rently [11,7,17,20] available can perform reachability analysis of hybrid systems
with linear dynamics and more than 200 variables [11,14]. However, all these
works are not suitable to exploit the powerful modern parallel multi-core archi-
tectures. In our previous paper [21,22] we addressed the problem of computing
reachability analysis of continuous systems, but we did not handle hybrid sys-
tems. Hence, to the best of our knowledge, this paper represents the first attempt
to provide a parallel reachability analysis algorithm for hybrid systems.

Paper organization The rest of the paper is organized as follows. Section 2
provides the necessary background on hybrid automata and reachability analysis.
In Section 3, we show how to extend the Holzmann’s lock-free parallel breadth
first exploration algorithm [16] to handle the state space exploration in hybrid
automata. Section 4 addresses the load balancing problem introducing the notion
of a task parallel algorithm. In Section 5 we provide a concrete example of a task
parallel algorithm in the context of support-function-based reachability analysis.
Section 6 reports the experimental results to illustrate performance speed-up and
CPU’s core utilization. We conclude in Section 7.

http://nitmeghalaya.in/nitm_web/fp/cse_dept/XSpeed/index_new.html

2 Preliminaries

A hybrid automaton is a mathematical model of systems exhibiting both con-
tinuous and discrete dynamics. A state of a hybrid automaton is an n-tuple
(x1, x2, . . . , xn) representing the values of the n continuous variables in an n
dimensional system at an instance of time.

Definition 1. A hybrid automaton is a tuple (L,X , Inv, F low, Init, δ,G,M)
where:

- L is the set of locations of the hybrid automata.
- X is the set of continuous variables of the hybrid automata.
- Inv : L → Rn maps every location of the automata to a subset of Rn, called

the invariant of the location. An invariant of a location defines a bound on
the states within the location of the automata.

- Flow is a mapping of the locations of the automata to ODE equations of
the form ẋ = f(x), x ∈ X , called the flow equation of the location. A flow
equation defines the evolution of the system variables within a location.

- Init is a tuple (`init, Cinit) such that `init ∈ L and Cinit ⊆ Inv(`init). It
defines the set of initial states of the automata.

- G ⊆ Rn is the set of guard sets of the automata.
- M : Rn → Rn is the set of assignment maps of the automata.
- δ ⊆ L × G ×M× L is the set of transitions of the automata. A transition

from a source location to a destination location in L may trigger when the
state s of the hybrid automata lies in the guard set from G. The map M of
the transition transforms the state s in the source location to a new state s′

in the destination location.

A reachable state is a state attainable at any time instant 0 ≤ t ≤ T under
its flow and transition dynamics starting from an initial state in Init. The flow
dynamics evolves a state (`, x) to another state (`, y) in a location ` after T time
units such that flow(x, T) = y and flow(x, t) ∈ Inv(`) for all t ∈ [0, T], where
flow is the solution to the flow equation of Flow(`). Reachability analysis tools
produce a conservative approximation of the reachable states of the automaton
over a time horizon. Reachable states can be expressed as a union of symbolic
states. A symbolic state is a tuple {loc, C} such that loc ∈ L and C ⊆ Inv(loc).

In Algorithm 1 [11], we show a generic reachability algorithm for hybrid
automata. The algorithm maintains two data structures, Wlist and R. Wlist
stores the list of symbolic states to initiate the exploration of reachable states and
R stores the already visited reachable states. Init is a symbolic state depicting
the initial states given as an input. Wlist and R are initialized to Init and
∅ respectively in line 2. A symbolic state S is removed from the Wlist at each
iteration and explored for reachable states. The operators PostC and PostD are
applied consecutively. PostC takes a symbolic state as argument and computes
the reachable states under the continuous dynamics of the location. The result
of PostC is a symbolic state, say R′. When R′ is contained in R, there is no
newly explored state and the next symbolic state in Wlist is explored as shown

in line 5. On the contrary, when new states are found in R′ not in R, they are
included in R in line 6 . The operator PostD takes a symbolic state and returns
a set of symbolic states obtained under the discrete dynamics. This new set of
symbolic states, shown as R′′, is added to the Wlist for further exploration.

Algorithm 1 Reachability Algorithm for Hybrid Automata

1: procedure Reach-ha(ha,Init)
2: Wlist← Init; R← ∅;
3: while Wlist 6= ∅ do
4: S ←Wlist.pop(); R′ ← PostC(S)
5: if R′ ⊆ R then go to step 3
6: else R← R ∪R′

7: end if
8: R′′ ← PostD(R′); Wlist.add(R′′)
9: end while

10: end procedure

3 Parallel Breadth First Search

It is worthy noting that the PostC computation for symbolic states in Wlist
is independent of each other and therefore can be potentially parallelized. In
this work, we exploit this inherent parallelism and propose parallel breadth first
search (BFS) algorithm. In a multi-threaded implementation, threads can com-
pute PostC and PostD operations in parallel, however the access to the shared
data structure Wlist and R has to be mutually exclusive to avoid race condition.
Mutual exclusion can be accomplished by using locks or semaphores, however
at the price of additional overhead. Moreover, such an implementation may not
ensure an effective load balancing as illustrated later in the following.

In Algorithm 2 we show how to avoid the overhead of the mutual exclusion
discipline by adapting the parallel lock-free breadth first search algorithm pro-
posed in [16] to hybrid system state-space exploration. Our adapted algorithm
is referred as A-GJH (Adapted Gerard J. Holzmann’s) algorithm in the paper.
The algorithm uses two copies of Wlist, each being a two-dimensional list of
symbolic states. At each iteration, symbolic states are read from the Wlist[t]
copy and new symbolic states are written to the Wlist[1 − t] copy. At the first
iteration the value t is 0 and at the end of each iteration (see line 20) of the
main while loop it is assigned to 1 − t. In this way, in the next iteration the
write list becomes the read list and vice-versa. There are N threads, one thread
per core, which computes the post operations in parallel. All the symbolic states
present in the row Wlist[t][w] are sequentially processed by the thread indexed
by w, shown in line 7-13. A symbolic state when undergoes the PostD oper-
ation generates a list of successor symbolic states, to be processed in the next
iteration. Each successor state is added to the list Wlist[1 − t][w′][w], where

w′ is randomly selected between one to N (line 13). This random distribution
of new states across rows of Wlist[1 − t] is used for load balancing. Since each
thread indexed at w writes to the list at Wlist[1 − t][w′][w], there is no write
contention in Wlist[1− t]. Checking containment of symbolic states in the result
data structure R is avoided in the algorithm since it is an expensive operation.
The exploration is instead bounded by the number of levels of exploration of the
automata. The symbolic states of Wlist[t] are explored when all the N threads
terminate and synchronize at line 16 ensuring a breadth-first exploration. The
algorithm terminates when there are no successor states in Wlist[1−t] for further
exploration or when the breadth exploration reaches a certain bound.

Algorithm 2 Adapted G.J. Holzmann’s Algorithm

1: procedure Reach-PBFS(ha, Init, bound)
2: t = 0, level = 0, N = Cores
3: Wlist[2][N][N] . Wlist is a read/write list of symbolic states.
4: Wlist[t][1][1] = Init
5: Create w = 1 to N threads . N worker threads
6: repeat
7: for q = 1 to N do
8: for each s in q do
9: delete s from Wlist[t][w][q]

10: R′[i]← PostC(s)
11: R′′[i]← PostD(R′[i])
12: w′ = choose random 1 . . . N
13: add s′ ∈ R′′[i] to Wlist[1− t][w′][w]
14: end for
15: end for
16: Barrier synchronization . Thread synchronization to ensure BFS
17: if Wlist[1− t][1 . . . N][1 . . . N] is all empty then
18: done = true;
19: else
20: t = 1− t . Read/Write switching
21: level← level + 1
22: end if
23: until !done OR level > bound
24: end procedure

3.1 Load Balancing

The clever use of the data structures in A-GJH algorithm provides freedom from
locks and reasonable load balancing when there are sufficiently large number
of symbolic states in the waiting list. However, the load balancing in A-GJH
does not perform well when the number of symbolic states in the waiting list
is less than the number of cores of the processor. Since the symbolic states are

Models Breadths

Time in Secs CPU Utilization (%) Speed-up

Circle
4 37.68 29.39 33.92 12.50 12.53 0.9 1.1

6 86.26 80.47 62.80 12.50 19.80 1.3 1.4

3 61.42 9.17 5.72 12.50 23.51 1.6 10.7

5 199.27 44.37 24.24 12.50 39.28 1.8 8.2

Nav 5x5
5 215.46 50.77 31.39 12.50 33.87 1.6 6.9

7 1232.31 253.63 104.30 12.50 65.38 2.4 11.8

SpaceEx
(LGG)

XSpeed
(Seq-BFS)

 XSpeed
 (A-GJH)

XSpeed
(Seq-BFS)

 XSpeed
 (A-GJH)

A-GJH vs.
Seq-BFS

A-GJH vs.
SpaceEx

Nav 3x3
(inst# 1)

Fig. 1. Moderate CPU utilization and performance speed-up with A-GJH algorithm.

distributed randomly to the N cores in line 13 for exploration, some of the cores
remain idle when there are not enough states to be explored. For this reason there
are benchmarks for hybrid systems reachability analysis where an incorrect load
balancing results in a low time utilization of the available cores. For example,
Figure 1 shows that while the A-GJH running in a 4 core processor provides
some improvements in performance compared to SpaceEX LGG (Le Guernic-
Girard) and the sequential BFS, the CPU core utilization remain very modest.
The best utilization is 65% in the NAV 5X5 benchmark for 7 levels exploration
and the worst is 12% in the Circle model. In the Circle model, there are only 2
symbolic states for exploration at each BFS iteration, keeping most of the CPU
cores idle.

Another principle problem in load balancing is that the cost of flowpipe
computation may vary drastically for different symbolic states. This is illustrated
on a 3 × 3 Navigation benchmark in Figure 2 [9]. The benchmark models the
motion of an object in a 2D plane partitioned as a 3 × 3 grid. Each cell in the
grid has a width and height of 1 unit and have a desired velocity vd. In Figure
2 the cells are numbered from 1 to 9 and the respective desired velocities are
shown with a directed vector. Note that there is no desired velocity shown in
cell 3 and 7 to distinguish them from the others. Cell 3 is the target whereas
cell 7 is the unsafe region. The actual velocity of the object in a cell is given
by the differential equation v̇ = A(v − vd), where A is a 2 × 2 matrix. There is
an instantaneous change of dynamics on crossing over to an adjacent cell. The
green box is an initial set where the object can start with an initial velocity. The
red region shows the reachable states under the hybrid dynamics after a finite
number of cell transitions.

Figure 2 shows the reachable states after two and three levels of exploration
in Algorithm 2. There are four symbolic states, S1, S2, S3 and S4, waiting to be
explored after two levels of bfs, shown in blue. The symbolic states S1, S2 are
{1, B1}, {1, B2} and S3, S4 are {5, B3} and {5, B4} respectively, where 1 and 5
are the location ids and B1, B2, B3 and B4 are the blue regions in the boundary
of location with ids 1 and 4, 1 and 2, 4 and 5, 2 and 5 respectively. Algorithm 2
spawns four threads, one each to compute the flowpipe from the symbolic states.

(a) Flowpipe after exploring 2 levels hav-
ing 4 new symbolic states

(b) Flowpipe after exploring 3 levels

Fig. 2. Illustrating Load Balancing Problem with Flowpipes of Varying Cost

In a four core processor, this seems an ideal load division. However, observe in
Figure 2b that out of the four flowpipes, the two from S1 and S2 do not lead to
new states since they start from the boundary of location id 1 and the dynamics
pushes the reachable states outside the location invariant. This implies that the
flowpipe computation cost for S1 and S2 are low and the two cores assigned to
these flowpipe computation finish early and waits at the synchronization point
until the remaining two busy cores complete. Such a situation keeps the available
cores under-utilized due to the idle waiting of 50% of cores. Similarly, the cost
of PostD operation also varies causing idle waiting of threads assigned to low
cost computations.

4 Task Parallel Algorithm

In the following we propose an alternative approach to improve load balancing
based on computational cost of the tasks encountered during the exploration.
The idea is to identify the atomic tasks in a flowpipe (PostC) computation. The
atomic tasks across all flowpipe computations in the breadth search is a measure
of the total work-load, at the present breadth of the exploration. For an effective
load balancing, this work-load is distributed evenly between the cores of the
processor. Similar tasks distribution can be applied also to the computation of
discrete transitions (PostD). Algorithm 3 shows this approach.

In particular, the instruction in line 7 obtains an estimated cost of computing
a flowpipe from a symbolic state using the function flow cost. After the flowpipe
costs for all symbolic states in Wlist are computed, line 8 breaks the flowpipe
computations into atomic tasks and adds them into a tasks list. In line 12 the

Algorithm 3 Task Parallel Breadth First Exploration

1: procedure Reach-Task-PBFS(ha, Init, bound)
2: t = 0, level = 0, N = 1, CostC = 0, CostD = 0
3: Wlist[2][N] . Wlist is a read/write list of symbolic states.
4: Wlist[t][0] = Init
5: repeat
6: for each s in Wlist[t] do
7: CostC = CostC + flow cost(s)
8: Break PostC(s) into atomic tasks and add to Tasks list
9: end for

10: Tasks Per Core = dCostC/#Corese . Even distribution of tasks to cores
11: for Threads with id w = 1 to N do . N worker threads
12: Execute Tasks Per Core exclusive tasks from the Tasks list
13: Add results to Res
14: end for
15: Barrier Synchronization
16: for each s in Wlist[t], create thread indexed w do . w worker threads
17: flow[w] = Res.join() . Combine task results to get flowpipe
18: end for
19: Barrier Synchronization
20: for each s in Wlist[t] do
21: CostD = CostD + jump cost(flow[s])
22: Break PostD(s) into atomic tasks and add to Tasks list
23: end for
24: Tasks Per Core = dCostD/#Corese . Even distribution of tasks to cores
25: for Threads with id w = 1 to N do . N worker threads
26: Execute Tasks Per Core exclusive tasks from the Tasks list
27: Add results to Res
28: end for
29: for each s in Wlist[t], create thread indexed w do . w worker threads
30: R′[w] = Res.join() . Combine task results to get succ symbolic state
31: add each s in R′[w] to Wlist[1− t][w]
32: end for
33: Barrier Synchronization
34: if Wlist[1− t] is empty then done = true
35: else
36: t = 1− t . Read/Write switching
37: N = sum of size of all lists in Wlist[t]
38: Resize Wlist[1-t][N], level = level + 1, CostC = 0, CostD = 0
39: end if
40: until !done OR level > bound
41: end procedure

atomic tasks are evenly assigned to the processors cores. In line 17 the results
of the atomic tasks computed in parallel are then joined together to obtain a
flowpipe. Similar load division is carried out for PostD operation. The successor
states obtained from each flowpipe are added in the write list Wlist[1 − t][w],

by a thread indexed at w in line 31. The exclusive access of the threads to the
columns of Wlist[1− t] eliminate the write contention.

A challenge in this approach is to devise an efficent method for computing the
cost of flowpipe and discrete-jump computation for balanced load distribution.
Efficient methods and data structures for splitting PostC, PostD into atomic
tasks and merging their results are very important in order to avoid that the
extra required overhead would affect the gain obtained with the parallel explo-
ration. In the next section, we propose some procedures to compute cost of post
operations for a support-function algorithm.

5 Task Parallellism in Support Function Algorithm

A common technique in flowpipe computation consists in discretizing the time
horizon T intoN intervals with a chosen time-step τ = T/N and over-approximating
the reachable states in each interval by a closed convex set, say Ω. A flowpipe
can be represented as a union of convex sets as shown in Equation 1.

Reach[0,T](X0) ⊆
N−1⋃
i=0

Ωi

Reach[iτ,(i+1)τ](X0) ⊆ Ωi, ∀0 ≤ i < N

(1)

The representation of the convex sets Ω is a key in the efficiency and scala-
bility of reachability algorithms. Polytopes [8,10] and zonotopes[12] are popular
geometric objects suitable to represent convex sets. More recently, support func-
tions [13,14] have been proposed as a functional representation of compact convex
sets. SpaceEx [11] and XSpeed [22] tools implement support-function-based al-
gorithms for flowpipe computation due to the promise it provides in scalability.
We now present the preliminaries of support functions necessary to introduce
the task parallelism in the algorithm.

5.1 Support functions

Definition 2. [23] Given a nonempty compact convex set X ⊂ Rn the support
function of X is a function supX : Rn → R defined as:

supX (`) = sup{` · x | x ∈ X} (2)

Definition 3. Given a support function supX of a compact convex set X and
a finite set of template directions D, A template polytope of the convex set X is
defined as:

PolyD(X) =
⋂
li∈D

li.x ≤ supX (`i) (3)

The support-function algorithm in [13] proposes a flowpipe computation by
computing the template polyhedral approximation of the convex sets Ω by sam-
pling their support functions in the template directions. The algorithm is for
linear dynamics with non-deterministic inputs of the form:

ẋ = Ax(t) + u(t), u(t) ∈ U , x(0) ∈ X0 (4)

where x(t), u(t) ∈ Rn, A is a real-valued n × n matrix and X0,U ⊆ Rn are the
initial states and the set of inputs given as compact convex sets.

5.2 Flowpipe Cost Computation

We define the cost of computing a flowpipe by considering a support function
sample as the logical atomic task in the computation.

Definition 4. Given a time horizon T , time discretization factor N , a set of
template directions D and an initial symbolic state s = (loc, C), the cost of
computing the flowpipe with postC(s) is given by:

flow cost(s) = j.|D|

{
j = max

{
i | 0 ≤ i ≤ N , ∀0 ≤ k ≤ i, Ωk ` Inv(loc)

}
Ωk ` Inv(loc) if and only if Ωk ∩ Inv(loc) 6= ∅

(5)

The longest sequence Ω0 to Ωj such that the convex sets satisfy the location
invariant is identified. Since computing polyhedral approximation of the convex
sets Ω requires sampling support function in each direction of the set of template
directions D, the flow cost essentially gives us the number of support function
samplings, i.e. the atomic tasks, that is to be completed in order to compute
the flowpipe. To compute flow cost, it is necessary to find the longest sequence
Ω0 to Ωj satisfying the location invariant Inv(loc). Assuming polyhedral invari-
ants, checking the invariant satisfaction can be performed using the following
proposition.

Proposition 1. [18] Given a polyhedra I =
∧m
i=1 `i · x ≤ bi and a convex set Ω

represented by its support function supΩ, Ω ` I if and only if −supΩ(−`i) ≤ bi,
for all 1 ≤ i ≤ m.

A procedure to identify the largest sequence is to apply Proposition 1 to each
convex set starting fromΩ0 iteratively until we find aΩj such thatΩj 0 Inv(loc).
The time complexity of the procedure is O(m · N · f), where f is the time for
sampling the support function, m is the number of invariant constraints and
N is the time discretization factor. We propose a cheaper algorithm with fewer
support functions samplings for a class of linear dynamics ẋ = Ax(t) + u, with
u being a fixed input. Fixed input leads to deterministic dynamics allowing to
compute the reachable states symbolically at any time point .

Proposition 2. Given an initial set X0 and dynamics ẋ = Ax(t) + u with A
being invertible, the set of states reachable at time t is given by:

X(t) = eAtx0 ⊕A−1(eAt − I)(v) (6)

The idea of the procedure shown in Algorithm 4, is to use a coarse time-
step to compute reachable states using Proposition 2 and detect an approximate
time for crossing the invariant. Once the invariant crossing time is detected,
similar search is followed by narrowing the time-step for a finer search near the
boundary of the invariant for a desired precision. The procedure is illustrated
on a toy model of a counter clockwise circular rotation dynamics as shown in
Figure 3a. The model has two locations with the same dynamics but different
invariants. The transition assignment maps does not modify the variables. Figure
3b illustrates the procedure. The initial set on the location is shown in blue. The
red sets are the reachable images of the initial set computed at coarse time steps
to detect invariant crossing, followed by computing the images at finer time-steps
shown in green near the invariant boundary for detecting an upper bound on
the time of crossing the invariant with a desired precision. After computing this
time, say t′, the flow cost is obtained using Definition 4 with j = t′/τ . However,
the problem with the procedure is when it is possible for a reachable image to
exit and re-enter the invariant within the chosen time-step. In such cases, the
approximation error in the time returned by the procedure can be substantial.
Constant dynamics and convex invariant I will not have such a scenario and the
approximation error can be bounded.

Theorem 1. For a class of dynamics ẋ = k , where k is a constant, let t be the
exact time when reachable states from a given initial set X0 violate the convex
location invariant I. Let δC and δF be the coarse and fine time steps chosen
to detect approximate time t′ of invariant violation. The approximation error
|t− t′| ≤ δF .

Proof. Constant dynamics have a fixed direction of dynamics and therefore,
convexity property ensures that the reachable states cannot exit and re-enter
I. Reachable states X(t) = X0 ⊕ kt is exactly represented using its support
function. Algorithm 4 samples the support function at δF time-steps to identify
the time instant t′ of crossing I, which implies |t− t′| ≤ δF .

5.3 Discrete-Jump Cost Computation

The PostD computation performs the flowpipe intersection with the guard set
followed by image computation. Considering a flowpipe having sets Ω0 to Ωj ,
each of these sets are applied with intersection operation and a map for non-
empty intersection. Assuming intersection and image computation as the atomic
task, the cost of PostD on a flowpipe ∪ji=0Ωi will be j, which can be obtained
from the flow cost computation in Definition 4. The addition of the cost of
post operations for all symbolic states in the waiting list is used to uniformly

Algorithm 4 Detecting time of invariant crossing with varying time-step

1: procedure Invariant-Crossing Time Detection(I, X0, T)
2: discretization = 10 , τ = T/discretization . Coarse Time-step
3: i = 0, R(0) = X0

4: while R(τ.i) ` I do i = i+ 1 . Widened Search
5: end while
6: if i > 1 then t1 = τ ∗ (i− 1)
7: else return 0
8: end if
9: τ = τ/discretization, i = 0 . Fine Time-step

10: while R(t1 + i ∗ τ) ` I do i = i+ 1 . Narrowed Search
11: end while
12: return t1 + i ∗ τ . An upper bound on invariant crossing time
13: end procedure

(a) Hybrid Automaton

Inv: y>=0

(b) Searching Time of Invariant Cross-
ing with Widening-Narrowing Time-
steps

Fig. 3. (a) A hybrid automaton of a toy example with circle dynamics. (b) Evaluation
of the invariant crossing time detection algorithm on a circle model. The red sets are
computed at coarse time-steps and the green sets computed at finer time-steps

distribute atomic tasks of post operations across the cores using multi-threading.
Further details on the data-structures and task distribution is omitted due to
the lack of space. The task parallel support-function-algorithm is referred as
TP-BFS in the text that follows.

6 Experiments

The parallel algorithms are implemented with multi-threading using OpenMP
compiler directives. Figure 5 shows the performance comparison between Reach-
ability analysis with SpaceEx (LGG), Sequential BFS, A-GJH and TP-BFS. The

benchmarks are: A two dimensional oscillator circuit model, model of a bounc-
ing ball under gravity, model of a circular rotation dynamics, three instances of
the Navigation benchmark with 9 (3× 3) locations and one instance each of 25
(5× 5) and 81 (9× 9) locations respectively. We conducted our experiments in a
4 core Intel i7-4770, 3.40GHz and 8GB RAM with hyper-threading enabled. The
results are for a time horizon of 10 units, box template direction as parameters.
The sampling time in Circle model is 1e−5, in Oscillator, Timed Bouncing Ball,
Navigation 3×3 and 5×5 instances are 1e−4 and 0.1 units for Navigation 9×9
instance respectively.

A

(a) XSpeed

A

(b) SpaceEx(LGG)

Fig. 4. Reachable region of a 9×9 Navigation benchmark instance by (a) XSpeed after
13 BFS-levels (105563 post operations) and (b) SpaceEx’s LGG algorithm (105563 post
iterations)

In order to relate our results with SpaceEx (LGG) scenario, we apply the
same number of post operations in both XSpeed and SpaceEx, with similar
parameters. We count the number of post operations for a given bound on the
BFS level in XSpeed and the exploration with SpaceEx is bounded with the same
count on post operations (by setting the argument iter-max). However, note that
the cost of post operations could be different for the symbolic states in XSpeed
and in SpaceEx. Therefore, comparison on the number of post operations is not
perfectly fair but we could not find a better means of comparing. Figure 4 shows
that the reachable region obtained from XSpeed on a Navigation benchmark
after 13 BFS levels (105563 posts) is comparable to that obtained from SpaceEx
(LGG) after 105563 posts, and XSpeed computes the reachable region 900×
faster, as shown in the Table.

The results for a Circle model is a good illustration of the effectiveness of
the TP-BFS algorithm. BFS generates only two new symbolic states at every
breadth, one of which exits the location invariants early leaving only one ex-
pensive flowpipe to be computed at each level. The A-GJH algorithm is slower
than Seq-BFS algorithm due to the parallelization overhead. However, in case

Models Breadths
Time in Secs CPU Utilization (%) Speed-up

Oscillator
2 2 4.78 0.67 0.79 0.53 12.5 12.7 31.0 0.8 6.1 9.0
4 4 5.56 1.58 1.71 1.17 12.5 12.9 31.0 0.9 3.3 4.8
6 6 6.48 2.14 2.56 1.73 12.5 13.0 31.2 0.8 2.5 3.7
2 2 12.65 2.91 3.34 1.43 12.5 12.6 58.7 0.9 3.8 8.8
4 4 34.26 6.36 7.07 2.95 12.5 12.6 63.1 0.9 4.8 11.6
6 6 196.01 9.22 10.11 4.22 12.5 12.6 63.0 0.9 19.4 46.5

Circle

4 7 37.68 29.39 33.92 13.66 12.5 12.5 61.9 0.9 1.1 2.8
6 20 86.26 80.47 62.80 31.07 12.5 19.8 75.3 1.3 1.4 2.8
8 54 217.48 213.08 133.47 77.12 12.5 33.8 82.1 1.6 1.6 2.8
3 7 61.42 9.17 5.72 5.43 12.5 23.5 38.1 1.6 10.7 11.3
5 35 199.27 44.37 24.24 18.87 12.5 39.3 65.5 1.8 8.2 10.6
7 153 631.07 187.05 81.83 67.66 12.5 59.8 82.7 2.3 7.7 9.3
3 6 181.19 15.53 12.13 8.83 12.5 18.4 36.8 1.3 14.9 20.5
5 24 782.96 62.11 40.43 27.97 12.5 29.5 56.4 1.5 19.4 28.0
7 91 4835.08 234.59 102.76 89.96 12.5 50.3 76.5 2.3 47.1 53.7
3 7 133.88 10.94 7.98 5.79 12.5 19.5 43.7 1.4 16.8 23.1
5 30 527.36 41.02 24.52 17.26 12.5 31.9 64.6 1.7 21.5 30.6
7 109 1617.95 139.03 63.15 49.68 12.5 51.9 81.0 2.2 25.6 32.6

Nav 5x5

5 38 215.46 50.77 31.39 20.72 12.5 33.9 68.7 1.6 6.9 10.4
7 194 1232.31 253.63 104.30 89.33 12.5 65.4 86.2 2.4 11.8 13.8
9 980 6782.70 1290.86 449.96 429.59 12.5 81.0 90.1 2.9 15.1 15.8

Nav 9x9

5 46 0.70 0.09 0.05 0.06 11.1 50.0 72.9 1.6 13.3 11.9
7 313 6.42 0.56 0.24 0.38 12.7 70.1 71.8 2.4 27.3 16.8
9 2143 80.94 4.04 1.32 1.35 12.5 85.3 89.4 3.1 61.4 60.2
11 14857 1687.06 28.77 8.43 10.50 12.5 91.9 85.3 3.4 200.2 160.7
13 105563 56590.20 225.02 61.24 176.99 12.5 93.3 69.9 3.7 924.1 319.7

Iter-max
on

SpaceEx
SpaceEx
(LGG)

XSpeed
(Seq-BFS)

 XSpeed
(A-GJH)

 XSpeed
(TP-BFS)

XSpeed
(Seq-BFS)

 XSpeed
(A-GJH)

 XSpeed
(TP-BFS)

A-GJH vs.
Seq-BFS

A-GJH vs.
SpaceEx(LGG)

TP-BFS vs.
SpaceEx(LGG)

Timed
Bouncing

Ball

Nav 3x3
(inst #1)

Nav 3x3
(inst #2)

Nav 3x3
(inst #3)

Fig. 5. Performance comparison of SpaceEx (LGG), sequential BFS, A-GJH and TP-
BFS on hybrid systems benchmarks.

of TP-BFS algorithm the flowpipe tasks are distributed across all the available
cores, making it faster than the Seq-BFS, A-GJH and SpaceEx (LGG).

We observe that when the number of explored symbolic states (shown as
iter-max in Fig. 5) is low to moderate, TP-BFS shows better performance and
CPU core utilization in comparison to A-GJH and SpaceEx (LGG). A maximum
of 47.1× and 53.7× is observed on a 3 × 3 Navigation benchmark when 7 BFS
levels are explored with a total of 91 symbolic states using A-GJH and TP-
BFS respectively, with respect to SpaceEx’s LGG scenario. We observe that
when there is a large number of symbolic states in the waiting list, as in the
NAV 9 × 9 instance, the CPU core utilization and performance of A-GJH is
better than TP-BFS. We believe that this is because A-GJH keeps all available
cores occupied, even if flowpipe computations are randomly assigned to cores,
without taking their cost into consideration. In such a case, the extra overhead
with task based load division becomes unnecessary as well as too expensive.
This reduces CPU core utilization (since flowpipe cost computation and load-
division is a sequential routine) and performance. This is illustrated in Fig. 6
which shows that the overhead of load balancing degrades the performance in
TP-BFS with the increase in the explored symbolic states, whereas the A-GJH
algorithm consistently gains in performance and utilization. We verified that for

the considered NAV 9 × 9 instance, the waiting list size in the BFS iterations
are much larger than the available cores of the processor.

Fig. 6. Comparison of CPU Utilization between A-GJH and TP-BFS algorithm on a
9 × 9 Navigation model with sampling time as 1e− 3.

7 Conclusion

We present an adaption of G.J. Holzmann’s breadth first exploration algorithm
of the SPIN model checker, for reachability analysis of hybrid systems. We show
that due to the intricacies of post operators in hybrid systems, this first approach
does not always produce an efficient load balancing in the hybrid systems sce-
nario. We then propose an alternative approach for load balancing that splits
the tasks and distributes them evenly according to an efficiently precomputed
cost of the post operations. We provide an implementation of this approach us-
ing a support-function based algorithm. Our experiments show that this second
approach shows in general a better load-balancing and performance with respect
to the first one, with the exception when the number of symbolic states to be
explored in the next step is considerably very large. Overall, the two proposed
algorithms show a considerable improvement in performance with respect to the
current state of the art in reachability analysis for hybrid systems.

References

1. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and trans-
lation tool for hybrid automaton models. In: Proc. of HSCC’15. pp. 128–133. ACM
(2015)

2. Bartocci, E., Corradini, F., Berardini, M.R.D., Entcheva, E., Smolka, S.A., Grosu,
R.: Modeling and simulation of cardiac tissue using hybrid I/O automata. Theor.
Comput. Sci. 410(33-34), 3149–3165 (2009)

3. Bartocci, E., Lió, P.: Computational modeling, formal analysis, and tools for sys-
tems biology. PLoS Comput Biol 12(1), 1–22 (2016)

4. Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podel-
ski, A., Wehrle, M.: Guided search for hybrid systems based on coarse-grained
space abstractions. International Journal on STTT pp. 1–19 (2015)

5. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C.S., Podelski,
A., Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems.
In: Proc. of HVC. pp. 116–131. LNCS, Springer (2014)

6. Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H., Grosu, R.:
Abstraction-based parameter synthesis for multiaffine systems. In: Proc. of HVC.
LNCS, vol. 9434, pp. 19–35 (2015)

7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Proc. of CAV 2013. LNCS, vol. 8044, pp. 258–263 (2013)

8. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In: Proc. of HSCC’99. LNCS, vol. 1569,
pp. 76–90. Springer (1999)

9. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Proc. of
HSCC. LNCS, vol. 2993, pp. 326–341. Sprnger (2004)

10. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech.
STTT 10(3), 263–279 (2008)

11. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Proc. of CAV. LNCS, vol. 6806, pp. 379–395. Springer (2011)

12. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Proc. of
HSCC 2015. LNCS, vol. 3414, pp. 291–305. Springer (2005)

13. Girard, A., Le Guernic, C.: Efficient reachability analysis for linear systems using
support functions. Proc. of IFAC World Congress 41(2), 8966–8971 (2008)

14. Guernic, C.L., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Proc. of CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer (2009)

15. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hy-
brid automata? In: Journal of Computer and System Sciences. pp. 373–382. ACM
Press (1995)

16. Holzmann, G.J.: Parallelizing the SPIN model checker. In: Proc. of SPIN 2012.
LNCS, vol. 7385, pp. 155–171. Springer (2012)

17. Kong, S., Gao, S., Chen, W., Clarke, E.M.: dReach: δ-reachability analysis for
hybrid systems. In: Proc. of TACAS 15. Lecture Notes in Computer Science, vol.
9035, pp. 200–205. Springer (2015)

18. Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous
dynamics. Ph.D. thesis, Université Grenoble 1 - Joseph Fourier (2009)

19. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach. E. A. Lee and S. A. Seshia, second edition edn. (2015)

20. Platzer, A., Quesel, J.: Keymaera: A hybrid theorem prover for hybrid systems
(system description). In: Proc. of IJCAR. LNCS, vol. 5195, pp. 171–178. Springer
(2008)

21. Ray, R., Gurung, A.: Poster: Parallel state space exploration of linear systems with
inputs using xspeed. In: Proc. of HSCC’15. pp. 285–286. ACM (2015)

22. Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu, R.: XSpeed:
Accelerating reachability analysis on multi-core processors. In: Proc. of HVC 2015.
LNCS, vol. 9434, pp. 3–18 (2015)

23. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer (1998)

	Parallel Reachability Analysis for Hybrid Systems

