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Abstract—Pressure-sensitive mats (PSM) have proved to be 

useful in the estimation of respiratory rates (RR) in adult 

patients. However, PSM technology has not been extensively 

applied to derive physiologic parameters in infant and neonatal 

patients. This research evaluates the applicability of the 

capacitive XSensor PSM technology to estimate a range of RR in 

neonatal patient simulator trials conducted under several 

experimental conditions. PSM data are analyzed in both the time 

and frequency domain and comparative results are presented. 

For the frequency-domain approach, in addition to estimating 

RR, a measure of confidence is also derived from the relative 

height of peaks in the periodogram. The study demonstrates that 

frequency domain analysis of mean-shifted PSM data achieves 

the best possible RR estimation, with zero percent error, as 

compared to the lowest achievable RMS error of 1.57 percent in 

the time domain. The frequency domain approach outperforms 

the time domain analysis whether examining raw data or those 

preprocessed by normalizing, detrending and median filtering.  

Keywords— pressure sensitive mat; neonatal intensive care 

unit; neonate; respiration rate; simulator 

I. INTRODUCTION 

There is increasing evidence that the respiratory rate (RR) 

of a person lying on a pressure-sensitive mat (PSM) can be 

estimated by analyzing the measured contact pressure data. 

Past research that demonstrates the utility of PSM data for the 

estimation of RR has been mainly focused on the adult 

population, such as [1]–[12]. Two systematic reviews of non-

invasive respiratory monitoring in clinical care, conducted 

almost a decade apart [13], [14], were similarly focused on 

adult studies. The most recent review, in 2015, concludes that 

such monitoring has the potential for improved early diagnosis 

of patient deterioration and the reduction of critical events for 

patients on the general wards [14]. PSM technology is well-

suited to long-term patient monitoring both at home and in 

hospitals due to it being non-invasive, contactless, and 

unobtrusive. However, when it comes to the infant and 

neonatal population, there is a scarcity of research within the 

field.  

In 1976, Franks et al. pioneered the idea to measure 

pressure changes in the thorax region during the respiratory 

cycle in overnight recordings in infants at home who were up 

to six months old [15]. They recommended that an under-

mattress pressure sensor was the most simple and satisfactory 

amongst five contactless devices tested, especially in cases 

where there could be considerable parental apprehension. 

However, the use of PSM has not yet been evaluated on 

critically ill term and preterm babies within a hospital’s 

neonatal intensive care unit (NICU). Previously, the use of 

mechanical sensors such as single-point load cells [16], 

pressure sensors [17], [18], and piezoceramic sensors [19] has 

been researched for the extraction of neonatal and infantile 

RR. The key disadvantage with all these methods is the loss of 

spatial resolution when compared to PSM technology, where 

an array of pressure transducers provides a time-varying high-

density 2D map of contact pressure. Secondly, sensors that 

attach to the patient’s bed are relatively difficult to transfer 

should the patient needs to be transferred to another bed.  

A number of infant breathing monitors that use mechanical 

sensors are available in the market including wearables such 

as Snuza Hero, Levana Oma, Mimo and BabySense [20]. 

However, these systems are neither licensed as medical 

devices for use in hospitals in North America nor do they 

provide application program interfaces for secondary analyses 

of their datasets.  

As we begin to explore the use of PSM as a long-term 

continuous patient monitoring modality in the NICU, there 

exist a number of challenges. A major difference that exists in 

using PSM with the neonatal population, as opposed to adults 

or older children, is the much smaller mass and pressure 

ranges [16]. It may be necessary to place the PSM above the 

mattress but below a crib sheet, since output signals below a 

mattress can be heavily muted and may feature less distinct 

localized loading thus reducing the signal-to-noise ratio (SNR) 

[4]. Thereby, adherence to medical device standards and 

testing for electrical safety become of utmost importance. In 

addition, electrical, mechanical, and environmental artifacts 

decrease the ability to estimate the RR accurately. These 

include power line interference, electrical noise, patient 

movements, and vibrations from people walking around the This research is sponsored by Centre for Advanced Studies, IBM Canada 

Lab and the Natural Sciences and Engineering Research Council. 

 



bed, possible air currents from heating, ventilation and air 

conditioning. Physiologic artifacts are another potentially 

confounding factor in the detection of the RR signal from 

PSM data. For example, expiratory grunting distorts the 

breathing signal and produces an unclear noisy expiration 

wave [21], [22]. Grunting is a compensatory breathing effort 

made by a neonate to overcome some lung abnormality. 

Grunting is produced by the expiration of air through partially 

closed vocal cords, either intermittently or continuously 

depending on the severity of the lung disease [23]. Clinicians 

typically hear the grunting sound produced by a patient. 

Grunting is one of the symptoms of neonatal respiratory 

distress syndrome (NRD) and is typically recognized by 

clinicians when listening to a patient breath [24]. Term and 

preterm infants presenting with NRD are admitted to the 

NICU and treated with oxygen supply [25], [26]. NRD 

accounts for significant morbidity and mortality [27].  

In this proof-of-concept study, we collect a comprehensive 

dataset from a capacitive PSM LX100:36.36.02 (XSensor 

Technology Corp. Calgary, Canada, XSensor.com) to show 

that it is possible to extract simulated neonatal RR from PSM 

data. In our previous work, the XSensor PSM technology has 

shown a superior dynamic response as compared to the 

metrological properties of resistive Tekscan and optical S4 

PSM technologies [28]. This study compares time and 

frequency domain approaches for RR estimation with results 

presented in terms of estimation error and confidence. 

A breathing pattern is a time series signal dominated by 

respiratory modulation [29]. To compare RR estimation 

results in the time and frequency domains, this study 

categorizes the dataset based on three experimental 

conditions: (i) breathing patterns (normal vs. grunting); (ii) 

position of the simulator (supine vs. prone); and (iii) type of 

mattress (overhead warmer vs. crib). These data are then pre-

processed as follows to mitigate signal artifacts: normalizing 

by subtraction of average pressure measured across the 

analysis window width to remove DC components extraneous 

to the breathing pattern; detrending to remove low-frequency 

metrological drift; and median filtering for recovery of a 

smooth breathing pattern. Each stage of pre-processing aims at 

improving the signal-to-noise ratio (SNR) of the breathing 

pattern, which is otherwise obscured by noise in the PSM data. 

The time domain analysis does not require knowledge of the 

expected RR range. RR estimation in the time domain is based 

on calculating the number of times the breathing pattern 

crosses a given threshold. In addition to the time domain, this 

study analyzes PSM data in the frequency domain to estimate 

RR. The breathing pattern is analyzed in the frequency domain 

by fast Fourier transformation (FFT) and subsequent 

identification of the frequency component that is contributing 

the largest signal power. 

There is value in having independent estimates of RR from 

multiple patient monitoring modalities, including PSM, for 

greater data integrity. However, the estimate produced by 

PSM data may be confounded by several factors that could be 

electrical, mechanical, environmental and physiologic in 

nature. This research focuses on the impact of physiologic 

grunting on the RR estimate by analyzing PSM data acquired 

during bench testing with neonatal patient simulators. This 

bench testing constitutes phase one of a larger project that will 

assess the applicability of PSM technology to patient 

monitoring in the NICU. Phase two shall include software and 

systems development guided by real patient data acquired 

from the NICU. The following section outlines the data 

collection and acquisition methods. Section III presents results 

and data analysis. Section IV discusses the research findings 

followed by conclusions with directions for future work.  

II. METHODS 

The bench testing was conducted at the Children’s Hospital 

of Eastern Ontario (CHEO), Ottawa, Canada. The bench 

testing equipment included a neonatal patient simulator 

“SimNewB” (Laerdal Medical Canada, Ltd., Toronto, 

Canada), a Giraffe overhead warmer neonatal bed (GE 

Healthcare, USA), an open crib, and a capacitive PSM 

LX100:36.36.02 (XSensor Technology Corp. Calgary, 

Canada, XSensor.com). The bench testing was conducted by 

placing “SimNewB” on two different mattresses. One mattress 

comes with the Giraffe overhead warmer in the size of 

65x48x4 cm (25.5L x 19W x 1.5D in), and a crib mattress that 

is approximately double the size and depth, and is 

significantly firmer. Fig. 1 shows “SimNewB” lying in the 

supine position on the PSM in the crib. The “SimNewB” 

simulator represents a neonate weighing approximately 2790g 

(6.2 lbs) with a length of 51 cm (21 in). The PSM sensor was 

placed on top of the bed mattress and covered with a sheet that 

is normally used in the NICU. The PSM sensor has a density 

of 1 sensel/0.5 in2 with an overall sensing area of 18 x 18 in2. 

The PSM connects to an X3 Pro Sensor Pack that feeds into an 

X3 Pro Electronic Platform that is connected via USB to a 

laptop running the X3 Pro software. The X3 Pro software was 

used to record PSM data and video simultaneously. Fig. 1 also 

shows the contact pressure image produced by the X3 Pro 

software in one frame during the acquisition of a supine 

dataset in the crib. The labels indicate the body parts of the 

simulator on the PSM. The shaded thorax area marks the 

 

Fig. 1: SimNewB lying supine on XSensor PSM over a crib 

mattress, with the pressure image shown on the right 

 



region of interest for which the data were analyzed.  

A. Data Acquisition and Validation 

A total of twenty trials were conducted, of which, 12 were 

on an overhead warmer while 8 were measured on the crib 

mattress, 12 represented normal breathing patterns while 8 

represented breathing with grunting, and in 10 experiments, 

the simulator was lying in the supine position with the 

remaining 10 in the prone position. The trials were 30-80 

seconds long and contact pressure data were acquired at a 

sampling rate of 20 frames/sec. Breathing is a mechanical 

function of the simulator, where air from an external 

compressor is used to cyclically inflate an air sac simulating 

both lungs. The simulator was set to breathe normally, or with 

grunting, at three different RR of 45, 60 and 75 breaths per 

minute (bpm). These RR fall within the ranges observed in 

neonates, whether preterm or term born, as specified in [22], 

[30]. Average contact pressure data acquired from the thorax 

region were analyzed to extract breathing patterns.  

The X3 Pro calibrates the lowest noise floor (NF) based on 

the pressure values induced by the load placed on the mat. 

Based on the neonatal simulator load the NF is 0.0773 psi in 

these experiments. It implies that pressure values below 

0.0773 psi are excluded from the average pressure calculations 

produced by the PSM technology. As shown in Table I, the 

RR estimation results in the time and frequency domains are 

compared across three experimental conditions with the 

following characteristics: (i) normal breathing patterns versus 

breathing patterns that include grunting; (ii) whether the 

simulator is lying in a supine or a prone position on the PSM; 

and (iii) the type of mattress underneath the PSM (overhead 

warmer or crib mattress).  

B. Signal Pre-processing 

Signal pre-processing was applied across the entire 

recording length in each trial. The acquired PSM data were 

pre-processed to suppress signal artifacts and isolate the 

breathing pattern. Normalization is carried out to remove the 

DC bias similar to the method in [31]. The DC bias is caused 

by static forces from the load placed on the PSM. To 

normalize, the average of all data points in the analysis 

window is calculated and subtracted from each data point in 

the window. The DC signal causes a very large peak at zero in 

the periodogram, thus overshadowing the power of the 

fundamental frequency of the respiratory cycle. Therefore, it is 

necessary to normalize the average contact pressure data. The 

normalized signal is detrended using MATLAB’s detrend 

function to remove the slow signal fluctuations due to sensor 

drift. We have defined and evaluated drift and other 

metrological properties of PSM in our past research [28]. 

Detrending removes the low-frequency noise in the frequency 

domain, hence rendering a cleaner periodogram. Finally, the 

data are median filtered to smooth the signal, remove higher 

frequency noise components and recover the breathing pattern. 

The three stages of signal pre-processing, namely 

normalization, detrending and median filtering all aim to 

improve the overall SNR. 

C. Time Domain Analysis 

The time-domain analysis is applied to the raw average 

pressure signal acquired from the PSM prior to pre-

processing, as well as to the normalized, detrended, and the 

median filtered datasets. The time domain signal is analyzed 

for the number of times it crosses a set threshold. The 

threshold is set to the 75th percentile value of the raw data and 

to half the value of the 75th percentile of the pre-processed 

time series data. The method used to count the respiratory 

peaks is similar to that of [32]. The RR is estimated by 

dividing the number of threshold crossings by twice the 

number of samples or frames in the analysis window and 

multiplying it by sixty times the frame rate to get a value in 

bpm. Finally, the percentage error of the RR estimate in the 

time domain (RR-TDE) is calculated by comparing it with the 

RR value set on the simulator. The root mean square (RMS) of 

RR-TDE for the raw and pre-processed datasets for various 

experimental conditions are reported in Table I. 

 

D.  Frequency domain analysis  

For infants with a corrected age in the range of 1 to 79 

weeks, the respiratory signal lies in the low-frequency band 

[30]. In this research the neonatal simulator’s RR was set to 

45, 60 and 75 bpm, corresponding to frequencies of 0.75-1.25 

Hz. Following the methods in [31], [32], the time-series data 

are filtered using a second-order Butterworth filter with a 

passband of 0.3 to 1.5 Hz. MATLAB’s fft function is applied 

to the bandpass signal from which the fundamental frequency, 

i.e., the frequency with the highest power contribution, a, is 

selected and then multiplied by 60 to estimate the RR in bpm. 

The second largest peak, b, within the passband is also 

determined. The percentage error (RR-FDE) is computed 

Table I: Aggregate results of time and frequency domain analyses  

Experimental 

Condition 

Number of 

experiments 

Raw Data Normalized Data Detrended Data Median Filtered Data 

RR-FFE RR-TDE LC RR-TDE LC RR-TDE LC RR-TDE 

Position 

Supine 10 64.31 122.82 1.69 133.42 1.69 131.98 1.69 13.23 

Prone 10 0.53 9.35 1.57 0.70 1.57 0.70 1.56 1.57 

Breathing Pattern 

No Grunting 12 39.34 59.59 1.56 68.11 1.56 64.94 1.57 4.45 

With Grunting 8 45.39 108.18 1.69 114.51 1.69 113.56 1.66 12.17 

Mattress Type 

Overhead Warmer 12 38.86 83.57 1.69 99.42 1.69 97.01 1.68 10.91 

Crib 8 1.21 86.09 1.53 80.97 1.53 80.03 1.51 4.92 

 



identically to RR-TDE. A confidence measure (LC) is 

computed as the ratio of the highest and the second highest 

peaks in the periodogram, i.e., LC = a/b. Larger values of LC 

indicate greater RR estimation confidence. This frequency-

domain analysis is applied to the raw average pressure prior to 

pre-processing, as well as to the normalized, detrended, and 

the median filtered datasets. Table I lists the RMS of RR-FDE 

and LC.  

III. RESULTS 

A. Data Acquisition and Validation  

The “SimNewB” simulator model’s weight and length are 

representative of those of newborn babies [22][33]. Fig. 1 is a 

pressure image from one frame of PSM data of the simulator 

lying in the crib in the supine position. Fig. 2 shows results 

from a trial in which SimNewB is lying in a supine position on 

the crib mattress and breathing normally at 45 bpm that 

corresponds to a fundamental frequency of 0.75 Hz. The 

breathing cycle is visible in the raw PSM time series data 

acquired from the thorax region as shown in Fig. 2a.  

B. Signal Pre-processing 

Fig. 2 also shows time series plots at each stage of pre-

processing. It is interesting to note the cyclical fluctuation in 

the signal around the normalized mean value of zero in Fig. 

2b. These fluctuations illustrate drift, which is a metrological 

property of the PSM’s capacitive technology. Drift is reduced 

by detrending (Fig. 2c). Fig. 2d shows the smoothing effect of 

the median filter, resulting in a cleaner breathing pattern.  

 

 

 

 

  

 

Fig. 2: For SimNewB lying supine on crib, normal RR at 45 bpm, time series of average power (psi) are shown (a) raw, (b) normalized, (c) detrended, and 

(d) median filtered data; signal power in the frequency domain is shown after applying a bandpass filter to (e) raw and (f) normalized data. 
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C. Data Analysis 

In all four time series plots in Fig. 2, there is a horizontal 

line that represents the threshold crossing that is used to count 

the number of RR peaks. Fig. 2e-f illustrate the frequency 

domain representations showing the periodogram of the raw 

and normalized PSM datasets, following band-pass filtering. 

In Fig. 2e, there is a low-frequency peak apparent at 0.34 Hz 

that overpowers the two peaks at 0.75 and 1.5 Hz that 

represent the RR at 45 bpm and its first harmonic. The effects 

of the Butterworth filter are visible by the roll-offs on both 

sides of the passband of 0.3-1.5 Hz and by the removal of the 

DC component in Fig. 2e. As shown in Fig. 2f, normalization 

cleans the lower frequency data, such that peak a, at the 

fundamental frequency, and peak b, at the second harmonic, 

are markedly visible. The fundamental frequency is then 

correctly recovered during frequency domain analysis.  

The 20 trials were organized into three experimental 

conditions as shown in Table I. Each trial falls into one of the 

two classes within each condition. For example, in Trial 1 the 

simulator was lying supine on the overhead warmer mattress 

and breathing normally at 60 bpm. So, the results from Trial 1 

contribute towards the aggregated results for supine, no-

grunting, and overhead warmer. Table I lists the aggregate 

results of both time and frequency-domain analyses in terms 

of the RMS of RR-FDE and RR-TDE,. The RMS of RR-FDE is 

tabulated only for the raw dataset because, for each of three 

preprocessed datasets, the frequency domain analysis always 

estimated the correct RR producing an error of zero. Rather 

than reporting the zero error, Table I presents the RMS of LC 

for these three datasets. The values of Lc provide a measure of 

estimation confidence (see Methods) and are informative 

when comparing experimental conditions in which the RR 

estimation errors are uniformly zero.  

 

IV. DISCUSSION 

The pressure images obtained in this research using the 

simulator are comparable to those taken from real infants in 

[34]. The pressure image in Fig.1 shows regions of higher 

pressure in red which include the head, the thorax, and the 

pelvis. These results coincide with the regions of higher 

pressure shown in Fig. 9 of [34]. Breathing patterns in Fig. 2 

are in agreement with the results obtained from real patient 

data in [22] in which Fig. 6 shows a normal or regular 

breathing pattern. The following observations can be made 

from Table I. The error in both time and frequency domains is 

highest across all the columns for the raw dataset as can be 

expected. With regards to position, the error for the raw 

dataset in both frequency and time domains is much higher for 

the supine position than for the prone position. This could be 

due to the location of the mechanical ventilator inside the 

simulator’s body. Once the data are normalized, the results in 

the frequency domain for the supine position improve 

significantly; the error drops to zero with the RMS of LC being 

almost consistent across the three pre-processed datasets. The 

time domain results do not show a significant improvement in 

the supine position when the data are normalized and 

detrended. The highest improvement is seen when the data are 

median filtered. In the prone position, both domains perform 

well for normalized and detrended, however, the time domain 

worsens for the median filtered dataset whereas the frequency 

domain maintains a zero percent error and a steady Lc. In 

terms of breathing pattern, the RMS values of RR-TDE are 

much better for normal breathing as opposed to the noisy 

grunting pattern. Surprisingly, for the frequency domain 

approach, higher estimation confidence (Lc) is observed for 

breathing with grunting. In terms of mattress type, the firmer 

and thicker crib mattress results in better RR estimation across 

all three pre-processed datasets with lower RMS values of 

RR-TDE as compared to the overhead warmer mattress. Lc 

values remain steady across both mattresses in the pre-

processed datasets indicating that the frequency domain 

approach is robust to mattress type.  

One limitation of the present study is that it excluded an 

analysis of data in the presence of artifacts generated by 

patient motion and other electrical, mechanical, environmental 

and clinical variables. While this will be explored in future 

work, as shown here, pre-processing has played an important 

role in mitigating the impact of signal artifacts and improving 

the RR estimation rates for both domains.  

This study produced results in the time domain that were 

comparable to the more complex compound time-frequency 

domain analyses developed in [16], [29]. The frequency 

domain results of this study are in agreement with past work 

done on adults in [10], and exceed the results produced in 

[16], [29]. In summary, the frequency domain analysis 

outperformed the time domain analysis in all three 

experimental conditions and across all neonatal RR evaluated 

here. 

V. CONCLUSION  

This study compares time and frequency domain 

approaches to estimate RR from PSM data acquired during 

bench testing from neonatal patient simulators. The results 

clearly indicate that the frequency-domain approach is 

superior to the time domain approach. This research forms 

part of a larger novel project to assess the applicability of 

PSM technology in the NICU. In the future, we aim to assess 

RR estimation from real patient data. In addition, the fact that 

the estimation error is significantly higher during breathing 

with grunting may actually suggest a novel method for 

detecting grunting. A large difference observed between time- 

and frequency-domain RR estimates may indicate grunting. 

This can be further tested using model-based time-domain 

approaches that may show superior performance as compared 

to the time-domain methods applied in this paper. It is 

expected that sensor fusion between audio and PSM data may 

lead to a robust system for accurately identifying grunting 

during breathing, which is an important clinical indicator. 
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