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Abstract—In this paper, we present the Metamorphic Testing
of an in-use deep learning based forecasting application. The
application looks at the past data of system characteristics (e.g.
‘memory allocation’) to predict outages in the future. We focus on
two statistical / machine learning based components - a) detection
of co-relation between system characteristics and b) estimating
the future value of a system characteristic using an LSTM (a
deep learning architecture). In total, 19 Metamorphic Relations
have been developed and we provide proofs & algorithms where
applicable. We evaluated our method through two settings. In
the first, we executed the relations on the actual application
and uncovered 8 issues not known before. Second, we generated
hypothetical bugs, through Mutation Testing, on a reference
implementation of the LSTM based forecaster and found that
65.9% of the bugs were caught through the relations.

Index Terms—Metamorphic Testing of Deep Learning, Co-
relation co-efficient, LSTM

I. INTRODUCTION

With the recent success of machine learning (ML) based
applications (such as computer vision, speech recognition, etc),
we expect most businesses, in the near future, to use some
form of ML in their applications. However, a key problem
with ML applications is its inherent difficulty to test [1].
This difficulty arises from the fact that a) the input space is
extremely large; and b) for most inputs, it is highly non-trivial
to know the expected results.

One such ML based application, used in practice, is
an ‘Outage Predictor’ (henceforth referred to as the OP
application). This application trains a model on the past
characteristics of a system, such as ‘memory allocation’,
processor usage’, and predicts the future values of these
characteristics. An outage is predicted if the forecast for any
of these characteristics is beyond a threshold. We focus on
two components of the OP application - a) the generation
of statistical co-relation between the characteristics; and b)
forecasting the value of a system characteristic using a deep
learning based LSTM (long-short-term-memory) architecture.

Testing the OP application is extremely challenging since
the input space, which comprises of the range of real valued
features, is extremely large. For example, if the system
has a memory capacity of 128 Gb, the feature of ‘memory
usage’ can vary from 0 to 137438953472 i.e. (1.3 ∗ 1011).
Further, there are multiple other such features making the
combinations exponentially larger. Once a forecast is made
by the application, checking whether the forecast is correct,
cannot be done by hand. The current state of practice, to test
the forecasts, is to collect a large amount of validation data
and measure the deviance of the forecast from the actual
values. Such testing is grossly insufficient and can miss many
potential issues in an ML application. We detail the problems
in the current state of practice in Section V.

In this work, we investigate the application of Metamorphic
Testing to identify issues in the OP application. We have devel-
oped a set of 19 Metamorphic Relations (MRs) for the testing
of the application and we include proofs where possible.
These MRs were executed on the application and 8 previously
unknown issues were uncovered. Note that these issues were
found even though the application had completed the standard
practice of measuring the performance on validation data. To
further assess the efficacy of the MRs, we created a set of
hypothetical bugs on a reference implementation of the LSTM
based forecaster using the concept of Mutation Testing. Of the
44 bugs that were generated, the MRs were able to catch 29.
Overall, the results show the strong practical applicability of
Metamorphic Testing.

There are several pieces of novelty in our work. To the best
of our knowledge, our work is the first to develop MRs for
an LSTM based deep learning architecture. Two of the MRs
introduces new algorithms - one which evaluates the critical
hyper-parameter of how many past instances of data should be
used for training; and another which evaluates the robustness
of the LSTM forecaster using adversarial techniques. We have
also presented MRs for Pearson’s statistical co-relation co-
efficient. Further, we report results of the MRs on an in-use
application as well as the overall efficacy of the MRs on a set
of hypothetical bugs.

The paper is structured as follows. We present the Meta-
morphic Testing of the co-relation co-efficient generation
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in Section II. The MRs for the LSTM based forecaster is
presented in Section III. We present the results in Section IV
which includes the results from the in-use application and the
efficacy on the hypothetical bugs. Related work is in Section
V and we conclude in Section VI.

II. MODULE 1: CO-RELATION CO-EFFICIENT GENERATION

The co-relation co-efficient generation module of the OP
application is used to identify the set of system characteristics
that are useful to predict the target (another system charac-
teristic). For example, let the system characteristic that needs
to be forecasted be denoted as y. Let the set of all system
characteristics, be denoted as x1, x2, x3...xn. Module 1 orders
the set of characteristics x1, x2, x3...xn in decreasing order of
its ability to predict y. Using this order, the user can select
which of the system characteristics (among x1, x2, x3...xn) is
to be considered as the input for the LSTM module.

The co-relation co-efficient between an input feature x
and the target y is computed using Pearson’s co-relation co-
efficient and is shown in Equation 1. Here, the pair of data
points are represented as xi and yi. The mean of x and y are
represented as µx and µy .

rxy =

∑n
i=1(xi − µx)(yi − µy)√∑n

i=1(xi − µx)2
√∑n

i=1(yi − µy)2
(1)

We now present the set of Metamorphic Relations (MRs) to
test the implementation of Pearson’s co-relation co-efficient.

A. MR-1: bounds

The Pearson’s co-relation co-efficient, by definition, is a
value between -1 and +1. In any instance, if the co-relation
is found to be beyond these values, a bug is present. Such a
relation is said to belong to the class of Identity relations (and
Metamorphic relations generalise this notion) [2].

−1 ≤ r ≤ +1

B. MR-2: change location of features in input data

A property of the co-relation co-efficient, r, is that it is
symmetric - i.e. rxy = ryx. The symmetric property is directly
due to the commutative property of multiplication (i.e. a∗ b =
b ∗ a) as can be seen from Equation 1.

There can be multiple ways in which the location can be
changed. A good practice is to change the columns spanning
the boundaries (i.e. either the beginning or the end of the input
data columns).

C. MR-3: change location of data-points together in both
features

Another property of the co-relation co-efficient is its in-
variance to the location of pairs of data-points. For example,
a pair of data points (x1, y1) can be moved to a different
location x500, y500 and r would not change. From Equation 1,
changing the locations of the data-points does not change the
denominator as the standard deviation, σ, remains the same.

Further, since
∑

is commutative (a+b = b+a), the numerator
does not change as well.

Again, a number of variations of this relation can be tried
where the location of the data-points can be put at numerous
places. A good practice is to move the location to the boundary
cases - the start (top) and end (bottom) of the input data.

D. MR-4: duplicate values of a feature into a new feature

The maximum value of the co-relation co-efficient of +1 is
obtained when there is a perfect co-variance between the two
features. This can be achieved by introducing a new feature
whose values are an exact duplicate of another feature. This
can be easily proved by replacing y with x in Equation 1:

Proof.

rxx =

∑n
i=1(xi − µx)(xi − µx)√∑n

i=1(xi − µx)2
√∑n

i=1(xi − µx)2

=

∑n
i=1(xi − µx)2∑n
i=1(xi − µx)2

= 1

E. MR-5: multiply values of a feature by −1 and introduce as
a new feature

To obtain a perfect negative co-relation, we introduce a new
feature but negate all the values. Let x be duplicated to −x.
Then we have µ−x = −µx.

Proof.

rx−x =

∑n
i=1(xi − µx)(−xi + µx)√∑n

i=1(xi − µx)2
√∑n

i=1(−xi + µx)2

=
−1 ∗

∑n
i=1(xi − µx)(xi − µx)√∑n

i=1(xi − µx)2
√∑n

i=1(−1(xi − µx))2

=
−1 ∗

∑n
i=1(xi − µx)2∑n

i=1(xi − µx)2
= −1

F. MR-6: linear scaling of values of a feature

The co-relation co-efficient is invariant to linear scaling of
the variables x and y - i.e. if we create a new feature z = ay+b
for any constants a and b, then rxy = rxz . Because of the
scaling, we have µz = 1

n

∑i=n
i=1 ayi+ b =

1
na

∑i=n
i=1 yi+ bn =

aµy+ b. This test can be performed with multiple values of a
and b (both positive and negative 6= 0).

Proof.

rxz =

∑n
i=1(xi − µx)(ayi + b− aµy − b)√∑n

i=1(xi − µx)2
√∑n

i=1(ayi + b− aµy − b)2

=
a
∑n
i=1(xi − µx)(yi − µy)√∑n

i=1(xi − µx)2
√
a2

∑n
i=1(yi − µy)2

= rxy



G. MR-7: introduce new features such that the co-relation co-
efficient computes as 0

The following data, x = {1, 0,−1, 0} y = 0, 1, 0,−1 has
non-zero standard deviation but zero co-relation co-efficient.
This data can be used to ensure the application is able to handle
the case of 0 co-relation between features. The metamorphic
relation thus checks that the application works in similar
fashion whether the data has 0 co-relation co-efficient or not.

H. MR-8: introduce a new feature with a variance of 0

From Equation 1, it can be seen that the co-relation co-
efficient is undefined when either of the standard deviations is
zero (σx = 0 or σy = 0). To test how the application handles
this case (there should be no crash and an appropriate message
should be displayed), introduce a new feature with a constant
value (e.g. 1) as shown below.

Fig. 1: Introduce a feature with a constant value so that the
standard deviation is 0.

I. MR-9: (Best Practice) introduce a pair of new data points
that are clearly outliers.

The co-relation coefficient is significantly affected by out-
liers. For example, consider the two data sets in Figure 2:

Fig. 2: A single large outlier has changed the results from a
large co-relation (≈ 1) to no co-relation (≈ 0).

The application should remove such outliers before comput-
ing the co-relation co-efficient. To test this, introduce a new
data-point which is clearly an outlier (e.g. 1000 * max value).
The application should produce the co-relation co-efficient
which is the same without the outlier. Appropriate warnings
should also be generated.

J. MR-10: introduce missing values

This test introduces a set of missing values into the data-
points. The correlation co-efficient should be computed to the
same value with the introduction of a few missing values have
been introduced in the data.

III. MODULE 2: LSTM BASED FORECASTER

Using the output of Module-1, the user can select a set of
system characteristics to be used as the predictors to estimate
the forecast of another system characteristic (the target). The
OP application now trains a RNN (Recurrent Neural Network)
using LSTM cells (long-short-term-memory) with the values
of the predictors as the input and the values of the target as
the output.

To build the set of tests for such a system, we will briefly
describe the typical structure of the code which implements
a RNN for forecasting using LSTM cells. We have also
made a reference implementation1 using TensorFlow and a
sales forecasting data-set2. We will also use the reference
application to generate hypothetical bugs through Mutation
Testing.

a) Data processing: The training data consists of a
contiguous set of values (along the time dimension) as shown
in Figure 3. However, this data needs to be transformed into
a set of sequences and corresponding targets for the RNN to
train. An example of the data sequences and corresponding
targets is shown in Figure 4. In the figure, the values of a
variable (e.g. sales of an item) is depicted for 10 contiguous
days. The target is the value of the sales for the next 2 days.

(a) Mock training data depicting
the sales of a particular item.

(b) Mock validation data depicting
the sales of a particular item at a
different point in time.

Fig. 3: Sample training and validation data used in the refer-
ence implementation.

1https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/
sales forecasting on kaggle data.ipynb

2https://www.kaggle.com/tevecsystems/retail-sales-forecasting

https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/sales_forecasting_on_kaggle_data.ipynb
https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/sales_forecasting_on_kaggle_data.ipynb
https://www.kaggle.com/tevecsystems/retail-sales-forecasting


Fig. 4: An example of an input data sequence and correspond-
ing target.

Going forward, we will denote the number of time
steps which forms the input sequence as TIME STEPS
and the number of time steps for which forecasts
are made as NUMBER OF DAYS TO FORECAST.
In the figure above, TIME STEPS= 10 and
NUMBER OF DAYS TO FORECAST= 2. Such sequences
are created for both the training and validation data.

b) Outputs: The set of outputs that can be used to test
the application include:

• The value of the training loss after training completes
• The value of the validation loss when run on a trained

model
• The value of the forecast for the first validation input

Our tests (which we will develop below) are compatible
with any of the above outputs.

c) Stochastic Nature: The training of deep learning based
algorithms typically exhibit stochasticity - i.e. multiple runs
on the same data can lead to slightly different results. This
randomness is attributable to:

• Random initialisation of the parameters of the deep
learning algorithm

• Random shuffling of the set of training inputs
• Inherent randomness of the computation done on GPUs

[3] [4]

In Metamorphic Testing, since we compare the outputs of
multiple runs of the application, such stochastic outputs may
be a problem. To counter this, we shall record the amount
of variation in subsequent runs that the application exhibits
without the metamorphic relations. We shall then use this
default variation as a benchmark to conclude on tests executed
using the relations.

Going forward, we shall denote the variation in results,
without any MR as DefaultV ariation. As an example,
we have measured the DefaultV ariation for the reference
implementation. The train file has 750 data-points and the
validation file has 187 data-points. In Table I, the variation
of the outputs for the forecast of the first validation input and
the validation loss is shown.

TABLE I: Validation forecast and validation loss for 10 runs.
The difference is due to the inherent stochasticity of the
algorithm.

Run # forecast for first
validation sequence

validation loss

1 76.453354 0.09275999665260315
2 77.9922 0.08760423585772514
3 78.74777 0.08459033071994781
4 83.153175 0.08094570226967335
5 81.06984 0.08265132829546928
6 74.516365 0.0883125327527523
7 79.37088 0.08452051877975464
8 76.03293 0.0892107617110014
9 33.270237 0.14077940210700035

10 64.52415 0.06668609846383333

The mean value, µ, of the forecast computes to 72.5130901
and the standard deviation, σ, is 14.67463148. Assuming the
number of runs is sufficient3, the standard error computes
to se = σ√

number of runs
= 4.640525931. Thus a 95%

confidence interval would be µ − 1.96 ∗ se = 63.41765927
and µ+ 1.96 ∗ se = 81.60852093.

To interpret this - if in the outcome of any MR (which
requires re-training of the algorithm), is outside this 95%
confidence range, we can indicate a bug in the code (with
a 95% confidence).

We now present the set of Metamorphic Relations for the
computation of the forecast using an LSTM.

A. MR-1: invariance of training & validation to linear scaling
of the data.

The input training & validation data is normalised before
being passed to subsequent processing. Normalisation helps in
faster convergence of stochastic gradient descent based opti-
misation methods. While normalisation can be done in number
of different ways, the OP application uses the following:

xnormalised =
x−min(X)

max(X)−min(X)
(2)

where X denotes the vector (i.e. entire set of data) and x
denotes an individual data-point. Once, the forecasts are made,
the output is re-scaled to original range using:

xforecast = (max(X)−min(X)) ∗ xforecastnormalised +min(X)
(3)

Test 1 specifies the following. If a constant is added to
every instance of the training data & to every instance of the
validation data, the value of training loss and the value of the
validation loss will approximately be the same (i.e. the only
difference that would come is due to the default stochastic
variation). Further, the forecast for a validation input will
approximately increase by the same constant.

3recommended number of runs is 30



Proof. By adding a constant k to every value of x in Equation
2 we have:

xnormalised =
x+ k −min(X + k)

max(X + k)−min(X + k)

=
x+ k −min(X)− k

max(X) + k −min(X)− k

=
x−min(X)

max(X)−min(X)

Thus, by adding a constant, there will be no change to the
computation of the normalised values - i.e. the same training
data as before will be used for training. Thus, except for the
stochastic nature of deep learning, we expect the training loss
and the validation loss to be the same.

The addition of the constant will impact Equation 3 as
follows:

Proof.

xforecast = (max(X + k)−min(X + k)) ∗ xforecastnormalised

+min(X + k)

= (max(X)−min(X)) ∗ xforecastnormalised

+min(X) + k

Thus, by adding a constant, the forecast will increase by the
same value of the constant. This MR is visualised in Figure
5.

(a) Mock training data with a con-
stant (309) added to every data-
point.

(b) Mock validation data with
a constant (309) added to every
data-point.

Fig. 5: Adding a constant to training and validation data. We
expect the training loss and validation loss to be very similar.
The forecast for the validation data is expected to increase
approximately by the same constant.

Similarly, the training data can be subtracted by a constant,
or multiplied by a constant (the proof remains similar). For
subtraction, the training loss will remain the same (subject
to DefaultV ariation) and the forecast will reduce by the
constant. In the case of multiplication, the training loss will
remain the same (subject to DefaultV ariation) and the
forecast will be multiplied by the constant.

B. MR-2: corollary to MR-1: linear scaling of only the vali-
dation data should significantly alter the forecasts

Although, at cursory, this test may look obvious, the inten-
tion of this test is to ensure that the computation of the min
& max for the normalisation is not done on the validation
data (i.e. the min & max values should be computed from
the training data and those values should be used during
validation).

This test is specified as follows. Let the training complete
with the original training data. Now, add a large constant (e.g.
few multiples of the max value in the training data) to the
validation data. The forecast of the first validation data point
should alter significantly after removing the constant added. If,
on the other hand, the forecast is exactly the same as before,
it indicates the normalisation is using values of min & max
for normalisation from the validation data which is incorrect.
A similar test can be done by multiplying the validation data
by a constant.

C. MR-3: Test that no training data is missed during the
generation of sequences

Generating the set of sequences from the time series data
can be tricky and there is a possibility that some data is being
missed (particularly around the corner cases).

a) Case 1: Truncate the training data such
that its length is exactly TIME STEPS + NUM-
BER OF DAYS TO FORECAST (i.e. there will be just one
sequence to train on). Ensure that the model is able to train.

b) Case 2: Truncate the training data such
that its length is less than TIME STEPS +
NUMBER OF DAYS TO FORECAST. Ensure that the
model does not train and an appropriate error is given.

c) Case 3: Truncate the training data such that the
number of sequences that are generated is less than that
of BATCH SIZE (a hyper-parameter). This can be done by
making the length of training data equal to BATCH SIZE +
TIME STEPS - 1.

d) Case 4: Truncate the training data such that the
number of sequences generated is it exactly equal to
BATCH SIZE. This can be done by making the length of
training data equal to BATCH SIZE + TIME STEPS.

D. MR-4: Test that the right amount of validation data is used
for the generation of sequences

Similar to the case of creating the sequences for the training
data, here we check that the correct amount of validation data
is seen to forecast.

a) Case 1: Truncate the validation data such that
its length is exactly equal to TIME STEPS + NUM-
BER OF DAYS TO FORECAST. Ensure that the model is
able to give a prediction.

b) Case 2: Truncate the validation data to less than
TIME STEPS + NUMBER OF DAYS TO FORECAST.
Ensure the model does not give any forecast.



c) Case 3: Truncate the validation data such that the
number of sequences generated is larger than TIME STEPS
but less than the BATCH SIZE. This can be done by making
the length of validation data length equal to BATCH SIZE +
TIME STEPS - 1.

d) Case 4: Truncate the validation data such that the
number of sequences generated is exactly equal to the hyper-
parameter of BATCH SIZE. This can be done by mak-
ing the length of validation data equal to BATCH SIZE +
TIME STEPS.

E. MR-5: Check if time steps are being considered in order

If there is a possibility that the training data or the validation
data may appear out of order, ensure the application is reading
the time in ascending order.

a) Training: Shuffle the rows of the training data, includ-
ing time. Ensure post training, the validation loss & forecasts
are approximately same (i.e. subject to default variation).

b) Validation: Similar to the training data, here we
shuffle only the validation data. The results should be exactly
the same as before (note this case is not impacted by default
variation).

Both these cases check to see if the application orders the
data by time steps (assuming there is a case when the time
series data may not be naturally ordered in time).

F. MR-6: Introduce training data with a range of 0

Since the application normalises the training data where
the data is divided by range (see equation 2), we introduce
an artificial training data which has 0 range. The application
should handle such a case appropriately.

G. MR-7: Introduce validation data with a range of 0

For the original training data, make an artificial validation
data which has 0 range. Ensure the application works normally
(i.e. since the range should be computed from the training
data, this test should not impact the normal operation of the
application).

H. MR-8: Validate the value of TIME STEPS used

The hyper-parameter of TIME STEPS denotes the amount
of past data that is seen. We choose this value in such a way
so as to capture cyclic dependencies in the time series data.
However, it isn’t clear what value of the TIME STEPS should
be used. Too small a value, will prevent the network from
learning cyclic dependencies. Too large a value will reduce
the amount of training data that is used.

We have developed a method to choose the time steps. The
idea is to convert the time series data into the frequency do-
main using Fourier transforms. We then remove two frequency
bands which contain the least amount of information. From
this truncated data in the frequency domain, we re-construct
the time series data and measure the amount of data loss when
compared to original data (the data loss is computed as a
normalised L2 loss). We then plot this loss against the number
of time steps that can be considered.

A sample result of this analysis is shown in Figure 6. We
choose the TIME STEPS around the region where the plot
drastically changes its slope towards 0. The algorithm is shown
as Algorithm 1 and the code is released online 4.

Fig. 6: A plot of the number of TIME STEPS versus the loss
when the frequencies with low information in the data are
removed. We choose a TIME STEPS around the region where
the curve exhibits drastic changes in slope (around 25).

Algorithm 1: Algorithm to choose the TIME STEPS
needed.

Input: Set of Input Validation Data X
Output: Information loss versus different values of

TIME STEPS
1 Assign Loss = 0
2 for timeStep = 5 to length(X) do
3 foreach sequence, s, in X of length timeStep do
4 f= convert s into frequency domain using Fourier

Transform
5 fshift = shift f to center maximum information

in the center of the array
6 fdrop = Assign fshift[0] = 0 and

fshift[length(fshift)] = 0 // this
makes the two frequency bands
with least information equal to
0

7 finvshift = Inverse the shift operation on fdrop
8 sreconv = convert finvshift to time domain using

Inverse Fourier Transform
9 l = ||s− sreconv||22 // compute squared

L2 loss
10 Loss[timeStep] = Loss[timeStep] +

l
(number of sequences s in X)∗(timeStep)

11 end
12 end
13 Plot Loss versus the values of timeStep

I. MR-9: Validate the Robustness of the trained model

In this test we aim to check whether it is possible to generate
adversarial inputs on a model. The problem is defined as

4https://github.com/ahujaofficial/Fourier-on-Sequences

https://github.com/ahujaofficial/Fourier-on-Sequences


follows. Let Xs be a sample input (of length TIME STEPS)
which gives a forecast of ys. Now we wish to find a new input
Xp such that Xp ≈ Xs and yet its forecast yp = 2∗ys. If such
an input, Xp can be found, it implies a small change in the
input can cause a huge change in the output which typically
indicates a problem in the training process.

To generate the perturbed input Xp, we build an optimi-
sation based method similar in principle to the Carlini &
Wagner method [5]. We provide the algorithm below and the
implementation is released online5.

Algorithm 2: Algorithm to generate Adversarial inputs for
the LSTM based forecaster application

Input: Set of Input Validation Data Xs. Trained Model
h(). Number of optimisation steps G

Output: Set of Adversarial Inputs Xp such that h(Xp)
= 2 * h(Xs) and Xp ≈ Xs

1 Define auxiliary variable Xaux of the same shape of Xs

2 Xp = X2
aux // To make sure Xp is always

positive
3 ys = h(Xs)
4 yp = h(Xp)
5 for each Xs ∈Xs do
6 Xaux = Xs

7 Define Input Sequence Loss as: Li = ||Xs −Xp||22
// || ||22 is the squared L2 loss

8 Define Forecast Loss as: Lf = (ys − yp)2
9 Define Total loss as: L = Li + Lf

10 while numOfSteps < G do
11 Minimize L by varying Xaux // can use

ADAM optimiser
12 numOfSteps++
13 end
14 Add Xp to Xp

15 end
16 Output Xp

If a large number of adversarial examples are found, it
indicates the trained model is not robust.

IV. RESULTS

To measure the efficacy of the MRs and the Metamorphic
Testing approach, we have made 2 sets of tests. In the first, we
applied the MRs on the in-use OP application and captured the
issues discovered. In the second test, we introduced artificial
bugs into the reference implementation through Mutation
Testing. We then applied the MRs and measured how many
bugs were caught. We did not perform Mutation Testing on
the OP application since the code was not available with us.
Further, Mutation Testing on a reference implementation of the
co-relation co-efficient was not done, since the implementation
is quite straight forward (bordering on trivial).

5 Code here: https://github.com/anuragbms/Sales-forecasting-with-RNNs/
blob/master/generateAdversarials.ipynb

A. Results from the OP application

The OP application uses the co-relation co-efficient (Module
1) and the LSTM based forecaster (Module 2). Each of the
MRs were executed on the application by the testing team. The
results showed that 8 issues, not known earlier, were identified.

TABLE II: Results from the testing of OP application.

Module MRs that failed Number of issues
identified

1 (co-relation
co-efficient)

MR-4, MR-9, MR-10 4

2 (LSTM) MR-5, MR-8, MR-9 4

B. Results from Mutation Testing

Hypothetical bugs, in the reference implementation of the
LSTM based forecaster, were generated using the concept of
Mutation Testing [6]. Mutation Testing systematically changes
the original source file by modifying a line of code. For
example, if the a line of source code had an operator <,
Mutation Testing would create a new source file by changing
the operator to >. Such a modified source file is called as a
mutant and numerous mutants for a single source file can be
generated. Mutation testing is based on the principle that the
mutants generated represent actual errors programmers make
[6]. We used the Mutation Testing tool ‘MutPy’ [7] to generate
the mutants.

In total, 403 mutants were created for the reference im-
plementation spanning two source code files. We removed
those mutants that result in an exception, or those that change
print statements or the hyper-parameters. This resulted in 44
mutants to be valid implementation bugs6. The MRs were run
on each of the mutants and the results are shown in Table III.
Overall, 29 out of 44 mutants were caught (or 65.9%).

TABLE III: Results from the testing of the LSTM reference
implementation.

Soure file Total Number
of valid
mutants

MRs that
failed

Number of
mutants caught

Training 30 MR-1, MR-3 18

Validation 14 MR-1, MR-2,
MR-3

11

Further details on the results which tabulates the specific
mutants and MRs is available online7.

V. RELATED WORK

Machine Learning (ML) based applications have been tra-
ditionally built using the process of ‘training’ and ‘validation’.
Training includes collecting a large amount of data which
is used for the algorithm to learn its internal parameters.

6The mutants & their analysis is here: https://github.com/anuragbms/
Sales-forecasting-with-RNNs/blob/master/MetamorphicTests/relevant
mutants.xlsx

7https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/
MetamorphicTests/results.xlsx

https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/generateAdversarials.ipynb
https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/generateAdversarials.ipynb
https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/MetamorphicTests/relevant_mutants.xlsx
https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/MetamorphicTests/relevant_mutants.xlsx
https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/MetamorphicTests/relevant_mutants.xlsx
https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/MetamorphicTests/results.xlsx
https://github.com/anuragbms/Sales-forecasting-with-RNNs/blob/master/MetamorphicTests/results.xlsx


Validation uses a smaller amount of data but distinct from
the set used for training. The difference in the accuracy of the
application on the training and validation data-sets is used to
judge the performance and the problems in the application.
In the current state of the practice, this process of ‘training’
and ‘validation’ is thought to subsume the traditional role of
software testing.

However, there are various deficiencies in this standard
process of ‘training’ and ‘validation’. It is sometimes seen
that subtle implementation mistakes do not produce obvious
signals during training and validation and may go undetected
[1] [8] [9]. It is also often the case that validation data does
not represent the true data that would occur in production [10].
It is further speculated that, due to some common properties
of the training and validation data, the ML application ends
up learning statistical regularities in the data and not the
underlying semantic concepts [11]. The training data may have
problems, where certain scenarios are underrepresented or the
training algorithm may have issues where certain biases in
data may be amplified [12]. Finally, the ML algorithm may
learn to produce the correct output, but for the wrong reasons
[13].

All such issues may manifest themselves in such a way that
a ML application works well during development, but fails
spectacularly during actual use.

Thus, there has been a growing interest in the effective
testing of ML based applications. Some of the recent work
includes, measuring the invariance of image classifiers to
rotations and translations [14], changes in image character-
istics such as contrast [15] [16] [17] and introducing spurious
objects onto an image [18]. There has been investigation into
generation of adversarial inputs for an ML application where
the inputs are specifically crafted such that they cause the
application into giving a wrong output [19] [20]. Efforts have
been made to detect & mitigate instances of bias in training
data [21] and an ML algorithm [12]. Finally, interpreting the
decisions of an ML algorithm has been studied as well [13]
[22].

In this paper, we continue [1] to explore the testing of an ML
application with a focus on identifying implementation bugs.
We approach the problem through the application of Meta-
morphic Testing. Some of the existing work in Metamorphic
Testing of ML & statistical applications include the testing of
Naive-Bayes classifier [23] [24], Support Vector Machine with
a linear kernel [25] and k-nearest neighbor [23] [24]. In this
paper, we work with a statistical algorithm (Co-relation co-
efficient) and a Deep Learning based LSTM network (both
of which have not been studied earlier). Further, we also
provide results of the approach on an in-use application and
the efficacy in catching implementation bugs.

VI. CONCLUSION

In this paper, we have presented the Metamorphic Testing
of an in-use application that uses statistical analysis and a deep
learning based forecasting algorithm. In total, 19 Metamorphic
Relations have been created and proofs, where applicable, have

been presented. The efficacy of the approach was tested in
two ways. In the first, the relations were executed on the
application and 8 issues were identified. These issues were
spotted even though the application had gone through the
standard Machine Learning process of ‘train’ & ‘validate’.
In the second set of tests, hypothetical bugs were introduced
into a reference implementation of the application through
the concept of Mutation Testing. The Metamorphic Relations
were executed and the number of bugs caught were recorded.
Of 44 bugs introduced, the Metamorphic Testing approach
caught 29 (or 65.9%). Overall, the results and the application
of the approach in a practical setting showed the ability of
Metamorphic Testing to catch issues in statistical and machine
learning based applications.
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