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Abstract

The fast evolution pace for cloud computing software
is on a collision course with our growing reliance
on cloud computing. On one hand, cloud software
must have the agility to evolve rapidly, in order to
remain competitive; on the other hand, more and more
critical services become dependent on the cloud and
demand high availability through firm Service Level
Agreements (SLAs) for cloud infrastructures. This race
between the needs to increase both the cloud upgrade
frequency and the service availability is unsustainable.
In this paper we highlight challenges and opportunities
for upgrades in the cloud. We survey the release
histories of several cloud applications to analyze their
evolution pace, and we discuss the shortcomings with
current cloud upgrade mechanisms. We outline several
solutions for sustaining this evolution while improving
availability, by focusing on the novel characteristics
of cloud computing. By discussing several promising
directions for realizing this vision, we propose a re-
search agenda for the future of software upgrades in
the cloud.

1. Introduction

Cloud computing is increasingly popular, owing to its
computing-as-a-utility nature, which requires no up-
front equipment cost, relieves administration burden
and provides the perception of unlimited resources.
Business applications have an incentive for moving
into the cloud, to reduce the operational and mainte-
nance costs. The cloud can also be used a platform for
scientific discovery, by allowing researchers to develop
and run massively scalable scientific applications with
little to no up-front investment.

Many critical systems depend on cloud services.
The U.S. military is equipping soldiers with access to
military-run cloud computing for “critical surveillance

and decision-making information” [1]. Educational in-
stitutions are using Facebook and Twitter notifications
to broadcast emergency alerts. Healthcare records and
patient monitoring data are moving into the cloud, e.g.,
by using Microsoft’s Amalga, a cloud-based service
for storing and accessing patient data [2], in use at
hospitals in the United States and other countries.
A recent cloud outage has emphasized our reliance
on cloud computing: on the morning of April 21,
Amazon’s Northern Virginia data center started having
connectivity and failure issues with its Elastic Block
Store (EBS), and Elastic Compute Cloud (EC2) in-
stances; while most of the problems were resolved
within 24 hours, the complete recovery took until
April 25. This outage has affected online sites such
as Foursquare, Reddit and Quora, which depend on
Amazon’s cloud [3], [4]. The root cause of the out-
age was traced to an operator error during a routine
upgrade meant to increase capacity [5].

These critical services are driving the demand for
improvements in cloud availability. Availability is the
fraction of time that a system is ready to provide
correct service and does not experience planned or
unplanned downtime. Availability can be subject to
contractual obligations; in particular, Service Level
Agreements (SLA) for business applications require
that cloud service and applications be highly available.
For example, the Google Apps for Business SLA
stipulates that applications be available 99.9% of the
time, otherwise Google is liable to compensate users
for unavailability [6]. At the same time, cloud software
tends to evolve at a rapid pace, and cloud software
upgrades must be deployed frequently to add new
features or to fix security vulnerabilities. Therefore
cloud service providers need to apply software up-
grades while sustaining service, a procedure called
online software upgrade.

Similar concerns for service availability provided
the motivating force for the initial development of

neamtiu@cs.ucr.edu
tudor_dumitras@symantec.com


online upgrade techniques, in the telecommunications
industry. For example, AT&T’s 5ESS telephone switch
was one of the first computer systems capable of up-
dating the running program on-the-fly, without service
interruptions [7]. The inclusion of these capabilities
was driven by the stringent availability requirements
of the public switched telephone network—five nines
(99.999%) of availability, i.e., less than 6 minutes of
downtime per year—because 5ESS was developed as
a part of the network infrastructure, rather than as a
stand-alone product. By comparison, Gartner estimates
that current enterprise applications with “very good
availability” allow 200 hours of planned downtime and
61 hours of unplanned downtime per year (i.e., less
than two nines of availability) [8].

Recent studies and a large body of anecdotal evi-
dence suggest that software upgrades are one of the
leading causes of such downtime. A 2007 survey of
50 system administrators from multiple countries (82%
of whom had more than five years of experience)
concluded that, on average, 8.6% of upgrades fail, in-
ducing unplanned downtime, with some administrators
reporting failure rates of up to 50% [9]. Most of these
failures can be traced back to accidentally breaking
hidden system dependencies during the upgrade [10];
moreover, software upgrades often require planned
downtime as well [11].

Industry best practices for software upgrades rec-
ommend avoiding downtime through rolling upgrades,
which upgrade and then reboot each host in a wave
rolling through the data center [10], [12]. For ex-
ample, Azure—Microsoft’s cloud service—employs
rolling upgrades by partitioning the cloud into “update
domains” and performing updates one domain at a
time (which requires shutting down and restarting the
virtual machines in each domain) [13]. Such rolling
upgrades avoid service interruptions and impose very
little capacity loss, but they are feasible only for imple-
menting changes that maintain backward compatibility.
This limitation stems from the fact that the system’s
clients can interact with either the old version or the
new version of the software during a rolling upgrade,
which requires the two versions to interact with each
other in a compatible manner. Current commercial
tools that facilitate rolling upgrades provide no way for
determining if the interactions between mixed versions
are safe and leave these concerns to the application
developers [14], [15]. In general, the behavior of
a system with mixed versions is not guaranteed to
conform to the specification of either version and is
hard to test and validate in advance [16]. Moreover, the
failures that arise from such component-wise upgrades
are not well understood, as prior research on online

upgrades focused on evaluating performance and over-
head, rather than on the upgrade dependability [10].

2. Cloud Software Evolution

Cloud computing has introduced new paradigms that
are not well integrated into the existing approaches
for software maintenance and evolution. For example,
the ability to adjust the compute and storage resources
elastically, which is one of the most distinctive features
provided by cloud infrastructures, is not fully utilized
by the current upgrade mechanisms.

Furthermore, cloud-based distributed systems ship
client-side code to users whenever they connect to the
service (e.g., through AJAX-based Web programming).
This reduces the concerns for client-side software
evolution [17], because the system is designed from
the start to be able to load new code whenever needed.
It also reduces the concern for disseminating updates
on an Internet scale [18], because the application logic
is implemented on the server side and executes inside
the service provider’s data center. This focus on the
server side is compelling for service providers because
of the need to support resource-constrained mobile
devices and because adequately testing thick clients
would require longer release cycles [19].

Conversely, frequent patches and updates are re-
quired on the server side, to introduce new features and
to fix bugs, for allowing service providers and appli-
cation developers to remain competitive. For example,
Facebook employs tight release cycles with application
updates being “pushed” (deployed) more than once a
week [20]. The release interval decreases drastically
(e.g., from days to hours) when new updates must be
developed and applied to fix security vulnerabilities.

The cloud provides three levels of abstraction:
infrastructure-as-a-service, for running custom soft-
ware stacks; platform-as-a-service, for developing
and deploying web-based applications; software-as-a-
service, for complete applications such as email and
document management:

1) Infrastructure as-a-Service (IaaS) provides ac-
cess to virtualized resources (e.g., CPUs, block
storage, key-value stores, SQL databases) and
gives customers complete flexibility to run their
own software stacks on top of these resources.
Examples of IaaS include the Amazon Web
Services—e.g., Elastic Compute Cloud (EC2),
Simple Storage Service (S3), Elastic Block Stor-
age (EBS)—and the Windows Azure Fabric.

2) Platform as-a-service (PaaS) provides a mid-
dleware service or runtime system on top of
IaaS. For example, Windows Azure AppFabric



Table 1. Evolution of cloud applications and of
their components.

Application/ Time Releases Average
component frame release

interval
(days)

Sumo Paint 6/2008–10/2010 63 13

Facebook 5/2008–12/2010 >138 <7
(platform)

Google Docs 02/2009–11/2010 >12 <51
( List API)

MediaWiki 04/2003–11/2009 116 21
(Wikipedia)

Tiki Wiki 11/2002–11/2009 43 60

Slash 11/2001–11/2009 135 22

Joomla 11/2007–11/2009 25 30

NCBI BLAST 01/1999–01/2011 33 136

Velvet 11/2007–11/2010 71 16

Memcached 07/2003–04/2010 37 68

SQLite 08/2000–02/2009 172 19

or Google App Engine provide APIs for building
customized applications, including cached data-
stores, URL fetch, multi-tenant support, compo-
nent cloning and automated migration for reduc-
ing latency.

3) Software as-a-service (SaaS) provides complete
applications that run in the cloud and that are
accessed through thin clients (e.g., in a browser).
For example, Google Apps for Business provides
organizations with cloud services for email, cal-
endar, document storage and collaboration.

To illustrate the evolution of cloud applications, we
have collected data on how software components
used at various levels (IaaS, PaaS, SaaS) change
over time. Table 1 summarizes this data. The pro-
grams we analyzed span existing cloud applications
(Sumo Paint, Facebook, Google Docs), software compo-
nents commonly used in cloud applications (MediaWiki,
Tiki Wiki, Slash, and Joomla), high-performance com-
puting applications that are transitioning to the cloud
(NCBI BLAST, Velvet), and components of the cloud
infrastructure (Memcached and SQLite). For each pro-
gram, the table presents the analyzed time frame, the
number of official releases, and the average number of
days between successive releases. As we can see, new
official versions are released every 7 to 135 days; note
that the number of releases is a lower bound, as many
patches might be pushed in-between official releases.

We now proceed to briefly describing each appli-

cation. Sumo Paint is a full-featured cloud-based photo
editing/painting application [21]; as we can see in
Table 1, Sumo Paint updates are released on average
every 13 days. According to their developer blog [20]
Facebook “pushes” new versions of their platform soft-
ware at least once a week. Google Docs is the popular
Web application from Google that allows documents
to be stored in the cloud and edited collaboratively.
Google Docs (List API) shows how frequently a subset
of the Google Docs API changes. MediaWiki, Tiki Wiki,
Slash and Joomla are wikis and content management
systems, used for online collaboration; we synthe-
sized their evolution data from Mandalapa’s work
on schema evolution [22]. NCBI BLAST [23] is a
popular genomic sequence alignment program that has
been shown to scale very well in the cloud [24].
Velvet [25] is a popular, resource-intensive genomic
sequence assembler that has recently been ported to
OpenMP and that we envision will transition into the
cloud. Memcached is a high-performance, distributed-
memory cache, used on high-traffic sites such as
YouTube, Facebook, and Wikipedia to relieve database
hot-spots by storing and delivering pre-rendered Web
content. SQLite is a server-less, zero-configuration SQL
engine [26] that is often used by cloud clients to
cache data locally. It is important to point out that
client-perceived availability depends on the availability
of the entire software stack, hence upgrade-induced
downtime to either infrastructure, platform, or service
will lead to client-perceived unavailability.

3. Challenges and Opportunities for
Cloud Upgrades

The existing techniques for upgrading software online
are not always appropriate in the cloud setting, because
they do not properly address the new interaction pat-
terns among cloud infrastructure components and they
do not take full advantage of the new mechanisms pro-
vided by the cloud. We begin by looking into the rea-
sons why upgrades cause unavailability (Section 3.1).
We analyze the shortcomings of rolling upgrades—
a technique commonly used for avoiding upgrade-
induced downtime in distributed enterprise systems—
such as their inability to support major changes to
the structure of persistent data (Section 3.1) or up-
grades to communication protocols (Section 3.3). We
also illustrate the inconsistencies introduced by rolling
upgrades in a cloud computing environment that spans
multiple administrative domains—a scenario that can
occur at many layers in the new cloud architectures
(Section 3.2). The fast evolution pace of cloud soft-
ware poses development and update-safety analysis



challenges; we show how a new approach, explicit
support for evolution in programming languages and
tools, could alleviate this development and analysis
burden (Section 3.4). We present the opportunities for
utilizing cloud-specific mechanisms, such as the elastic
allocation of resources, for providing an alternative to
rolling upgrades and for testing upgraded systems in
an environment that faithfully mirrors the deployment
setting (Section 3.5). Finally, we emphasize the need
for establishing a benchmark for the dependability of
software upgrade mechanisms, based on field-gathered
data on upgrade failures (Section 3.6).

3.1. Why Do Upgrades Cause Unavailability?

The rolling upgrade approach was developed for en-
terprise systems with fixed resources [12] and is not
well suited for cloud computing, where the resources
available to an application can be scaled up and down
on demand. For example, upgrading an infrastructure,
platform or application in place, through a rolling up-
grade, leads to a temporary performance degradation.
This degradation is due to (i) the loss of capacity
when nodes are restarted, and (ii) the overhead of the
upgrade operations, e.g., converting the persistent data
to a new schema. Such performance degradations could
lead to violations of the SLA provisions for latency
and throughput. In practice, this is often considered
an acceptable trade-off because rolling upgrades are
perceived to reduce the risks of upgrading, as failures
are localized and might not affect the entire distributed
system [15], [27].

However, rolling upgrades cannot implement certain
types of changes that require modifications to per-
sistent data structures on disk. As an example, we
study the complex schema changes that have been
necessary during Wikipedia’s upgrade history [11].
Wikipedia stores its persistent data on several MySQL
database servers, configured for master/slave replica-
tion.1 Wikipedia tries to deploy these changes through
rolling upgrades in the back end. Such a rolling
upgrade removes slave nodes one-by-one from the
replication group, applies the schema changes, and
then restarts the replication. The rolling upgrade swaps
database masters before completing the schema up-
grade, to avoid re-applying the changes through the
replication mechanism.

Online upgrades are not always feasible in the back
end; for example, a 2004 upgrade from MediaWiki

1. The master database receives the write queries and propagates
the updates to the slaves, which handle the read-only queries
that constitute the bulk of Wikipedia’s workload. In April 2009,
Wikipedia had 23 MySQL servers.
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V1.3 
V1.4 
V1.5 
V1.6 
V1.7 
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Rolling upgrade possible Downtime required 

Figure 1. Planned downtime imposed by
MediaWiki upgrades.

version 1.4 to version 1.5 required 22 hours of
planned downtime [28]. To support rolling upgrades,
the database replication mechanism must allow source
and target tables that do not have identical schemas,
and the schema changes must preserve backward com-
patibility. For example, in MySQL, a table on the
master node can have more or fewer columns than the
slave’s copy; however, dropping or renaming columns
prevents a rolling upgrade because the old application
would be unable to query the new schema during
the upgrade. Adding a new column to an existing
table, which is the most common schema change in
Wikipedia [29], is usually compatible with rolling
upgrades, except when creating columns with values
incremented automatically (this might not produce the
same ordering of rows on the master and the slave).
As illustrated in Figure 1, out of the 55 possible
upgrades among MediaWiki versions 1.1–1.11 only 5
can be executed online, through a rolling upgrade [11].
Schema evolution in other open-source server systems
shows similar trends; for example 50% of schema
changes in the Monotone version control system are
table and column deletions [30], [31].

Upgrading commercial systems can require even
more complex schema changes. Examples of changes
from Oracle’s enterprise systems include accessing
multiple rows in the source table (through a self-join),
creating a primary key from a column that allows
repeated values, and initializing new columns with
aggregate values, which are difficult to maintain incre-
mentally, in response to updates from the live work-
load (e.g., computing MAX(column) when values from
column may be deleted by the live workload) [27].
These challenges are not limited to databases, but they



also affect upgrades that modify other persistent data-
structures, such as the metadata used by distributed
file systems. For example, new versions of the GPFS
parallel file system [32] are usually deployed without
downtime, through rolling upgrades. However, when
GPFS’s inode structure was updated to 64-bit disk
sector numbers (from 32-bit), the upgrade required
unmounting the file system for changing the metadata
on disk [33].

Such levels of planned downtime are likely unac-
ceptable for cloud services with SLAs that specify
well-defined penalties for violating the availability
target. At Facebook, for example, changes to database
schemas are usually limited to adding columns and
tables, and schema inconsistencies between the appli-
cation and the database do not constitute a signifi-
cant challenge [34]. This is the result of Facebook’s
highly-connected user base. Because the friendship
connections evolve continuously and do not produce
stable clusters, the Facebook system scales better
through horizontal partitioning (e.g., by splitting users
across several databases) than vertical partitioning
(e.g., by splitting the names and addresses of users
in different database tables). This allows Facebook to
avoid the planned downtime required to implement ma-
jor schema changes. However, for other cloud comput-
ing applications, avoiding complex schema changes,
which might impose an unacceptable downtime, leads
to the preservation of database schemas that provide
sub-optimal performance and that cannot support new,
user-requested features [11].

Furthermore, we previously showed that, contrary
to conventional wisdom, rolling upgrades are prone to
failure because they place the system in a state with
mixed versions, which increases the risk of breaking
hidden dependencies during the upgrade [10]. Such
broken dependencies represent the leading cause of
unplanned downtime resulting from software upgrades.

3.2. The Many Sources of Inconsistency in
Cloud Upgrades

In addition to planned and unplanned downtime,
rolling upgrades expose the system to a type of
race condition that is specific to mixed-version states.
Such mixed-version races occur in multi-tiered sys-
tems where a consistent upgrade schedule cannot be
enforced for all the tiers. Asynchronous message ex-
changes among tiers potentially lead to a situation
where an invocation from the new version is processed
by the old version on a different tier of the application.

For example, in Web applications that use the
AJAX programming model, the client-side code,

running in the user’s browser, periodically issues
asynchronous callbacks into the server (using the
XMLHttpRequest mechanism) to request additional
data and to refresh the page. During a rolling upgrade
on the server side, the system enters a state where both
server versions (old and new) co-exist in the cloud
front-end. In this state, user interaction might cause
the browser to load the new version of the client-side
code, and callbacks issued by this code can arrive at
a front-end server that has not yet been upgraded and
that continues to run the old version of the server-
side code. If one such callback was added or modified
during the upgrade, there are two possible outcomes:
(i) the old version of the server-side code does not
know how to handle the request and returns an error
to the user; or (ii) the sever-side code does not detect a
malformed request (e.g., because the upgrade changed
the semantics of the callback, but not the API) and
causes a silent inconsistency. Such mixed-version races
occur frequently during cloud system upgrades, and
they can have a severe impact [35].

Mixed-version races can be prevented by completing
the server-side upgrade before upgrading the clients in
a multi-tiered system [36], to prevent the new version
from calling into the old version. These approaches
are infeasible in distributed systems that communicate
across multiple administrative domains, with no central
upgrade coordination. This is a common scenario for
AJAX applications, which rely on client-side code,
and for enterprise systems that lease cloud computing
resources (e.g., in an IaaS setting) or that incorporate
components executing in the cloud (e.g., in a PaaS
setting or when utilizing components from more than
one cloud provider to build a mashup application).

The effects of mixed-version races are an example
of the inconsistencies that can occur when upgrading
a cloud computing system. The safety of cloud up-
grades is threatened by many similar inconsistencies,
introduced while upgrading nodes, tiers, or data centers
that span multiple administrative domains. Figure 2
illustrates the four levels where these inconsistencies
may occur: when applications communicate across
nodes within the same tier, across datacenters, across
tiers, and across clouds.

Maintaining cross-node consistency. Section 3.1
shows that 90% of historical MediaWiki upgrades re-
quire planned downtime, because the database changes
introduced would lead to inconsistencies during an
online upgrade. A similar scenario occurs when up-
grading running memcached instances within a data-
center, as all instances assume the same internal data
representation and communication protocol. We stud-
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Figure 2. Upgrade inconsistencies can occur in four layers of cloud computing systems.

ied the evolution of memcached during the 10 months
between May 2007 and March 2008, when 14 function
signatures and 6 data types have changed [37]. These
changes may violate the assumptions of cross-node
communication during the upgrade. Upgrading one
node to the next memcached release—that implements
a different protocol and uses a different data format—
can lead to failures and inconsistencies. We presented
a solution to this problem in our prior work on safe
dynamic updates to cloud applications [38]. In this
approach, programmers mark memcached blocks of
code that must execute in a version-consistent manner
(i.e., the entire block appears to execute at the old
or new version, but not both); an update agent will
then ensure that updates preserve version consistency,
without requiring synchronization across all nodes.

Maintaining cross-datacenter consistency. En-
suring consistency is even more challenging when a
tier spans multiple data centers. For example, service
providers allow cloud applications to store data in
multiple data centers that are geographically separate,
in order to place the data closer to the users and to
provide fault isolation. Whenever the data format at
one data center is upgraded, a format incompatibility
might arise between the two data centers if the data
centers are not upgraded simultaneously.

Maintaining cross-tier consistency. The recorded
occurrences of mixed-version races [35] demonstrate

that online upgrades can lead to cross-tier inconsis-
tency scenarios. In general, multi-tier applications have
precise expectations about the types and sequences of
data objects that cross tiers; for example, these objects
must have common semantics when implemented in
JavaScript on the client, PHP on the compute tier
and SQL on the storage tier. The fast evolution pace
that characterizes cloud computing applications can
lead to divergences in semantics; this problem, known
as impedance mismatch, poses a development-time
challenge. In addition, certain inconsistencies mani-
fest only at deployment time (e.g., as in the case
of mixed-version races) and are difficult to detect
during testing. Solutions that have been proposed for
maintaining cross-tier consistency include using a sin-
gle language for all three tiers, to avoid impedance
mismatch during development [39], and forcing the
upgrade to begin at the storage tier, continue with
the compute tier, and finally the client, to avoid
deployment-time inconsistencies [36]. Another solu-
tion is to make mixed-version interaction explicit in the
implementation, which will make application upgrades
safe by construction. We develop this idea further in
Section 3.4.

Maintaining cross-cloud consistency. When appli-
cations communicate with multiple clouds, we cannot
assume that all the cloud-based components will be
updated in unison. Consider, for example, a mashup
application that aggregates components from different



providers. A change in the format of one mashup
source (as a result of an upgrade at one provider) can
lead to incompatibility with other mashup sources be-
cause their components do not yet reflect the changes.

These inconsistencies arise from the mixed-version
states created during rolling upgrades and from the
attempt to replace existing components in place. Cloud
computing provides the opportunity to avoid these
shortcomings by increasing the amount of compute and
storage resources available during the upgrade. Such
additional resources can provide a parallel universe
for installing the new version and for performing
all the operations required by the upgrade (including
the computationally-intensive data and schema conver-
sions) [10]. This solution supports complex changes to
data-intensive systems (e.g., the schema changes that
have caused planned downtime for Wikipedia [11]), by
decoupling data conversion from normal system opera-
tion, and avoids mixed-version races, by upgrading all
the application tiers atomically. By trading the resource
overhead for improvements in upgrade dependability,
this approach harnesses some of the unique features of
clouds to address challenges that are specific to cloud
computing.

3.3. The Next Upgrade of Communication
Protocols

Upgrading communication protocols online requires
changing all the endpoints without interrupting the
existing connections. This is especially challenging
for applications with long-running transactions that
cannot tolerate even brief connection interruptions.
These applications include familiar examples, such as
voice-over-IP, which share many of the characteristics
of the telecommunication systems that motivated the
initial development of online upgrade mechanisms.
However, the adoption of cloud computing enables a
new class of applications with long-running transac-
tions. For example, this paper was written with the
aid of Google Docs, an AJAX-based application that
allowed the authors to edit the content and to review
each other’s changes in real time, despite not being
physically co-located. Such collaborative applications
require a regular exchange of messages between the
server and the endpoints. The traditional approach for
upgrading such applications is to upgrade one half
of the server-side nodes, to direct new connection
requests to the new version while waiting for all the
connections to the old version to drain, and then to
upgrade the second half [7]. Generic techniques for
modifying the communication protocol on-the-fly and

for transferring the connection state to the new version
have not yet been developed; such techniques typically
rely on specific domain knowledge about the protocol’s
semantics [40], [41].

An alternative approach is to allow servers to submit
the protocol stubs to the clients and to render the
clients protocol-agnostic—as pioneered by the Jini
middleware [42]. In the past, this has allowed Orb-
itz, an airline ticketing system and one of the early
adopters of Jini technology, to perform seven major
upgrades without failure and without downtime [43].
This approach can be revisited in the context of cloud
computing. Cloud-based distributed systems are able
to send the appropriate client-side code to the users
whenever they connect to the service (e.g., through
AJAX-style programming, but other forms of code
migration might emerge in the future). For example,
the Facebook Connect and Google Friend Connect
protocols, which allow a user to share his or her social-
network identity with third party sites, implement the
entire cross-domain communication inside the user’s
browser through an HTML5 technique commonly used
in mashup applications (postMessage, which allows
exchanging primitive strings among iframes with dif-
ferent origins) [44].

3.4. Explicit Support for Evolution: An Idea
Whose Time Has Come

Making evolution a first-class language feature is a way
forward towards sustainable, correct cloud software
evolution. Forcing programmers explicitly to reason
about the presence of multiple versions (e.g., as created
by rolling upgrades) instead of fixing version incon-
sistencies introduced by upgrades, is a good first step
toward supporting the fast evolution pace of cloud soft-
ware. In particular, explicit versioning of code and data
and first-class expression of mixed-version interaction
are missing in current programming languages.

Explicit versioning of code and data. Types,
functions, database schemas should have attached ver-
sion numbers, and any evolutionary change should
clearly point out of the ways in which the new version
differs from the old version. For example, a database
change that adds attributes is backward-compatible,
but, without inspecting the table creation code for both
the old and the new version, programmers may be
unaware of this change and may fail to initialize the
new attributes correctly. If this attribute addition is
made explicit in the code that accesses the schema,
it allows programmers to reason about upgrade safety.
Note that relying on tools [29], [45] that reconstruct



evolutionary changes (i.e., differences between ver-
sions) addresses this problem only partially. Such tools
are not always able to detect non-trivial changes, e.g.,
renaming of fields/methods/functions or complicated
schema evolution operations.

First-class expression of mixed-version interaction.
When cloud compute code version N tries to access
cloud storage data version M, the repercussions of
this mixed-version interaction should be clearly docu-
mented as either forbidden, permitted with restrictions
(e.g., only access a subset of storage attributes), or
permitted without any restrictions. This would facil-
itate reasoning about the safety of rolling upgrades,
e.g., whether mixed-version races may occur, or what
happens when a compute node running at version
N tries to communicate with another compute node
running at version N±1.

Current trends in cloud software development empha-
size the need for such features. For example, Face-
book’s Gatekeeper tool for source code management
and development uses explicit in-line versioning for
the source code, rather than relying on version control
systems to manage different branches [34]. While the
goal of Gatekeeper is to decouple the deployment of
new features from their activation, a by-product is
that it facilitates the programmers’ reasoning about
the effects of two different coexisting code versions
running in the cloud. For example, while a rolling
upgrade is in progress, a node will run version N
while some other node runs version N+1; if both access
the database, having code versions N and N+1 in the
same source file will allow the programmer to reason
about breaking changes. With existing programming
language constructs, this is achieved by writing tangled
if -ladders that render the code difficult to understand.

Recent work has explored better constructs for ex-
pressing evolution. For example, UpgradeJ [46] makes
evolution a Java language feature: class names have
explicit version annotations and two new language
constructs, revises and evolves are used to either revise
the implementation of existing methods, or to evolve
existing classes with new methods and fields. However,
these constructs are not powerful enough to handle
the real-world software evolution: UpgradeJ’s mech-
anisms can support up to 65% of historical changes
to Java programs (considering the 11 applications in
the Qualitas Corpus, a collection of open-source Java
projects that span multiple releases) [47]. However,
these numbers represent a worst-case assumption, be-
cause these projects were developed without explicit
language support for evolution.

Dynamic software updating (DSU) can also be used

for online upgrades in the cloud, while requiring de-
velopers to reason about the safety of upgrades and
explicitly handle changes between releases [38]. With
DSU, programmers develop software normally, by only
focusing on one version at a time. The initial version
of an application is compiled specially into code that
accepts dynamic updates by loading a dynamic patch.
When a new version is ready, the differences between
the old and new versions are encapsulated in a dynamic
patch. An upgrade consists of loading the dynamic
patch into the old (running) program. In this approach,
a special compiler transforms existing programs into
programs that accept runtime updates, and automati-
cally generates most of the dynamic patch. Another
DSU approach, which does not require a special com-
piler, is to transfer live program state between versions
using checkpointing [48]. DSU approaches compel the
developers to reason about evolution, because they
need (i) to specify program points where updates are
permitted to ensure update safety, and (ii) to write code
that transforms program state from the representation
used by the old version into a format expected by the
new version.

3.5. The Art of Testing Cloud Systems

Software upgrades often fail and induce unplanned
downtime due to differences between the environments
in which a system is tested and deployed [9], [49].
Moreover, the tight release cycles of cloud computing
systems provide limited opportunities for testing the
new version and the intermediate steps of the upgrade.
As a result, the changes implemented through online
upgrades interact with the workload in ways that are
unpredictable, or that cannot be tested exhaustively
at design-time (e.g., mixed-version races). Reason-
ing about such runtime-emerging behavior is difficult
because previously-established system invariants do
not hold, changes are implemented by both human
and software agents, hidden dependencies in the en-
vironment can induce upgrade failures, and externally-
imposed deadlines might affect the outcome.

At the same time, the cloud provides new opportuni-
ties for testing. For example, the snapshotting features
provided by cloud storage and the record-and-replay
features of virtual infrastructures empower the soft-
ware engineers to reproduce failures accurately, or to
induce common failures in order to test new recovery
mechanisms. Moreover, the cloud’s elastic resource
allocation can be used, after the tests activities have
completed successfully, to deploy the upgraded system
in production by scaling up the test environment.
This approach prevents the upgrade failures due to



differences between testing and deployment environ-
ments [10]. A challenge for the future is to investigate
the impact of testing systems in environments that
mirror faithfully all the attributes of the deployment
environment—except for scale—in order to understand
the limitations of such cloud-specific approaches.

3.6. The Need for Upgrade Dependability
Benchmarks

Evaluations of upgrade mechanisms focus on assessing
performance or the range of updates supported, rather
than on dependability. Dependability benchmarking is
challenging because, unlike system performance, the
dependability attributes (e.g., availability, reliability)
cannot be measured directly. A benchmark able to
provide quantitative comparisons of the dependability
of multiple upgrade mechanisms must be based on
a large sample of empirical observations, in order to
ensure statistical relevance.

The lack of a standard benchmark for upgrade
dependability is the result of the scarcity of data on
upgrade failures and, more generally, on the stability
of software components in different environments. The
failures of software upgrades represent a sensitive
subject, which prevents organizations from sharing
the information required for replicating these failures
outside of the deployment environments. To make
progress in this direction, we must establish a com-
prehensive corpus of realistic faults that commonly
occur during online upgrades, collected from mul-
tiple industry sources. Similar repositories, such as
the top 25 programming errors that lead to security
vulnerabilities [50], have had a significant impact on
the practice of programming, and a benchmark for
software upgrades will likely have a positive impact
on the availability of cloud systems.

4. Conclusions

The advent of cloud computing emphasizes the impor-
tance of service availability; in fact, for an increasing
number of mission-critical applications, availability
becomes subject to contractual obligations. We present
evidence that the infrastructure that underlies, and the
applications that rely upon, cloud computing undergo a
fast-paced evolution, which mandates the introduction
of online upgrade techniques to avoid service inter-
ruptions. We also show that the current techniques for
upgrading enterprise systems online are not well suited
for the unique technical characteristics and the evolu-
tion pace of cloud computing. In particular, techniques,
such as rolling upgrades, that have been developed for

systems with fixed resources do not take full advantage
of the elastic resource-allocation capabilities of cloud
computing. These capabilities provide an alternative
to rolling upgrades and enable the testing of upgraded
systems in an environment that faithfully mirrors the
attributes of the deployment setting (except for the
scale targeted). Moreover, cloud-based systems are
able to ship client-side code to users whenever they
connect to the service, which reduces the concerns
for the evolution of clients and eliminates many of
the technical challenges for upgrading communication
protocols.

However, in a cloud environment, data and compu-
tation are distributed across multiple nodes, tiers, and
even data centers, which poses the risk of upgrade-
induced inconsistencies, at multiple levels. The fast
evolution pace of cloud software shrinks the oppor-
tunities for reasoning about, and eliminating, such
inconsistencies, because the concrete evolution steps
are often hidden from programmers and the myriad
interactions between multiple program versions make
it difficult to understand the possible states of the
system. We propose adding explicit support for evolu-
tion to programming languages and tools, to alleviate
this development and analysis burden. To be able to
assess the effectiveness of these techniques, we also
emphasize the need for establishing a benchmark for
the dependability of software upgrade mechanisms,
based on field-gathered data on upgrade failures.
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