
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Understanding Service-Oriented Systems
Using Dynamic Analysis

Tiago Espinha, Andy Zaidman, Hans-Gerhard Gross

Report TUD-SERG-2011-013

SERG



TUD-SERG-2011-013

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Paper accepted at the 2011 IEEE International Workshop on the Maintenance and Evolution of
Service-Oriented and Cloud-Based Systems (MESOCA 2011)

c© copyright 2011, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Understanding Service-Oriented Systems Using Dynamic Analysis
(Position paper)

Tiago Espinha
Delft University of Technology

The Netherlands
Email: t.a.espinha@tudelft.nl

Andy Zaidman
Delft University of Technology

The Netherlands
Email: a.e.zaidman@tudelft.nl

Hans-Gerhard Gross
Delft University of Technology

The Netherlands
Email: h.g.gross@tudelft.nl

Abstract—When trying to understand a system that is based
on the principles of Service-Oriented Architecture (SOA), it is
typically not enough to understand the individual services in
the architecture, but also the interactions between the services.
In this paper, we present a technique based on dynamic analysis
that can be used to obtain insight into how services work
together to perform overall business functionality. In particular,
our technique connects traces from individual services together,
so that the user can obtain a global understanding of how the
entire SOA works.

I. INTRODUCTION

The fact that software systems need to evolve in order to
remain successful has been long recognized [1]. With the
advent of Service Oriented Architectures, the maintenance
problem was said to become easier [2], as a Service Oriented
Architecture (SOA) would be composed of several loosely
coupled (and smaller) services. However, in 2004 already,
Gold et al. warned that even though the actual maintenance
was possibly easier, the understanding of SOA-based sys-
tems would still be a major and costly challenge [2]. This
is mainly due to the shift from understanding a monolithic
application to understanding a distributed system composed
of many entities (services).

Thus, program comprehension remains an absolute and
important prerequisite to maintaining systems [3], including
systems built around the SOA concept. In this context
Corby even reported that up to 60% of the time effort
of a maintenance task lies in understanding the system at
hand [4]. With documentation missing or being obsolete,
reverse engineering is often a viable option [5] for recon-
structing (part of) the documentation, which, in turn, enables
the understanding of the system.

In the context of this research, we choose a reverse
engineering approach based on dynamic analysis. Our choice
is instigated by the fact that we expect dynamic analysis
to better cope with the dynamic nature of service-oriented
systems, in which services can easily be exchanged for other
services. With the dynamic analysis approach, we can collect
runtime data in order to obtain knowledge about the system
under scrutiny [6].

While extensive research has been done in the area of
dynamic analysis for program understanding, most of the

research has focused on analyzing and understanding mono-
lithic systems [6]. In contrast, our work aims to alleviate the
understanding of complex, distributed systems.

We specifically focus on systems built around the SOA
paradigm and technologies such as SOAP1 and REST2.
While tracing and understanding each of the individual
services in a SOA is comparable to working with mono-
lithic versions, there is a challenge in understanding how
different services (dynamically) work together to deliver
functionality. This challenge is further complicated by the
fact that communication between services might happen
in an asynchronous way, calling for solutions that bring
clarity to the situation (similar to the case of asynchronous
communication in Ajax web applications, e.g. [7]).

Our research for alleviating the pains of understanding
complex SOA based software systems is steered by the
following research questions:

RQ1 How can we obtain a trace of requests as they tra-
verse several web services and which data should
be included?

RQ2 How can dynamic analysis of a distributed system
further aid its understanding?

II. TERMINOLOGY & SCENARIO DESCRIPTION

In order to further explain the foundation of our research,
we first clarify in Section II-A some of the terminology that
we are going to use. Subsequently, we describe an actual
scenario description in which our approach can be useful
(see Section II-B).

A. Clarification of Terminology

It is common practice to refer to any SOAP-enabled
component as a web service but this terminology induces
confusion. In fact, the W3C Working Group defines the term
web service as “a software system designed to support inter-
operable machine-to-machine interaction over a network”3.
It is also a fact that two major technology platforms (Java
and C#) currently use a web service as a container for several

1Simple Object Access Protocol – http://www.w3.org/TR/soap/
2REpresentational State Transfer – https://www.ibm.com/

developerworks/webservices/library/ws-restful/
3Web Services Glossary - http://www.w3.org/TR/ws-gloss/

SERG Espinha et al. – Understanding Service-Oriented Systems Using Dynamic Analysis

TUD-SERG-2011-013 1



web methods. These web methods (sometimes referred to
as operations) can then be remotely executed via a SOAP
request.

For this paper, we will follow the notion of a web service
as a container for web methods which are in turn the simplest
code-bearing units.

B. Scenario Description

For the scope of this paper, we have developed a small
proof of concept system composed of six SOAP web
services that have pre-defined (although loosely coupled)
associations (Fig. 1). The loose coupling implies that the
web services involved might or might not be deployed in
the same infrastructure; it also means that several instances
of the same web service may be deployed across different
servers for load balancing purposes.

In this system, the composing web services perform the
following tasks:

• MD5WS and SHA1WS: each contain a web method
getHash which takes a string and returns the respec-
tive MD5 or SHA1 hash.

• HashWS: contains a web method getHash which
takes two strings: the string to be hashed and the type
of hashing to perform (MD5 or SHA1).

• RandWS: contains a web method getRandom which
returns randomly generated integers (from Java’s
Integer.MIN VALUE to Integer.MAX VALUE).

• SumWS: contains a web method add which calculates
and returns the sum of two arguments.

• OrchestratorWS: contains two web methods. The first,
orchestrate takes two integers and a string speci-
fying which hashing method to use, therefore forsaking
the usage of the getRandom web method. The second
web method, however, is fully automated and requires
no arguments.

The interactions between these web services are depicted
by arrows in Figure 1. While this sample system is small
and its interactions are known in advance, our goal is to
demonstrate that the interactions can be inferred from the
trace data generated by our solution. In this case, considering
we have detailed knowledge of the system being analyzed,
we can easily verify our findings by comparing them to how
the system is in fact laid out.

III. TRACING APPROACH

The challenge with performing dynamic analysis on a
monolithic system lies in visualizing the trace data that is
readily available through the use of debugging or logging
tools. When it comes to distributed systems, it is still equally
easy to produce execution data for each server. However, as
far as we know, there currently exists no way of connecting
the individual traces from services in order to get a global
view of how they work together to deliver a specific piece

Figure 1. Scenario

of functionality (also see Cornelissen’s systematic literature
survey [6]).

For instance, when dealing with large quantities of si-
multaneous requests (as a distributed system is meant to),
it is impossible to determine that an execution trace t1 of a
call to MD5WS.getHash was in fact triggered by a call to
HashWS.getHash (with its respective trace t2) and not by an
entity external to our system.

In order to achieve this, we propose adding a tag to each
SOAP request which will allow us to identify causality in
the trace logs (e.g. trace t2 happened as a result of trace t1)
of our distributed system.

Since the SOAP protocol relies on lower level HTTP to
transport the SOAP message, we can use one of the existing
HTTP request fields that plays no major role in SOAP in
order to add the tag in a seamless manner. By doing so, we
ensure that the HTTP stack requires no changes thus creating
no deviation from the original standard. A good candidate
for this role is the user-agent field4. The sole purpose of this
field is to provide the web server with information about
the client (e.g. version, HTML rendering engine, etc) and
it should not be used as a decision-influencing field for
web services’ business logic. For this reason, we can safely
append (or eventually replace altogether) the default user-
agent string by a tag that allows us to follow a trail of web
method calls.

We can establish this trace by (creating and) placing a
request identifier on the user-agent field whenever one is
not already present. If an identifier already exists, then it
is copied into all the outgoing web method invocations.
Whenever an external SOAP client invokes a web method
under the domain of our instrumented system, it will carry no
request identifier. However, if a web method m1 within our
system invokes another web method m2 either within the
same or a different web service, then the outgoing SOAP
request will be modified to include the request identifier
created upon the invocation of m1.

4RFC 2616, Chapter 14.43 http://www.ietf.org/rfc/rfc2616.txt

Espinha et al. – Understanding Service-Oriented Systems Using Dynamic Analysis SERG

2 TUD-SERG-2011-013



IV. IMPLEMENTATION CHALLENGES AND
COMPROMISES

In this section we present the technical challenges in
performing dynamic analysis on a distributed SOAP-based
system. In subsections IV-A and IV-B we discuss our techni-
cal approach through the use of AOP and in subsections IV-C
and IV-D we reason about the granularity of data that is
stored as a part of the tracing.

A. Using Aspects For Tracing In Java

The greatest challenge in establishing a link between the
traces of web methods that invoke each other, lies in carrying
the request identifier from the entry point of the web method
(its invocation) into all the possible exit points (this web
method invoking other remote web methods).

This is particularly difficult to achieve, as the action
of parsing an incoming SOAP request is independent of
creating further outgoing SOAP requests. In fact, a web
method does not necessarily invoke other web methods; as is
the case with RandWS, SumWS, MD5WS and SHA1WS in
our proof of concept. Since such a feature does not exist in
the protocol itself and the most prominent frameworks also
do not possess this capability, we have devised a way of
making this possible by using aspect-orientation techniques
(AOP).

Aspect-orientation allows us to weave additional function-
ality into the code through aspects [8]. For the purpose of
our research, we have focused on aspect-orientation in Java
as this technique is well supported in Java through AspectJ5.

To achieve our goal of tracing, we have defined three
distinct aspects:

1. JAXAspect.aj is woven into the JAX-WS6 runtime
library (jaxws-rt.jar) and intercepts all incoming SOAP
requests in a non-obtrusive way. Whenever a request is
received, the advice for this aspect checks whether there
is a request identifier in the user-agent field and does one
of two things. If a request identifier exists, it means the
request is coming from a web method instrumented with our
aspects; because of this, the aspect stores the existing request
identifier in a ThreadLocal integer. If a request identifier is
not present in the user-agent field, then the aspect will poll
a static AtomicInteger (chosen for thread-safety reasons) for
the current integer, whilst incrementing it by 1.

2. JDKAspect.aj is woven into Java’s JDK itself (we
used Sun’s latest JDK, 1.6.0 23-b05) and is responsible for
intercepting (also non-obtrusively) all the outgoing SOAP
requests. Whenever the advice for this aspect is being
executed, we know that an outgoing SOAP request is being
sent by one of the web methods in our system. More
importantly, we know that there has been an incoming

5AspectJ - http://www.eclipse.org/aspectj/
6JAX-WS - http://jax-ws.java.net/

request beforehand and thus, we have a request identifier
stored in the ThreadLocal variable. For this reason, we
simply need to replace the user-agent field with the stored
request identifier and then allow the request to flow as it
would have had otherwise.

3. CatchAllAspect.aj is a simple optional aspect that
is automatically deployed on all web service containers (.war
archives) and it offers a more fine-grained trace of the
system. Essentially, it logs all method calls for every class
contained in the web service archive. In Section IV-D we
provide a discussion of the benefit obtained from this aspect
versus what it means regarding performance.

B. Logging Trace Data

While there are many reliable tools that can be used
for logging, it was our goal to propose a lightweight
toolset that could be deployed in any Java/JAX-WS system
with little effort and without affecting possible existing
logging facilities. For this reason, we created a fourth aspect
(TomcatAspect.aj) which, as the name suggests, is meant
to be deployed on the underlying Tomcat server. This aspect
spawns an arbitrary number of separate threads whose only
purpose is to deal with logging requests. By funneling all the
logging into purposely created threads (via a LinkedBlock-
ingQueue), we ensure that our logging is non-blocking for
the execution of the actual web methods, regardless of the
underlying storage technology that is being used.

In our study, the logger threads dispatch the log requests
to a remote server via an HTTP POST request to a PHP
script which stores the data in a relational database system.

We have also found that the number of spawned threads
influences the celerity with which log requests are processed.
Fewer threads resulted in a backlog of logging requests even
after the actual SOAP requests had ceased. Eventually, the
amount of threads could change dynamically to account for
load peaks on the server, but this falls outside the scope of
this paper and will be addressed in further research.

Also relevant questions for logging are when and what to
log? These two factors will condition how much information
we can leverage out of the system and how it will impact
the overall performance in terms of CPU usage and network
bandwidth.

C. What to log?

Effectively, the question of what to log is an important
one. Logging higher amounts of trace data means being
able to obtain finer grained information about the system,
but requires more network bandwidth and storage space.
On the other hand, logging too little data might also defeat
the purpose of tracing altogether, by not providing enough
insight into the runtime behavior of the system.

In our research we attempted to log the data that seemed
necessary to obtain a global view of the system in study.
We did this without regard for the amount of bandwidth

SERG Espinha et al. – Understanding Service-Oriented Systems Using Dynamic Analysis

TUD-SERG-2011-013 3



or storage space required. Establishing a trade-off between
the amount of data obtained and real-world limitations is an
open question we would like to leave for further research.

Following is a list of concrete data our toolkit collects
from the system, and the rationale behind the relevance of
each datum.

Timestamp: Each log entry contains a temporal reference,
as defined by the party making the log request. As mentioned
in Section IV-D, this provides essential information regard-
ing execution times and network delays. More concretely, we
are able to identify network bottlenecks (i.e. certain network
links with high delay or reaching its maximum throughput)
and web methods that take too long to execute.

Web service/method signature: These two identifiers al-
low us to unequivocally match each log entry to a specific
piece of code (i.e. web method). Since different web services
can have web methods with the same name, it is also equally
important to store the name of the web service.

IP address of log-requester: Since we log different types
of events (incoming and outgoing), it could be confusing to
store different types of IP addresses (for example, do we
store the request sender’s IP or the receiver’s?). For this
reason, we decided to store the IP address of the system
that is generating the log request. This information can be
gathered on the log-server’s side thus also reducing strain
on the network.

D. When to log?

The question of when to log also influences the granularity
of the information that we want to leverage from the system
with our analysis. For our research, we established two levels
of event granularity: (1) a coarse-grained level where only
the web method calls are logged, in a black-box manner and
(2) a fine-grained level where the web methods are fully
instrumented and all method calls are logged.

Web methods only. In the more coarse-grained level we
log only the incoming and outgoing calls to web methods,
disregarding the actual code that is ran inside. This means
logging whenever a web method is invoked, but also when
the web method has finished its execution.

These two temporal references give us an important
statistical value regarding the execution times for each web
method. If a web method consistently takes too long to
return, we can then attempt to identify the culprit for the
response delay; since we log running time data for all the
web methods within our system, we can then select log
details with the same request identifier and determine which
web method is causing the bottleneck.

Still at the coarse-grained level, we refined the granularity
further by logging both the event of a client sending a
request as well as that of the web service receiving it. This
added dimension provides insight into an eventual network

congestion. Execution delays caused by the network can be
detected whenever the timestamp of an incoming request
from a server’s point of view is much greater than that
of when the client made the request. This is a factor that
only becomes relevant whenever distributed systems are
concerned, as all the communication happens over a network
which is delay-prone.

Full instrumentation. The other, more fine grained, ap-
proach is incremental and builds upon the previous approach.
It consists of logging all method calls done inside each
web method. Obviously, we expect the more fine-grained
approach to have a higher performance impact, but the trade-
off is obtaining more runtime information about the system.

For instance, with this added granularity we can determine
not only which web method is causing a bottleneck but also
which method calls within that web method are responsible
for this delay.

V. LOG ANALYSIS

No less important than collecting data, is being able to
transform it into useful information. The approach presented
in the previous sections collects runtime trace data into
a central repository but it is also important to understand
whether the objectives of our research are met.

Following is a trace as it is stored in the log server:

ID Tstamp (ns) Web method signature in/out
1 3289898871267858 {http://sam.t/}orchestrateAuto i
1 3289899175622484 t.sam.OrchWSImpl o
1 3289899203395842 {http://maths.t/}getRandom i
1 3289899223786466 t..sam.OrchWSImpl o
1 3289899225207985 {http://maths.t/}getRandom i
1 3289899255149777 t.sam.OrchWSImpl o
1 3289899256819840 {http://webservices.t/}add i
1 3289899290090600 t.sam.OrchWSImpl o
1 3289899292200837 {http://sec.tudelft/}getHash i
1 3289899341804535 t.sec.HashWSImpl o
1 3289899343719864 {http://md5.sec.t/}getHash i

Table I
TRACE SAMPLE

In Table I we have all the requests with ID #1, sorted
by their timestamp. By analyzing the table, we can deter-
mine that OrchWSImpl.orchestrateAuto() is the first SOAP
request to be placed on this trace. In turn, it places two
outgoing calls to the getRandom() web method contained
in another web service. After two random numbers are
obtained, their sum is calculated through a call to the add
web method and the result of the sum is then hashed via
the getHash web method in the HashWSImpl web service.
This last web service calculates either an MD5 or SHA1
hash, depending on the arguments it receives. In the case
at hand, we can see that the getHash web method being
executed is contained in the package t.sec.md5, thus, the
hashing algorithm used was MD5.

This table also contains information about network delays
and web method running times. For instance, calculating
the difference between the timestamps in the second and

Espinha et al. – Understanding Service-Oriented Systems Using Dynamic Analysis SERG

4 TUD-SERG-2011-013



third lines of the table (an outgoing and an incoming event,
respectively), we obtain the network delay for this request
(∼27.8ms for this particular case). On the other hand, to
obtain information about web method running times, the full
instrumented approach should be used as it provides more
granularity on the method calls.

VI. DISCUSSION & FUTURE CHALLENGES

In the introduction of this paper, we presented two main
research questions that we attempted to address. These ques-
tions help us in studying the underlying research question
of how we can enable the understanding of service-oriented
systems. To this effect and referring to RQ1, our approach
described in Section III does indeed make it possible to trace
related SOAP requests as they traverse several web methods.

For RQ2, which is addressed in Section V, we demonstrate
how the dynamic analysis approach can be used to outline
the interactions of the system. This approach still has more
to offer in its fully instrumented format but this is a topic
we would like to explore in future work.

A. Future work
This position paper describes the foundations of an ap-

proach for enabling the understanding of service-oriented
systems. With these foundations now in place we aim to
take the following steps in follow-up research:

1) Performance. As our approach adds functionality (and
thus, lines of code) to the system, a performance impact
is to be expected [9]. As performance is an important
concern for our research as we want to validate the
applicability of this approach for an eventual industrial
scenario, we aim to investigate the performance penalty
of our approach. Preliminary tests seem to show that the
performance impact is small, but we need to investigate
this further in order to be able to draw firm conclusions.

2) Creating a “dashboard”. In order to stimulate the
understanding of complex systems, we aim to provide
a visual representation of the system under study. This
so-called dashboard would enable to track requests
coming into the system and following them as they
travel through the system.

3) User study. In order to evaluate the usefulness of our
approach and the dashboard, we aim to perform a user
study (e.g, [10]), in which a number of developers use
our toolset to understand a service-oriented system.

VII. RELATED WORK

Based on the systematic literature survey in the area
of program comprehension through dynamic analysis from
Cornelissen et al. we have created a short overview of related
work [6].

Briand et al. worked on generating sequence diagrams
from distributed software systems. Their approach was cen-
tered around the Java Remote Method Invocation (RMI)
technology [11].

Edwards et al. presented an approach to perform feature
location in distributed systems [12]. Key to their approach is
that they use timings of components to determine the order
of execution.

Moe and Sandahl use dynamic analysis to understand
software systems built around the CORBA middleware plat-
form [13].

ACKNOWLEDGMENT

The authors would like to acknowledge NWO for spon-
soring this research through the Jacquard ScaleItUp project.
Also many thanks to our industrial partners Adyen and
Exact.

REFERENCES

[1] M. M. Lehman and L. A. Belady, Program Evolution:
Processes of Software Change, ser. Apic Studies In Data
Processing. Academic Press, 1985.

[2] N. Gold, C. Knight, A. Mohan, and M. Munro, “Understand-
ing service-oriented software,” IEEE Software, vol. 21, no. 2,
pp. 71–77, 2004.

[3] A. Zaidman, M. Pinzger, and A. van Deursen, “Software
evolution,” in Encyclopedia of Software Engineering, P. A.
Laplante, Ed. Taylor & Francis, 2010, pp. 1127–1137.

[4] T. A. Corbi, “Program understanding: Challenge for the
1990s,” IBM Systems Journal, vol. 28, no. 2, pp. 294–306,
1989.

[5] E. J. Chikofsky and J. H. C. II, “Reverse engineering and
design recovery: A taxonomy,” IEEE Software, vol. 7, no. 1,
pp. 13–17, 1990.

[6] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehen-
sion through dynamic analysis,” IEEE Trans. Software Eng,
vol. 35, no. 5, pp. 684–702, 2009.

[7] N. Matthijssen, A. Zaidman, M.-A. Storey, I. Bull, and
A. van Deursen, “Connecting traces: Understanding client-
server interactions in ajax applications,” in Proc. 18th Int.
Conf. on Program Comprehension (ICPC). IEEE CS, 2010,
pp. 216–225.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented pro-
gramming,” in Proc. European Conf. on Object-Oriented
Programming (ECOOP), ser. LNCS, vol. 1241. Springer,
1997, pp. 220–242.

[9] A. Zaidman and S. Demeyer, “Automatic identification of key
classes in a software system using webmining techniques,”
Journal of Software Maintenance and Evolution: Research
and Practice (JSME), vol. 20, no. 6, pp. 387–417, 2008.

[10] B. Cornelissen, A. Zaidman, and A. van Deursen, “A con-
trolled experiment for program comprehension through trace
visualization,” IEEE Trans. Software Eng., vol. 37, no. 3, pp.
341–355, 2011.

[11] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse
engineering of UML sequence diagrams for distributed Java
software,” IEEE Trans. Software Eng., vol. 32, no. 9, pp. 642–
663, 2006.

[12] D. Edwards, S. Simmons, and N. Wilde, “An approach to
feature location in distributed systems,” J. Syst. Software,
vol. 79, no. 1, pp. 457–474, 2006.

[13] J. Moe and K. Sandahl, “Using execution trace data to
improve distributed systems,” in Proc. Int. Conf. on Software
Maintenance (ICSM). IEEE CS, 2002, pp. 640–648.

SERG Espinha et al. – Understanding Service-Oriented Systems Using Dynamic Analysis

TUD-SERG-2011-013 5



Espinha et al. – Understanding Service-Oriented Systems Using Dynamic Analysis SERG

6 TUD-SERG-2011-013





TUD-SERG-2011-013
ISSN 1872-5392 SERG


