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Abstract— Getting out of bed is a fundamental activity of 

daily living and one that supports independent living. Under 

mattress pressure sensor technology represents a way to monitor 

changes in this basic but critical mobility task among older adults 

at risk of institutionalization. However, little is known about 

normal variations in this ability over time in the home context. 

This study used under mattress pressure sensors to measure and 

analyze the variability of sit-to-stand (STS) timing in a 

community-dwelling older adult. A pressure-sensitive mat was 

installed in the participant’s home and left in place to collect 

information over a period of nine months. A processing 

algorithm was developed to extract the STS phase of the first 

morning bed exit from which STS time could be measured. STS 

timing data were visualized using a histogram and analyzed for 

trends over the extended period using nonparametric regression 

and wavelet analysis. Results indicate that the analytical methods 

used were able to identify trends in STS timing as well as 

highlight deviations. The ability to collect and analyze the 

variability of STS timing using this pressure sensitive technology 

combined with the analysis methodology provides clinicians with 

a way to assess mobility remotely in the home setting. 
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I. INTRODUCTION 

The ability to get out of bed is a simple and regularly 
performed activity of daily living. As individuals age, changes 
can occur that make this task more difficult and threaten the 
ability of older adults to live independently. In particular, 
rising from the sitting position requires sufficient strength and 
stability which often become compromised due to conditions 
associated with aging [1][2][3]. Early detection and 
intervention for declining mobility can extend the 
independence of older adults and allow them to remain in their 
own homes for as long as possible.  The sit-to-stand task is of 
particular interest to geriatric researchers since it is an 
indicator of general physical function [2][3]. Sit-to-stand 
(STS) timing is the most commonly studied dimension of this 
task [2] and has been shown to differentiate older adults who 
fall and those who do not [1]. 

A number of technologies have been used to measure STS 
timing including wearable accelerometers; gyroscopes and 
video [4][5][6]. Under mattress pressure sensor technology 

presents a non-invasive method for measuring STS timing. It 
has the advantage of being less intrusive than video and does 
not require that individuals wear or carry a devices such as an 
accelerometer or gyroscope. Under mattress pressure sensor 
technology has been used in controlled laboratory 
environments [7][8][9]  and can differentiate between healthy 
older adults and those with mobility impairments on the basis 
of STS time [10]. It follows, therefore, that installing this type 
of technology in the homes of older adults opens new 
opportunities for detecting changes in basic mobility activities 
that could serve as early warning systems for mobility decline.  
The data could also be used by clinicians to potentially track 
changes in bed mobility in response to health interventions 
such as medication changes.  

In developing home monitoring systems, however, it is 
important to consider how the measurement of common 
activities like getting out of bed in the morning may vary over 
time in the home context and how this variability can be 
analyzed for clinical interpretation. Although cross-sectional 
STS timing values and standard deviations have been reported 
for different population groups and ages [2][3], no studies 
address the measurement of STS longitudinally as of yet.  

This paper presents the use of under mattress pressure 
technology to measure bed exit timing in a stable community 
dwelling older adult over time in the home context. The study 
focused on a particular phase of getting out of bed– namely 
rising from the sitting position (sit-to-stand) since this phase of 
the transfer is more likely to challenge the independence of 
older adults due to strength and stability requirements [2]. 
Data were collected as part of a broader study examining the 
use of pressure sensor technology in monitoring bed mobility 
among older adults.  The key contribution of this study is that 
it provides a methodology for analysing sit-to-stand timing 
variability over an extended period in the home context. 

II. DATA COLLECTION METHODOLOGY 

A.  Technology 

Under mattress pressure sensors manufactured by S4 
Sensors Inc. were installed in the home of an 82 year old 
woman living independently in the community and left in 
place for 9 months. The pressure mat technology consists of 
fiber optic pressure sensors embedded in a mat capable of 



detecting pressure change. Each pressure-sensitive mat had 72 
equally spaced sensors in an 8 x 9 grid array. The pressure-
sensitive mat was connected to a transmitter box which sent 
pressure data to a Dell OptiPlex PC via Bluetooth connection. 
The pressure mat and transmitter are shown in Fig. 1. The 
dimensions of the mat were 86 cm x 86 cm. 

The pressure-sensitive mat was placed under the 
participant’s mattress while the computer and transmitter box 
were placed under her bed. A processing algorithm was 
developed in MATLAB [11] to extract the STS phase of the 
bed exit. Each sensor in the mat was sampled at 20Hz. A 
single day of recording created approximately 500MB of data. 
The algorithm used down sampling techniques to quickly scan 
the pressure recordings and detect activity as described in a 
previous paper [12]. For the purpose of this study the 
algorithm was designed to detect the first morning exit. The 
first morning exit was defined as occurring between the hours 
of 5:00 AM and 11:00 AM, requiring the participant to have 
been in bed for at least 3 consecutive hours and out of bed for 
at least one hour. These parameters helped eliminate bathroom 
visits, short naps or using the bed to sit from being detected as 
first morning exits. All first morning exits were analyzed with 
the same algorithm process.   

The processing algorithm relied on the percent pressure 
load feature. This was a summation of all the pressure sensor 
values over time normalized into the range of 0-100%. An 
initial calibration was performed to find minimum and 
maximum pressure values as determined by loaded and 
unloaded conditions (i.e., bed occupancy and no bed 
occupancy). To measure the STS timing, three phases were 
distinguished; lying, sitting, and standing.  

The standing phase was identified as any period when the 
pressure sensor was unloaded. The lying and sitting phases 
could be differentiated using the percent pressure load feature. 
Using the first data point in a standing phase, the algorithm 
looked backwards for the time of highest pressure which 
corresponded with the sitting position. 

 

 

Fig. 1. Under mattress pressure sensor mat with transmitter. 

 

Fig. 2. Example plot of observed pressure load for a bed exit. 

The peak pressure was used as the start time of the STS 
transfer. The difference between the time of peak pressure and 
the first data point in the standing phase was measured. An 
example plot of percent pressure load for a STS transfer is 
shown in Fig. 2. The occupant was initially in the lying 
position, transferred to the sitting position near the time of 14 
seconds and then exited the bed. The mat was determined to 
be unloaded when the pressure load dropped to ~0%. 

The stored data were processed offline to calculate STS 
timing. The processing algorithm was robust enough to 
remove blank periods in the measured data which may be 
caused by the participant being away or interruptions in data 
collection.   

B. Clinical data collection:  

As part of the study, the participant was visited monthly by 
a research physiotherapist who performed measures of 
functional mobility which included gait speed, balance and 
strength. She was asked about critical health events such as 
falls, hospital visits or any other conditions that made it more 
difficult for her to move.  

III. DATA ANALYSIS METHODOLOGY AND RESULTS 

The measurement of STS time was analyzed using various 
methods to produce a comprehensive examination of the data. 
These methods included descriptive statistics, a frequency 
histogram, nonparametric regression and Daubechies-8 
wavelet analysis. The results of each method are presented in 
this section. In addition, we have presented a graph of the 
clinical measure of gait speed over time to compare with the 
pattern of STS time obtained through pressure-mat data 
analysis.      

There were some gaps in data collection due to the 
participant’s absence from home, accidental PC power 
disconnection and loss of Bluetooth connectivity resulting in 
the valid data collection for 153 days spread over a 9 month 
period.  Fig. 3 illustrates the number of first morning bed exits 
recorded each month. Table 1 provides the mean and standard 
deviation of STS times for the participant’s first morning bed 
exit over the measurement period. 

 



 

Fig. 3. Number of morning bed exits measured each month. 

TABLE 1. MEAN AND STANDARD DEVIATION OF STS TIME MEASUREMENT 

Parameter Mean Standard Deviation Number of Exits 

STS time (seonds) 2.18  1.09  153 

 
Fig. 4 illustrates a histogram of the STS times showing the 

distribution of STS frequencies. These results indicate that 
while the majority of the STS times occurred in 2 seconds or 
less, there were some outliers where STS time extended to 
between 7 and 9 seconds. 

In order to evaluate the long term trends in STS time we 
used a robust nonparametric regression technique (rloess) 
since this approach allows smoothing of the data without any 
need for knowledge of the shape of the curve to fit the data. A 
further advantage of the rloess is that it reduces the effect of 
outliers during regression analysis. The size used in the rloess 
analysis was 0.1. 

Fig. 5 provides a plot of STS time versus day along with 
the curve obtained using the rloess analysis.  For the purpose 
of analysis, the calendar was compressed to illustrate the 153 
days of measurements. This graph indicates that the 
participant’s STS timing was stable over the monitored period.  
Specifically there was no trend towards longer times required 
to get out of the bed which would suggest deterioration in 
physical status. These results are consistent with the fact that 
the participant reported no critical health events and 
demonstrated no significant change in measures of functional 
mobility.  

One of the mobility measures was gait speed. Fig. 6 shows 
the participant’s gait speed over the 9 month observation 
period. During researcher monthly visits, the participant was 
instructed to walk at her comfortable walking pace over a 5 
meter distance. The walk was timed and gait speed calculated 
in meters/second for comparison with the broader literature. 

Fig. 6 illustrates that the participant’s functional status in 
terms of gait speed did not change significantly over a period 
of nine months and that her gait speed was consistent with the 
comfortable gait speed for individuals over the age of 65 
years. Gait speed for healthy individuals over the age of 65 

has been reported to lie between 0.60 to 1.45 m/s [13][14].  
Although there was a slight decrease at month 4 and mild 
increase at month 5, values for months 7-9 stabilized again at 
approximately 1.2 m/s indicating that this participant 
continued to walk at a speed consistent with older adults who 
do not have mobility impairments. 

Wavelet transforms are widely used for de-noising, 
decompression, classification and trend analysis [15]. Wavelet 
transforms provide filter bank decomposition of the signal. 
The filter bank decomposes the signal into high frequency and 
low frequency bands. The low frequency signal can then be 
recursively subdivided into lower frequency components. This 
provides good resolution at low frequencies and also allows 
each band to be selectively investigated. 

We analyzed STS timing data using wavelet transform to 
investigate the trends in the signal. The wavelet analysis was 
done using Daubechies-8 wavelets. The decomposition was 
done for 4-levels. 

 
Fig. 4. Histogram of STS time in seconds. 

 
Fig. 5. Measured STS times and rloess smoothed curve versus day. 
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Fig. 6. Gait speed (meters/second) over 9 months. 

We analyzed STS timing data using wavelet transform to 
investigate the trends in the signal. The wavelet analysis was 
done using Daubechies-8 wavelets. The decomposition was 
done for 4-levels. The wavelet transform used dyadic scale 
(powers of 2) for decomposition. The wavelet transform 
coefficients were then used to reconstruct the signal at each 
level.  Fig. 7 shows the decomposition and reconstruction of 
the STS timing data. Each approximation shows a trend in that 
particular frequency range so that we can evaluate the trend 
over a different time scale. The level 4 (lowest frequency 
component) approximation shows a trend in the lowest time 
scale. It is clear from the level 4 approximation that there is 
very little change in the participant’s STS timing over the 
observation period. This is consistent with our analysis of the 
data using rloess. The advantage of wavelet analysis is that 
other approximations can be used to check for more short term 
trends. 

 
Fig. 7. Wavelet de-noising of the STS timing data. 

IV. DISCUSSION 

Home monitoring of functional mobility involves the 
collection and processing of large amounts of data so that 
patterns can be identified for clinical use. The methodologies 
presented in this paper show how such data can be analysed to 

evaluate longer term trends. The results obtained indicate that 
bed exit STS times obtained in the home environment can be 
highly variable in the same healthy individual over time. 
Arcelus et al. [8] used similar technology in a laboratory 
environment to measure STS timing. These authors reported 
bed exit times ranging from 0.92 seconds to 1.48 seconds in a 
sample of 5 healthy older adults. Other laboratory studies 
employing alternate technologies to measure STS in healthy 
older adults have also reported lower levels of variability than 
observed in this study [16][17]. The mean bed exit STS time 
of 2.18 (+/-1.09) seconds observed in our study suggests that 
measures obtained in the home environment may be more 
variable than those obtained under controlled laboratory 
conditions. Therefore it is necessary to employ methods for 
analyzing this variability which will assist in clinical 
interpretation. 

This study found that while the majority of STS times 
were within 2 standard deviations of the mean, there were 
outliers that reached between 7 and 9 seconds. The histogram 
representation indicated that these times occurred infrequently 
in this healthy individual. Future research will need to address 
the extent to which the occurrence of longer STS times is 
indicative of mobility problems. 

Nonparametric regression (rloess) and wavelet transforms 
of the data allowed us to examine trends over time by 
eliminating the effect of the outliers. The absence of a trend in 
either direction suggests that despite the variability observed 
in a raw data graph, the participant’s STS bed exit time 
remained stable over the period of observation. The fact that 
this trend of stability was consistent with clinical measures 
over time indicates promise that bed exit measures may 
correspond with other dimensions of functional mobility. Gait 
speed was one of these clinical measures and is also a key 
indicator of overall health and a predictor of mortality [15]. 
Future research on participants with improving or declining 
mobility will be required to determine the extent to which 
trends in STS time obtained with the under-mattress 
technology correspond and whether the technology may assist 
in predicting health decline. Techniques presented in this 
paper provide an approach for doing so.  

V. CONCLUSION 

Under mattress sensor technology offers the ability to 
unobtrusively monitor bed transfer characteristics over time 
and thereby quantify variability in bed exit performance over 
the long-term.  The study concludes that measures of STS bed 
exit time collected in a healthy individual over a 9 month 
period in the home context were highly variable. Results 
indicate that the analytical methods used were able to identify 
trends in STS timing as well as highlight deviations. Under 
mattress sensor technology shows promise for being able to 
assist clinicians in monitoring the functional bed mobility of 
older adults in the home environment.  
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