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Abstract—An electroencephalogram (EEG) signal is currently
accepted as a standard for automatic sleep staging. Lately, Near-
human accuracy in automated sleep staging has been achievable
by Deep Learning (DL) based approaches, enabling multi-fold
progress in this area. However, An extensive and expensive clin-
ical setup is required for EEG based sleep staging. Additionally,
the EEG setup being obtrusive in nature and requiring an expert
for setup adds to the inconvenience of the subject under study,
making it adverse in the point of care setting. An unobtrusive
and more suitable alternative to EEG is Electrocardiogram
(ECG). Unsurprisingly, compared to EEG in sleep staging, its
performance remains sub-par. In order to take advantage of
both the modalities, transferring knowledge from EEG to ECG
is a reasonable approach, ultimately boosting the performance
of ECG based sleep staging. Knowledge Distillation (KD) is a
promising notion in DL that shares knowledge from a superior
performing but usually more complex teacher model to an
inferior but compact student model. Building upon this concept, a
cross-modality KD framework assisting features learned through
models trained on EEG to improve ECG-based sleep staging
performance is proposed. Additionally, to better understand the
distillation approach, extensive experimentation on the indepen-
dent modules of the proposed model was conducted. Montreal
Archive of Sleep Studies (MASS) dataset consisting of 200
subjects was utilized for this study. The results from the proposed
model for weighted-F1-score in 3-class and 4-class sleep staging
showed a 13.40 % and 14.30 % improvement, respectively. This
study demonstrates the feasibility of KD for single-channel ECG
based sleep staging’s performance enhancement in 3-class (W-R-
N) and 4-class (W-R-L-D) classification.

Index Terms—Sleep Staging, Deep Learning, Knowledge Dis-
tillation, EEG, ECG.

I. INTRODUCTION

Sleep is an intricate dynamic physiological process that
occurs in multi-cyclical stages. In sleep medicine, sleep is
typically studied by acquiring multiple bio-signals during sleep
by conducting a polysomnography (PSG) study. The primary
reference for sleep studies is accepted to be the Electroen-
cephalogram (EEG) signal, considering its interpretability with
brain activation, the pivot of sleep mechanism. Generally,

Fig. 1: Proposed Knowledge Distillation framework

experts manually perform sleep stage classification for 30/20
s epochs following the sleep staging guidelines and rules by
Rechtschaffen and Kales (1968) (the ‘R and K rules’) [1] or
AASM (American Academy of Sleep Medicine) [2]. As man-
ual sleep staging is cumbersome and time-consuming, many
automated sleep staging algorithms, including neural network-
based approaches [3], have been developed lately with notable
performance on par with human accuracy. Traditionally, sleep
is divided into five stages: W, wakefulness; REM Rapid
Eye Movement stage; N1, a light sleep period in Non-REM
stages; N2, an intermediate stage; N3, a deep sleep stage.
Different frequencies and patterns observed in the EEG signal
during sleep characterize different sleep stages. The Color
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Fig. 2: Color Density Spectral Array-CDSA of EEG and ECG

Density Spectral Array (CDSA), as shown in Fig.2 shows EEG
and ECG frequency components for different sleep stages.
The patterns match in both signals, with the EEG pattern
being more distinctive for sleep stages. However, in a non-
clinical setup, the obtrusiveness of EEG renders it impractical.
Furthermore, during sleep, the brain-body interaction implies
that the stages of sleep can be captured by other physiological
signals as well [4].

An electrocardiogram (ECG), not only being readily inte-
grable into wearable devices but also less obtrusive, is an
appropriate alternative to the EEG. As seen in Fig.2, the
ECG pattern is not distinctive, So Deep Learning approach
is a plausible choice. Q.Li et al. [5] extracted Respiratory
Sinus Arrhythmia (RSA) and ECG Derived Respiration (EDR)
based features from a vast PSG dataset (SHHS, CinC, SLPDB)
for cross-spectral spectrogram, which helped to generalize the
model better and achieved significant results for sleep staging
using ECG signal. Their work employed an SVM, which was
given high-level features extracted from the input using a
Convolutional Neural Network(CNN). An accuracy of 65.90 %
on SHHS and 75.40 % on SLPDB, respectively, were obtained
for 4-class sleep staging. Radha et al. [6] used a temporal
model approach, LSTM for sleep staging on 132 HRV features
explicitly extracted from ECG signal and achieved an accuracy
of 77.0 %. In another study, Fonseca et al. [7] extracted 80
expert features from Respiratory Inductance Plethysmography
(RIP)and ECG eventually used by Linear Discriminant (LD),
which obtained an accuracy of 80.0 % and 69.0 % for 3-class
and 4-class sleep staging, respectively. In a separate study by
Sridhar et al., [8], 2 stage CNNs achieved an accuracy of
77.0 % from ECG-derived heart rate on an extensive dataset
comprising MESA, CinC and SHHS. Despite the burgeoning
potential of ECG, EEG based sleep classification performance
remains vastly superior for sleep staging [3] [9]. It would be
exceedingly beneficial to integrate the advantages of improved
accuracy with unobtrusive monitoring. While multi-modal
fusion methods utilize features of multiple signals and have

obtained improved accuracy [7] [9], multiple signal acquisition
is required during inference which is an additional overhead.
Thus, using the primary modality, EEG, to impart information
to ECG opens up a lot of potential applications.

Knowledge Distillation (KD) has recently gained traction
in deep networks to effectively transfer relevant information
to more compact networks from extensive networks. A re-
sponse based KD method to transfer and distil information
to a student model from the softmax layer of a larger size
teacher model to achieve better generalization was proposed
by Hinton et al. [10]. Another approach that implemented
feature-based distillation through knowledge distillation from
the intermediate feature maps instead of the softmax layers
was proposed by Romero et al. [11]. The concept to transfer
attention maps from the intermediate layers to improvise the
feature distillation process was introduced by Zagoruyko et
al. [12]. Cross-modal KD [13] explored the above idea by
applying it across modalities. Inspired by these approaches, a
cross-modal KD approach, as depicted in Fig.1 is proposed.
The proposed method combines feature-based and response
based distillation facilitating multi-modal training of ECG and
EEG while enabling uni-modal testing. This study is designed
to evaluate the potency of KD in the performance enhancement
of ECG based sleep staging. Moreover, we compare individual
elements of the KD framework and the proposed model,
subsequently exhibiting its potential.

II. METHODS

A. Problem Formulation

Let seeg ∈ Rt f and secg ∈ Rt f be the EEG and ECG
waveforms, with a sampling rate f for t seconds, respectively.
Let M(eeg;φeeg) and M(ecg;φecg) be the models which take T
connected segments, each having length i, from seeg and secg
respectively. Let e be the frequency at which the signal is split,
where the aim is to independently match seeg and secg to [e * t]
labels, where each label is based on i= f/e sampled points. The
model we adapt is able to handle varying frequencies during
inference. To be more specific, the model M(eeg;φeeg) and
M(ecg;φecg) maps seeg and secg to ground truth for predicting
C classes in all T segments.

Weighted Cross Entropy(WCE) is the chosen loss function
that is to be optimized by the teacher model, M(eeg;φeeg) and
is defined as:

L(seeg,y) =
T

∑
i=1

1/
T

∑
i=1

(−wyi)∗ li
eeg (1)

where wyi is the class weight which is proportional to the
number of data points in the training set from a particular class
and

li
eeg = (log(exp(s(i,yi)

eeg )∗wyi)/
C

∑
k=1

exp(s(i,k)eeg ) (2)

This is followed by Feature Based (FB) distillation of the
aggregated attention maps obtained from the features of the
pretrained teacher model, M(eeg;φeeg), to the untrained student



model, M(ecg;φecg). To obtain optimal FB distillation, we
adopt the following Attention Transfer (AT) loss [12]:

LFB = ∑
j∈I
|| Q j

ecg

||Q j
ecg||2

− Q j
eeg

||Q j
eeg||2

||2 (3)

where the j-th pair of teacher and student attention maps is
represented by Q j

eeg=vec(Feeg(A
j
eeg)) and Q j

ecg=vec(Fecg(A
j
ecg))

in a vectorized form, I denote the set of teacher-student
convolution layers which is selected for Attention Transfer. In
our framework, j distils the attention maps from all the layers
by iterating through the features of the whole architecture. In
AT, the main motive is to train a student network that, while
being accurate, will also have attention maps that are similar
to those of the teacher.

Following this, the pretrained student model M(ecg;φecgpre),
optimizes the sum of the Response Based (RB) distillation and
WCE loss defined as:

L(secg,y) = (1−β )∗ li
ecg ∗

T

∑
i=1

1/
T

∑
i=1

(−wyi)+βT 2
d ∗ li

dist (4)

where beta is the weight between RB and FB losses, Ts is
the temperature parameter of softmax and

li
ecg = wyi ∗ log(exp(s(i,yi)

ecg )/
C

∑
k=1

exp(s(i,k)ecg ) (5)

li
dist = KLD(p(secg,Ts), p(seeg,Ts)) (6)

p(x,Ts) = log(exp(x(i,yi)/Ts)/
C

∑
k=1

exp(x(i,k)/Ts) (7)

Where KLD denotes Kulback Leibler Divergence.

B. Architectural Details

The proposed model adopts the three module structure
as proposed in the U-Time architecture [3] which includes
an encoder, decoder and segment classifier. The encoder
compresses the raw EEG or ECG signal into a group of
subsampled feature maps, with the last layer acting as the
bottleneck. It consists of five blocks where each block consists
of two convolution subblocks followed by a max-pooling layer
that subsamples the input by a factor of two. Finally, the
bottleneck layer consists of two convolutions that retain the
spatial size. The decoder is entasked to learn a mapping
from the bottleneck layer back to the input signal domain
giving out a dense segmentation map of the same size as
the input. The resulting feature maps are concatenated with
the corresponding feature maps computed by the encoder at
the same scale. The five blocks in the decoder consist of two
convolution subblocks, similar to the blocks in the encoder,
followed by an upsampling layer. The segment classifier is fed
the output segmentation map to predict the final sleep stages
at the desired resolution.

The above architecture serves as the base for both the
teacher, M(eeg;φeeg) and the student, M(ecg;φecg). This ar-
chitecture was chosen considering following major reasons:

1) Fully convolutional architecture - U-Time can be
applied across any dataset without much architecture or
hyperparameter tuning as it is fully convolutional.

2) Customized for EEG - U-Time was optimized to im-
prove sleep staging from EEG. Picking this architecture
will ensure that the best teacher model is chosen for
feature transfer from EEG to ECG.

3) Inference time variable-length segmentation - A U-
Time model may be used to stage sleep at any frequency,
i.e., every 20 s or 40 s, at inference time.

C. Dataset Description

This study utilizes the Montreal Archive of Sleep Studies
(MASS) [14] dataset containing sleep recordings obtained
from 200 participants [103 females (aged 38.3 ± 18.9 years)
and 97 males (aged 42.9 ± 19.8 years); age range: 18–76
years]; organized into five sets of PSG records, SS1-SS5. The
dataset was acquired online from the Centre for Advanced Re-
search in Sleep Medicine (CARSM) on providing the project
proposal approved by the local ethics board. All participants
were part of a healthy control group, except for 15 of the SS1
subset who suffered from Mild Cognitive Impairment (MCI).
The study utilizes data from all the 200 subjects. Among the
many EEG electrodes positioned as per the international 10-
20 system, the C3-A2/C4-A1 electrodes were used. Lead 1
was the electrode of choice from the ECG. The data was
undersampled to 200 Hz from the initial sampling rate to
optimize runtime and uniformity while comfortably satisfying
the Nyquist criterion. A window width of thirty seconds was
uniformly considered for training and inference. Subsets with
annotation for every twenty seconds were converted into thirty-
second segments by including five seconds of data before
and after the annotation. The sleep stages N1 and N2 were
combined into Light Sleep(L) and N3, and N4 into Deep
Sleep(D) for the four-class (W-L-D-R) classification problem.
N1, N2, N3, and N4 were combined into a single NREM(N)
stage for the three-class (W-N-R) classification problem.

D. Experimental Procedures

All the data was split subject-wise into train, eval and test
sets in 80:10:10 ratio for both the classification problems.
This ensured zero overlaps of data between splits from the
same subject. The best model in all the runs was identified
based on metrics tracked on the validation set during training.
This was then validated on the holdout test-set post-training.
The metrics used to validate the model’s performance included
accuracy and weighted F1 score [3]. The weighted-F1 score is
calculated by computing the f1 score for each class separately
and averaging the scores, weighted by individual class support
(True positive + False Negative) to tackle the intrinsic imbal-
ance in sleep staging. Experiments for both three and four
class classification tasks were conducted identically as per the
framework shown in Fig.3. Baselines were trained through
the optimization of WCE loss as given in Eq.1 whereas
distillation was carried out through the optimization of the loss
given in Eq.4. Furthermore, we conducted two experiments to



Fig. 3: Knowledge transfer in action from EEG sleep staging model to ECG sleep staging model. SC: Segment Classifier from
U-Time. FB: Feature based (Attention Transfer distillation) feature learning. RB: Response based (Softmax distillation) feature
learning.

investigate the individual modules in our proposed framework.
The primary component in all the experiments involve two
significant steps as given below:

1) Feature Training (Step 1): The loss (Eq.3) between ECG
and EEG features is optimized by M(ecg;φecg) after
freezing the EEG weights. This trains the ECG model
to train towards imitating the feature maps of the EEG
model.

2) Final Training (Step 2): Subsequently, M(ecg;φecgpre)
is trained further on RB loss(Eq.4) for optimizing the
ECG model weights. The T parameter was chosen as
1, as given in [10] and beta was chosen empirically to
provide standard weights to classification and distillation
loss.

The implementation procedure of the proposed distillation
method and ablation methods is as follows:

1) FB+RB+WCE(proposed method): Step 1 is executed
to train features followed by training in step 2 on the
loss Eq.4 with β = 0.5.

2) FB+WCE(ablation method): Step 1 is executed to train
features followed by training in step 2 on the loss Eq.4
with β = 0 , which consequently trains independently
on the classification loss in Eq.1.

3) RB+WCE(ablation method): Only step 2 is executed
training on the loss Eq.4 with β = 0.5.

1 Each configuration of distillation was trained with learning
rate(LR) of 10−3 for 150 epochs. Nvidia GTX3090Ti 24GB
GPU was used for the code; Pytorch Lightning framework was
used for the algorithm development. 2

III. RESULTS

We evaluated the results from the distillation model against
their respective baseline model, given that the principal inten-
tion of this work is to demonstrate the potency of KD. The
performance of our distillation models on the holdout test data
is as shown in Table.I. Both weighted-F1-score and accuracy
metrics displayed increments in performance for the proposed
distillation method FB+RB+WCE as well as ablation methods
FB+WCE and RB+WCE for both 4-class sleep staging and
3-class sleep staging. The best performing model for 4-
class was the RB+WCE model, where the weighted-F1 score
improved from 0.451 of ECG baseline to 0.512 (weighted-
F1 showed improvement by 14.30 %, Accuracy improved by
15.6 %). FB+WCE was the best performing model for 3-class,
with weighted-F1 improved from 0.583 of ECG baseline to
0.661 ( weighted-F1 showed improved by 13.41 %, Accuracy
improved by 18.1 %). However, the ECG baseline model was
outperformed by all the distillation models, which corroborates
the incorporation of KD in ECG based sleep staging.

1FB: Feature based; RB: Response based; WCE: Weighted Cross Entropy
classification Loss

2Code is available at https://github.com/Acrophase/Sleep_Staging_KD

https://github.com/Acrophase/Sleep_Staging_KD


TABLE I: Performance of KD and its components

Sleep
Stages Model F1-weighted Accuracy

W-R-L-D

EEG Base 0.85 0.85
ECG Base 0.45 0.44

RB + WCE 0.51 0.51
FB + WCE 0.50 0.50

FB + RB + WCE 0.50 0.49

W-R-N

EEG Base 0.90 0.90
ECG Base 0.58 0.56

RB + WCE 0.61 0.60
FB + WCE 0.66 0.66

FB + RB + WCE 0.64 0.63

W:Wake, R:REM, L:Light Sleep, D:Deep Sleep, N:Non-REM Sleep

Insight into the sleep stage-wise performances of distil-
lation approaches is given in Table.II. In 4-class staging,
Light sleep(L) showed the best improvement, where RB+WCE
ablation method improved weighted-F1 to 0.611 from 0.473.
The best improvement was observed for the NREM class in
3-class staging, with weighted-F1 improved from 0.771 to
0.652 by the FB+WCE method. Noticeably, other classes have
underachieved marginally. This is potentially owing to class
imbalance resulting in imprecise feature training. However,
improvement across all classes in both 3-class and 4-class
was observed in the proposed FB+RB+WCE distillation, thus
exhibiting relatively robust feature learning against the class
imbalance.

IV. DISCUSSION

The above-indicated results demonstrate that the potency of
the knowledge distillation as the proposed distillation model
for ECG-based sleep staging remarkably outperformed the
ECG baseline. Nevertheless, combining Feature-Based (FB)
distillation and Response Based (RB) distillation need not
necessarily increase the performance over independent usage
of these distillation frameworks. This emphasizes the intricacy
of the interaction between these two components of KD and
suggests the requirement of independent optimization of the
two modes of KD.

Figure.4 illustrates the feature learning in the bottleneck
layer of the architecture, which represents the most com-
pressed form of features. Although the bottleneck features
themselves are not illustratable, a comparative approach assists
in analyzing the functioning of KD. The figure shows two
scenarios of a sleep stage prediction for 4-class sleep staging,
comparing the ECG base model, the KD model and the EEG
base model;
• case 1: ECG baseline mispredicts the sleep stage, but the

proposed KD model predicts the sleep stage accurately

• case 2: ECG baseline predicts the sleep stage accurately,
but the KD model mispredicts the sleep stage.

It is evident that distilled model’s bottleneck features are
comparable to that of the EEG base model’s feature in case
1, which shows distinguished feature learning resulting in
performance improvement. However, in case 2, misguided

TABLE II: KD methods class wise Results

4 class F1 score 3 class F1 score
W L D R W N R

EEG Base 0.89 0.86 0.81 0.82 0.89 0.93 0.80
ECG Base 0.57 0.47 0.30 0.40 0.51 0.65 0.40

RB + WCE 0.54 0.61 0.31 0.35 0.53 0.70 0.34
FB + WCE 0.54 0.57 0.34 0.40 0.52 0.77 0.37

FB + RB + WCE 0.57 0.56 0.29 0.41 0.52 0.73 0.39

W:Wake, R:REM, L:Light Sleep, D:Deep Sleep, N:Non-REM Sleep

feature learning can be observed from the difference between
the distilled model’s feature and both EEG and the ECG
baseline features, which were predicted accurately. This could
be, to some extent, attributed to asymmetric distillation as a
result of the class imbalance in the data, as observed in Table
II.

The methods presented here work towards producing a less-
invasive alternative to sleep studies by removing cumbersome
EEG electrodes, which can be prone to reduced SNR through
a patient’s restless sleep, and replacing them with ECG elec-
trodes through the help of KD. While the potential to exchange
EEG for ECG signals is novel, diagnostic sleep studies still
require other sensor measures per AASM guidelines, such as
airflow, breathing effort, EMG from upper/lower limbs, and
a pulse oximeter for oxygen saturation content. Our future
efforts will be directed towards the number of sensors placed
on a patient for sleep studies to improve patient comfort
and their quality of sleep during the overnight study, thus
optimizing for a better trade-off between comfort and accuracy.

In spite of the promising improvement in performance
brought about by KD, we identified a few limitations in
this study. Firstly, using temporal models like Long Short
Term Memory networks (LSTM) can improve the baseline
ECG model utilized in this paper because of their ability to
identify sparsely distributed features over time. Furthermore,
using additional unobtrusive or less obtrusive modalities like
respiratory signal and ECG have improved sleep staging
performance. Previous works [8] [5] have been trained on
an extensively large dataset (>4000 records) which achieved
noteworthy results on ECG based sleep staging, whereas our
study used a relatively compact dataset. This shows that the
choice of the dataset used in sleep staging studies cannot
be undermined. Future work would involve exploring the
components of KD to optimize for ECG signals as well
as incorporating the benefits of KD to more optimized DL
architectures, ultimately boosting the overall performance.

V. CONCLUSION

This study expands the present knowledge in sleep staging
from ECG by making the following contributions.
• Proposed usage of single modality, single-lead ECG sig-

nal, for sleep staging, minimizing the obtrusiveness and
making it suitable for point of care setting.

• Demonstration of the viability of a KD framework for
two different morphological signals, resulting in improved



Fig. 4: Comparison of bottleneck layer features for Knowledge Distillation. case1: KD model correct, ECG base incorrect;
case2: ECG baseline correct, KD model incorrect.

performance of ECG-based sleep staging with knowledge
assistance via EEG features for the same task.

• Analysis of the individual components of the KD by
providing comparative analysis from the bottleneck layer
features gave insights into the rationale for the perfor-
mance improvement.
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