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Abstract—Artificial neural networks (NN) are instrumental in
realizing highly-automated driving functionality. An overarching
challenge is to identify best safety engineering practices for NN
and other learning-enabled components. In particular, there is
an urgent need for an adequate set of metrics for measuring all-
important NN dependability attributes. We address this challenge
by proposing a number of NN-specific and efficiently computable
metrics for measuring NN dependability attributes including
robustness, interpretability, completeness, and correctness.

I. INTRODUCTION

Artificial neural networks (NN) are instrumental in realizing
a number of important features in safety-relevant applications
such as highly-automated driving. In particular, vision-based
perception, the prediction of drivers’ intention, and even end-
to-end autonomous control are usually based on NN technol-
ogy. State-of-the-practice safety engineering processes (cmp.
ISO 26262) require that safety-relevant components, including
NN-enabled ones, demonstrably satisfy their respective safety
goals.

Notice that the transfer of traditional testing methods and
corresponding test coverage metrics such as MC/DC (cmp.
DO 178C) to NN may lead to an exponential (in the number
of neurons) number of branches to be investigated [1]. Such
an exponential blow-up is not practical as typical NN may be
comprised of millions of neurons. Moreover, a straightforward
adaptation of structural coverage metrics for NN, e.g., the
percentage of activated neurons for a given test set [2], does
not take into account that the activation of single neurons
is usually not strongly connected to the result of the whole
network. The challenge therefore is to develop a set of NN-
specific and efficiently computable metrics for measuring
various aspects of the dependability of NN.

In previous work we have been generating test cases for
NN testing based on finite partitions of the input space and
by relying on predefined sets of application-specific scenario
attributes [3]. Besides correctness and completeness of NN
we also identified robustness [4] and interpretability [1] as
important NN dependability attributes.

Here we build on our previous work on testing NN, and we
propose a set of metrics for measuring the RICC dependability
attributes of NN, which are informally described as follows.

• Robustness of a NN against various effects such as
distortion or adversarial perturbation (which is closely
related to security).
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Fig. 1. Relations between RICC criteria and the proposed metrics. The group
of metrics A., B. and E. cover completeness and correctness.

• Interpretability in terms of understanding important as-
pects of what a NN has actually learned.

• Completeness in terms of ensuring that the data used in
training has possibly covered all important scenarios.

• Correctness in terms of a NN able to perform the per-
ception task without errors.

The main contribution of this paper is a complete and
efficiently computable set of NN-specific metrics for measur-
ing RICC dependability attributes. Fig. 1 illustrates how the
metrics cover the space of RICC, where at least two metrics
relate to each criterion.

II. QUALITY METRICS

A. Scenario coverage metric Mscene

Similar to the class imbalance problem [5] when training
classifiers in machine learning, one needs to account for
the presence of all relevant scenarios in training datasets
for NN for autonomous driving. A scenario over a list of
C = 〈C1, . . . , Cn〉 of operating conditions (e.g., weather and
road condition) is given by a valuation of each condition.
E.g., let C1 = {sunny, cloudy, rainy} represent the weather
condition, C2 = {stone,mud, tarmac} represent the road
surfacing, and C3 = {straight, curvy} represent the in-
coming road orientation. Then (sunny, stone, straight) and
(rainy, tarmac, curvy) constitute two possible scenarios.

Since for realistic specifications of operating conditions,
checking the coverage of all scenarios is infeasible due to com-
binatorial explosion, our proposed scenario coverage metric is
based on the concept of 2-projection and is tightly connected
to the existing work of combinatorial testing, covering arrays
and their quantitative extensions [3], [6], [7].
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Fig. 2. Computing scenario coverage metric via 2-projection table

Assumption: Computing the scenario coverage metric re-
quires that the dataset is semantically labeled according to the
specified operating conditions, such that for each data point it
can be determined whether it belongs to a certain scenario.

ComputingMscene : The metric starts by preparing a table
recording all possible pairs of operating conditions, followed
by iterating each data point to update the table with occupancy.
Lastly, compute the ratio between occupied cells and the
total number of cells. Eq. 1 summarizes the formula, and an
illustration can be found in Fig. 2, where a dataset of two data
points {(sunny, stone, straight), (rainy, tarmac, curvy)}
achieves Mscene =

2+2+2
9+6+6 .

Mscene :=
# of cells occupied by the data set

# of cells from 2−projection table
(1)

Provided that for each Ci, the size of Ci is bounded by
constant α (i.e., the categorization is finite and discrete), then
the denominator can at most be

(
n
2

)
α2, i.e., the number of data

points required for full coverage is polynomially bounded.
Relations to RICC & improving Mscene: The metric

reflects completeness and correctness attributes of RICC. To
improve the metric, one needs to discover new scenarios.
For the example in Fig. 2, an image satisfying the scenario
(cloudy,mud, curvy) can efficiently increase the metric from
2+2+2
9+6+6 to 3+3+3

9+6+6 .

B. Neuron k-activation metric Mneu−k−act

The previously described input space partitioning may also
be observed by the activation of neurons. By considering
ReLU activation as an indicator of successfully detecting a
feature, for close-to-output layers where high-level features are
captured, the combination of neuron activation in the same
layer also forms scenarios (which are independent from the
specified operating conditions). Again, we encounter combi-
natorial explosion, e.g., for a layer of 256 neurons, there is
a total of 2256 scenarios to be covered. Therefore, similar to
the 2-projection in the scenario coverage metric, this metric
only monitors whether the input set has enabled all activation
patterns for every neuron pair or triple in the same layer.

Assumption: The user specifies an integer constant k and
a specific layer to be analyzed. Assume that the layer has c
neurons.

Computing Mneu−k−act : The metric starts by preparing
a table recording all possible k-tuples of on-off activation
for neurons in the layer being analyzed (similar to Fig. 2
with each Ci now having only 1 and 0 status), followed by
iterating each data point to update the table with occupancy.
The denominator is given by the number of cells, which has
value

(
c
k

)
(2k).

Mneu−k−act :=
# of occupied cells due to the data set(

c
k

)
(2k)

(2)
Note that when k = 1, our defined neuron k-activation met-

ric Mneu−k−act subsumes commonly seen neuron coverage
acting over a single layer [2], [8], where one analyzes the
on-off cases for each individual neuron.

Relations to RICC & improving Mneuron−k−act: The
metric reflects the completeness and correctness attribute of
RICC. To improve the metric, one needs to provide inputs
that allows enabling different neuron activation patterns.

C. Neuron activation pattern metric Mneu−pattern
Encountering the combinatorial explosion, while k-

activation metric captures the completeness, our designed
neuron activation pattern metric is used to understand the
distribution of activation. For inputs within the same scenario,
intuitively the activation pattern should be similar, implying
that the number of activated neurons should be similar.

Assumption: The user provides an input set In, where all
images belong to the same scenario, and specifies a layer of
the NN (with c neurons) to be analyzed. Furthermore, the
user chooses the number of groups γ, for a partition of In
into γ groups G1(In), . . . , Gγ(In), where for group Gi(In), i ∈
{1, . . . , γ}, the number of activated neurons in the specified
layer is within the range [ cγ (i−1), cγ (i)] for each input in this
group.

Computing Mneu−pattern: Let Gj(In) be the largest set
among G1(In), . . . , Gγ(In). Then the metric is evaluated by
considering all inputs whose activation pattern, aggregated
using the number of neurons being activated, significantly
deviates from the majority.

Mneu−pattern :=

∑
i : i 6∈{j−1,j,j+1} |Gi(In)|

|In| (3)

Relations to RICC & improving Mneu−pattern: This
metric reflects the robustness and completeness attribute of
RICC, as well as interpretability. To improve the metric, one
requires careful examination over the reason of diversity in
the activation pattern under the same scenario.

D. Adversarial confidence loss metric Madv

Vulnerability w.r.t. adversarial inputs [9] is an important
quality attribute of NNs, which are used for image process-
ing and designed to be used in safety-critical systems. As
providing a formally provable guarantee against all possible
adversarial inputs is hard, our proposed adversarial confidence
loss metric is useful in providing engineers an estimate of how
robust a NN is.

Assumption: Computing Madv requires that there exists a
list of input transformers 〈T1, . . . , Tn〉 where for each Ti, (i ∈
{1, . . . , n}), given a parameter ε specifying the allowed pertur-
bation, one derives a new input in’ = Ti(in, ε) by transforming
input in. Each Ti is one of the known image perturbation tech-
niques ranging from simple rotation, distortion, to advanced
techniques such as FGSM [10] or deepfool [11].



(a) A vehicle image and three per-
turbed images. The largest classifica-
tion performance drop is achieved by
the FGSM technique.

(b) This heatmap for a pedestrian con-
tains nine hot pixels in orange, 30
occluding pixels and five hot and oc-
cluding pixels.

Fig. 3. Illustrating Madv and a heatmap for Minterpret and MOccSen.

Computing Madv: Given a test set In, a predefined pertur-
bation bound ε, and the list of input transformers, let NN(in),
where in ∈ In, be the output of the NN being analyzed, with
larger value being better1. The following equation computes
the adversarial perturbation loss metric.

Madv :=

∑
in∈In mini∈{1,...,N}NN(Ti(in, ε))− NN(in)

|In|
(4)

Intuitively, Madv analyzes the change of output value for
input in due to a perturbation (NN(Ti(in, ε))− NN(in)), and
selects one which leads to largest performance drop among
all perturbation techniques, i.e., it makes the computed value
of NN(Ti(in, ε)) − NN(in) most negative. A real example
is shown in Fig. 3a, where the FGSM attack yields the
largest classification performance drop among three pertur-
bation techniques, which changes the probability of car from
0.91 to 0.69. Thus, the largest negative value of the probability
difference NN(Ti(in, ε)) − NN(in) for this image is −0.22.
Lastly, average the computed value over all inputs being
analyzed.

Relations to RICC & improving Madv: The metric has
a clear impact on robustness and correctness. To improve
the metric, one needs to introduce perturbed images into
the training set, or apply alternative training techniques with
provable bounds [12].

E. Scenario based performance degradation metric

Here we omit details, but for commonly seen performance
metrics such as validation accuracy or even quantitative statis-
tic measures such as MTBF, one may perform detailed analysis
by either considering each scenario, or by discounting the
value due to missing input scenarios (the discount factor can
be taken from the computed scenario coverage metric).

F. Interpretation precision metric Minterpret

The interpretation precision metric is intended to judge if
a NN for image classification or object detection makes its
decision on the correct part of the image. E.g., the metric
can reveal that a certain class of objects is mostly identified
by its surroundings, maybe because it only exists in similar
surroundings in the training and validation data. In this case,

1Here the formulation also assumes that there exists a single output for the
NN, but the formulation can be easily extended to incorporate multi-output
scenarios.

engineers should test whether this class of object can also be
detected in different contexts.

Assumption: For computing this metric, we need a valida-
tion set that has image segmentation ground truth in addition
to the ground truth classes (and bounding boxes), e.g., as in
VOC2012 data set [13].

Computing Minterpret : Here we describe how the metric
can be computed for a single detected object, where one can
extend the computation to a set of images by posing average
or min/max operators. A real example demonstrating the exact
computation is shown in Fig. 4.

1) Run the NN on the image to classify an object with
probability p (and obtain a bounding box in the case of
object detection).

2) Compute an occlusion sensitivity heatmap H , where
each pixel of the heatmap h ∈ H maps to a position
of the occlusion on the image [14]. The value of h is
given by the probability of the original class for the
occluded image. For object detection we take the max-
imum probability of the correct class over all detected
boxes that have a significant Jaccard similarity with the
ground truth bounding box.

3) For given probability threshold ρ that defines the set of
hot pixels as Phot = {h ∈ H | h < ρ} and the set
of pixels that partly occlude the segmentation ground
truth, denoted by Poccluding, the metric is computed as
follows:

Minterpret =
|Phot ∩ Poccluding|

|Phot|
(5)

An illustrative example of computing Minterpret can be
found in Fig. 3b, where for the human figure only five out
of nine hot pixels intersect the region of the human body.
ThusMinterpret =

5
9 . The set of thirty pixels constituting the

human forms Poccluding .
Relations to RICC & improving Minterpret: The inter-

pretation precision metric contributes to the interpretability
and correctness of the RICC criteria. It may reveal that a
NN uses a lot of context to detect some objects, e.g., regions
surrounding the object or background of the image. In this
case, adding images where these objects appear in different
surroundings can improve the metric.

G. Occlusion sensitivity covering metric MOccSen

This metric measures the fraction of the object that is
sensitive to occlusion. Generally speaking, it is undesirable
to have a significant probability drop if only a small part of
the object is occluded.

Furthermore, care should be taken about the location of the
occlusion sensitive area. If a certain part of an object class is
occlusion sensitive in many cases (e.g., the head of a dog) it
should be tested if the object can still be detected when this
part is occluded (e.g., head of a dog is behind a sign post).
MOccSen is computed in a similar way and based on the same
inputs as Minterpret:

1) Perform steps 1) and 2) and determine Phot and
Poccluding as for Minterpret.



(a) Result of object detection

(b) Heatmap for red car (bottom left)
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(c) Minterpret for ρ

(d) Heatmap for the right person
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(e) Minterpret for ρ

Fig. 4. Computing Minterpret for red car and the right person in front
of the red car. The metric shows that the red car is mostly identified by the
correct areas. On the other hand, for the person there are a lot of hot pixels
in incorrect regions.

2) Derive MOccSen :=
|Phot∩Poccluding|
|Poccluding| .

If the value is high it indicates that many positions of small
occlusions can lead to a detection error. A low value indicates
that there is a greater chance of still detecting the object when
it is partly occluded. An illustrative example of computing
MOccSen can be found in Fig. 3b, where for the human
figure the heatmap only contains five hot pixels intersecting
the human body (the head). As there are 30 pixels intersecting
the region of the human, we have MOccSen = 5

30 .
Relations to RICC & improving MOccSen: Occlusion

sensitivity coverage covers the robustness and interpretability
of RICC. If the metric values are too high for certain kinds of
objects, an approach to improve it is to augment the training set
with more images where these objects are only partly visible.
H. Weighted accuracy/confusion metric Mconfusion

In object classification, not all errors have the same severity,
e.g., confusing a pedestrian for a tree is more critical than in
the opposite way. Apart from pure accuracy measures, one
may employ fine-grained analysis such as specifying penalty
terms as weights to capture different classification misses.

As such a technique is standard in performance evaluation
of machine learning algorithms, the specialty will be how
the weights of confusion are determined. Table I provides
a summary over penalties to be applied in traffic scenarios,
by reflecting the safety aspect. Misclassifying a pedestrian (or
bicycle) to be background image (i.e., no object exists) should

TABLE I
QUALITATIVE SEVERITY OF SAFETY TO BE REFLECTED AS WEIGHTS

A is classified to B B (pedestrian) B (vehicle) B (background)
A (pedestrian) n.a. (correct) ++ ++++
A (vehicle) + n.a. (correct) +++
A (background) + + n.a. (correct)

be set with highest penalty, as pedestrians are unprotected and
it may easily lead to life threatening situations.

Relations to RICC & improvingMconfusion: The metric is
a fine-grained indicator on correctness. To improve the metric,
either one trains the network with more examples, or one
modifies the loss function such that it is aligned with the
weighted confusion, e.g., it sets higher penalty term when
misclassifying a “pedestrian” to “background”.

III. OUTLOOK

We propose a set of NN-specific and efficiently computable
metrics for measuring the RICC dependability attributes of
NN. At this point, we have also implemented a NN testing tool
for evaluating the usefulness of our proposed set of metrics
in on-going industrial NN developments. Our ultimate goal is
to obtain a complete and validated set of NN dependability
metrics. In this way, corresponding best practices can be
identified as the basis of new safety processes for engineering
NN-enabled components and systems.
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