
ar
X

iv
:2

30
9.

04
70

3v
2 

 [
cs

.G
T

] 
 1

2 
Se

p 
20

23

Task Freshness-aware Incentive Mechanism for

Vehicle Twin Migration in Vehicular Metaverses

Jinbo Wen∗, Jiawen Kang∗, Zehui Xiong†, Yang Zhang‡, Hongyang Du§, Yutao Jiao¶, Dusit Niyato§, Fellow, IEEE
∗Guangdong University of Technology, China †Singapore University of Technology and Design, Singapore
‡Nanjing University of Aeronautics and Astronautics, China §Nanyang Technological University, Singapore

¶Army Engineering University of PLA, China

Abstract—Vehicular metaverse, which is treated as the future
continuum between automotive industry and metaverse, is envi-
sioned as a blended immersive domain as the digital twins of
intelligent transportation systems. Vehicles access the vehicular
metaverses by their own Vehicle Twins (VTs) (e.g., avatars) that
resource-limited vehicles offload the tasks of building VTs to
their nearby RoadSide Units (RSUs). However, due to the limited
coverage of RSUs and the mobility of vehicles, VTs have to be
migrated from one RSU to other RSUs to ensure uninterrupted
metaverse services for users within vehicles. This process requires
the next RSUs to contribute sufficient bandwidth resources for
VT migrations under asymmetric information. To this end, in this
paper, we design an efficient incentive mechanism framework
for VT migrations. We first propose a novel metric named
Age of Migration Task (AoMT) to quantify the task freshness
of the VT migration. AoMT measures the time elapsed from
the first collected sensing data of the freshest avatar migration
task to the last successfully processed data at the next RSU. To
incentivize the contribution of bandwidth resources among the
next RSUs, we propose an AoMT-based contract model, where
the optimal contract is derived to maximize the expected utility
of the RSU that provides metaverse services. Numerical results
demonstrate the efficiency of the proposed incentive mechanism
for VT migrations.

Index Terms—Metaverse, vehicle twin, contract theory, age of
information, migration.

I. INTRODUCTION

With the gradual maturation of metaverse technologies,

implementing metaverse-like immersive experiences within

vehicles appears to be a potential future direction for vehicular

interactions [1]. Vehicular metaverse is expected to lead an

evolution of the automotive industry [2], which integrates

extended reality technologies and real-time vehicular data

seamlessly to blend physical and virtual spaces for drivers

and passengers within vehicles [3]. In [4], smart driving of

the digital twin in the metaverse was introduced. As the digital

component of vehicular metaverses, Vehicle Twins (VTs) are

large-scale and highly accurate digital replicas that cover the
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life cycle of vehicles and manage vehicular applications [4].

With the help of intra-twin communications, which refer to

interactions between VTs and vehicles [5], vehicles can access

vehicular metaverses through VTs, for example, in an avatar

manner. The VTs can be updated in virtual spaces contin-

uously by sensing data from surrounding environments [6],

including bio-data of passengers, real-time vehicle status, and

traffic data in the physical space [2], which is advantageous in

the development of vehicular metaverses that can interact and

coexist with the physical space, functioning as autonomous

and durable virtual spaces [4].

Due to the resource limitation of vehicles, it is impractical

for vehicles to build high-fidelity virtual models, which may

lead to intensive computation for resource-limited vehicles

[3]. Under such conditions, vehicles offload the large-scale

rendering tasks of building VTs to the nearby edge servers

in RoadSide Units (RSUs) for ultra-reliable and lower-latency

metaverse services. Here the RSU providing metaverse ser-

vices is called Metaverse Service Provider (MSP). Owing to

the limited coverage of RSUs, VTs with a mobile nature

have to be migrated from the current RSU (i.e., the MSP)

to others for continuous metaverse services. Hence, the task

freshness of the VT migration (i.e., the time elapsed of

completing the current VT migration task) is essential to the

provision of continuous metaverse services. To ensure the

task freshness of the VT migration, VT migrations require

enough available resources, especially bandwidth resources,

thus the destination RSUs are required to provide bandwidth

resources for VT migrations, where the destination RSUs

are called Metaverse Resource Providers (MRPs). Because

of information asymmetry, MRPs’ private information (e.g.,

channel conditions and bandwidth costs) might be not aware to

the MSP [7]. As a result, a malicious MRP may not contribute

bandwidth resources honestly to obtain more benefits without

a reasonable incentive mechanism [8], which affects the task

freshness of the VT migration.

Some efforts have been conducted for optimizing resource

allocation and efficiently processing computing-intensive tasks

of real-time rendering in vehicular metaverses [3], [9]–[11].

For example, the authors in [3] proposed a hierarchical game-

theoretic approach to investigate the sustainable and reliable

coded distributed computing scheme, which supports immer-
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Fig. 1: An AoMT-based incentive mechanism framework for VT migrations.

sive user experiences in vehicular metaverses. In [9], the

authors formulated a learning-based incentive mechanism to

evaluate and enhance VR experiences in the metaverse. In

[10], the authors proposed a quantum collective learning and

many-to-many matching game-based scheme in the metaverse

for connected and autonomous vehicles. However, the above

works ignore the VT migration problem due to the mobility of

vehicles. Thus, it is still challenging how to optimize resource

allocation for VT migrations in vehicular metaverses [4].

To address the above challenges, in this paper, since the

existing metrics like Age of Task [12] cannot measure the VT

migration delay, we first propose a novel metric named Age

of Migration Task (AoMT) based on the concept of Age of

Information (AoI). To improve VT migration efficiency, we

formulate an AoMT-based incentive mechanism with asym-

metric information. The main contributions of this paper are

summarized as follows:

• To measure precisely the task freshness of the VT mi-

gration, we propose a novel metric named AoMT for

vehicular metaverses, which can be applied to evaluate

the satisfaction of the MSP.

• To incentivize the contribution of bandwidth resources

among MRPs, we propose an AoMT-based contract

model. To the best of our knowledge, this is the first work

studying the incentive mechanism for VT migrations in

vehicular metaverses.

• We design the optimal contract which is feasible and

maximize the utility of the MSP under information asym-

metry. Numerical results demonstrate that the proposed

incentive mechanism is practical and efficient.

II. AOMT-BASED INCENTIVE MECHANISM FRAMEWORK

FOR VEHICLE TWIN MIGRATION

As shown in Fig. 1, edge-assisted remote rendering is

an important technology applied in the metaverse [13]. To

build VTs (e.g., avatars) for accessing metaverse services like

Augmented Reality (AR) navigation, occupants (i.e., users)

send service requirements to the nearby RSU (i.e., the MSP)

that can provide necessary resources (i.e., storage, caching, and

computing) for the VT construction [4]. For the convenience

of explanation, we take vehicle avatars as an example of VTs.

Then, the MSP offloads computation-intensive rendering tasks

to its proximal edge server and builds avatars to provide lower-

latency and ultra-reliable metaverse services for users [13]. To

efficiently manage avatars on RSUs, Vehicle Twin Managers

of the RSU are introduced. However, when the users travel on

the road, the current MSP cannot provide continuous services

for users outside its coverage. Thus, the avatars have to be

migrated to other RSUs. In addition, to ensure immersive

experiences for users, the MSP requires sufficient bandwidth

resources to enhance avatar migration efficiency and meets

the delay requirement of metaverse services during migration

[13]. We provide more details of the framework as follows:

• MSP: The MSP collects sensing data of users and builds

avatars to provide ultra-reliable and real-time metaverse

services for users. To ensure high-quality metaverse ser-

vices, the MSP focuses on the task freshness of the avatar

migration and requires bandwidth resources from the

destination RSUs (i.e., MRPs). After completing avatar

migrations, the MSP pays for the MRPs according to

their contributions.

• MRPs: Each MRP contributes bandwidth resources for

the MSP to achieve the avatar migration. The required

amount of bandwidth depends on the service level agree-

ments. All MRPs with private information (e.g., channel



conditions and bandwidth costs) are selfish and have the

potential to obtain more benefits because of information

asymmetry. Note that each MRP becomes the new MSP

after completing the current avatar migration.

• Users: Occupants request and obtain metaverse services

from the MSP, such as AR navigation and VR vehicu-

lar videos. After completing the avatar migration, each

vehicle establishes a connection with the MRP where

its avatar is hosted to provide metaverse services for

users, and the MRP becomes the new MSP. Note that

we consider that each vehicle has a corresponding avatar

to manage vehicular applications during migration.

• Vehicle Twin Manager: The main responsibility of the

Vehicle Twin Manager is to manage avatars on its RSU

(i.e., the MSP), including updating avatars. For instance,

when avatars experience technical issues, such as being

unable to maintain stability, the Vehicle Twin Manager

immediately informs the MSP to reconstruct avatars,

which ensures the high quality of immersive experiences

for users.

III. PROBLEM FORMULATION

To incentivize MRPs for the contribution of bandwidth

resources, we first propose a novel metric named AoMT to

quantify the task freshness of avatar migration, which can be

applied to evaluate the satisfaction of the MSP. Second, we

formulate the utility functions of both MRPs and the MSP (i.e.,

the avatar migration task publisher). We consider that there

are one MSP and a set M of M MRPs in avatar migrations,

where M = {1, . . . ,m, . . . ,M}. The MSP, which publishes

M avatar migration tasks, motivates M MRPs to contribute

bandwidth resources in avatar migrations.

A. Age of Migration Task for Avatar Migrations

AoI has been commonly used as an effective metric to

quantify information freshness at the destination. It is defined

as the time elapsed since the generation of the last successfully

received message containing updated information about its

source system, and its minimization depends on the status

update frequency [14]. However, it does not consider the data

processing procedure [15]. Recent studies like Age of Task

and Age of Processing [16] improve the AoI by taking the

data processing time into account, but they only consider the

scenarios with single-type sensing data and cannot measure

the avatar migration delay. Therefore, to quantify the task

freshness of the avatar migration, we propose a new metric

named AoMT based on the concept of AoI. Similar to [15],

AoMT is defined as the time elapsed from the first collected

sensing data of the newest avatar migration task to the last

successfully processed data at the MRP.

The time of completing an avatar migration comprises three

parts: 1) The time of collecting sensing data (e.g., traffic

conditions and vehicle locations) by the MSP (denoted as tc).

2) The time of sending the avatar data from the MSP to the

MRP (denoted as ts). 3) The time of processing received data

by the MRP (denoted as tp). For simplicity, MRPs have the

same ability to communicate with users and process data [13].

Therefore, we consider that tc and tp are the same for all

avatar migrations, respectively. We set tc + tp = T ∈ R
+ as

a constant.

It is considered that the Orthogonal Frequency Division

Multiplexing Access (OFDMA) technology is applied in the

system, which ensures that all communication channels oc-

cupied by different MRPs and the MSP are orthogonal [13],

[17]. For MRP m ∈ M, given the bandwidth bm allocated to

the MSP, the achievable information transmission rate between

the MSP and the MRP m is

γm = bm log2

(

1 +
ρsh

0
md−α

s,m

N0bm

)

, (1)

where ρs, h0
m, ds,m, α, and N0 represent the transmit power

of the MSP, the unit channel power gain, the distance between

the MSP and the MRP m, the path-loss coefficient, and the

noise power density, respectively [17], [18]. We define the

channel power gain between the MSP and the MRP m as

Gs,m = h0
md−α

s,m. Therefore, for the MRP m, the AoMT of

the avatar migration is

Am(bm) =
Dm

γm
+ T, (2)

where Dm is defined as the avatar data transmitted to the MRP

m, including the information of the system configuration,

historical running data, and real-time avatar states [19]. Note

that Am(bm) is not a convex function with respect to bm.

B. MRP Utility

The utility of MRP m is the difference between the received

monetary reward Rm and its cost Cm of participating in the

avatar migration, which is presented as

Um = Rm − Cm. (3)

Since the cost of bandwidth is from the energy consumption

of the transmitted information1, referring to [8], [20], Cm is

defined as

Cm = Cm(bm/Gs,m), (4)

where Cm(·) is used to model the bandwidth cost of MRP m,

given by

Cm(x) = amx2, (5)

where am > 0 is the bandwidth cost coefficient. Thus, the

utility of MRP m becomes

Um = Rm −
am
G2

s,m

b2m. (6)

Due to information asymmetry, the MSP is not aware of

each MRP’s exact bandwidth cost coefficient and channel

gain, but it can sort the MRPs into discrete types and use the

statistical distributions of the MRPs’ types from historical data

to optimize the expected utility of the MSP [21]. Specifically,

1Note that the transmit power is the average power of the transmit signal,
and the bandwidth reflects the spectrum of significant frequency components
allocated for the transmission of the input signal.



we divide the MRPs into different types and define the n-th

type MRP as

θn ,
G2

s,n

an
. (7)

Since an > 0 and Gs,n > 0, we have θn > 0. (7) indicates that

the larger the channel gain Gs,n between the MSP and the n-

th type MRP, or the lower the unit bandwidth cost coefficient

an, the higher the type of the MRP.

Without loss of generality, the MRPs can be classified into a

set N = {θn : 1 ≤ n ≤ N} of N types. In an ascending order,

the MRPs’ types are sorted as θ1 ≤ θ2 ≤ · · · ≤ θN . In this

definition, the higher type MRP has a better channel quality or

a lower bandwidth cost coefficient. To facilitate explanation,

the MRP with type n is called the type-n MRP. Therefore,

based on (7), the utility of the type-n MRP is rewritten as

UC
n (bn, Rn) = Rn −

b2n
θn

. (8)

C. MSP Utility

Since the large AoMT not only leads to a poor immersive

experience for users but also degrades the MSP’s satisfaction

with the avatar migration, the MSP’s satisfaction function

obtained from the type-n MRP is defined as [21]

Sn = β ln(g(bn) + 1), (9)

where β > 0 is the unit profit for the satisfaction of the MSP

and g(·) is the performance obtained from the type-n MRP,

which is defined as

g(bn) = K −An, (10)

where K is the maximum tolerant AoMT. In this paper, we

consider that K is not less than An.

Because of information asymmetry, the MSP only knows the

number of MRPs and the distribution of each type but does

not know each MRP’s private type, namely the exact number

of MRPs belonging to each type [8]. Thus, considering that

the probability of an MRP belonging to a certain type-n is

Qn, subject to
∑

n∈N
Qn = 1, the utility of the MSP is

Us(b,R) =
∑

n∈N

MQn(Sn −Rn), (11)

where b = [bn]1×N and R = [Rn]1×N denote the bandwidth

and reward vectors for all N types of MRPs, respectively.

IV. OPTIMAL CONTRACT DESIGN

In this section, we formulate the optimal contract, character-

ize its feasibility conditions, and provide an optimal solution

for the formulated contract.

Since the types of MRPs are private information that is

not visible to the MSP, a rational MRP may provide false

information maliciously and pretend to be an MRP with a

better channel condition and/or a smaller bandwidth cost to

cheat for more rewards [8]. To improve the performance of

avatar migrations under asymmetric information, the MSP uses

contract theory to effectively motivate the MRPs to contribute

bandwidth resources.

A. Contract Formulation

A contract consists of a group of bandwidth-reward pairs

(i.e., contract items) provided to the MRPs, which are designed

by the MSP to maximize the expectation of the MSP’s utility.

Each MRP selects the best contract item based on its type

to maximize its benefit. The contract item can be denoted as

Φ = {(bn, Rn), n ∈ N}, where bn is the bandwidth provided

by the type-n MRP and Rn is the reward paid to the type-n
MRP as the incentive for the corresponding contribution.

To ensure that each MRP optimally chooses the contract

item designed for its type, the following Individual Rationality

(IR) and Incentive Compatibility (IC) constraints should be

satisfied [8].

Definition 1. (Individual Rationality) The contract item that

an MRP should ensure a non-negative utility, i.e.,

UC
n (bn, Rn) = Rn −

b2n
θn

≥ 0, ∀n ∈ {1, . . . , N} . (12)

Definition 2. (Incentive Compatibility) An MRP of any type

n prefers to select the contract item (bn, Rn) designed for

its type rather than any other contract item (bj , Rj), ∀j ∈
{1, . . . , N}, and j 6= n, i.e.,

Rn −
b2n
θn

≥ Rj −
b2j
θn

, ∀n, j ∈ {1, . . . , N} , n 6= j. (13)

The IR constraints ensure the participation of MRPs and the

IC constraints ensure that each MRP chooses the contract item

designed for its specific type to obtain the highest benefits.

With the IR and IC constraints, the MSP aims to maximize

its expected utility. Therefore, the problem of maximizing the

expected utility of the MSP is formulated as

Problem 1: max
b,R

Us(b,R)

s.t. Rn −
b2n
θn

≥ 0, ∀n ∈ {1, . . . , N} ,

Rn −
b2n
θn

≥ Rj −
b2j
θn

, ∀n, j ∈ {1, . . . , N} ,

bn ≥ 0, Rn ≥ 0, θn > 0, ∀n ∈ {1, . . . , N} ,
(14)

B. Optimal Contract Solution

Since there are N IR constraints and N(N − 1) IC con-

straints in Problem 1, it is difficult to directly solve Problem

1. Therefore, we reformulate Problem 1 by the following

necessary conditions.

Lemma 1. With information asymmetry, a feasible contract

must satisfy the following conditions:

R1 −
b21
θ1

≥ 0, (15a)

Rn −
b2n
θn

≥ Rn−1 −
b2n−1

θn
, ∀n ∈ {2, . . . , N} , (15b)

Rn −
b2n
θn

≥ Rn+1 −
bn+1

θn
, ∀n ∈ {1, . . . , N − 1} , (15c)

RN ≥ RN−1 ≥ · · · ≥ R1, bN ≥ bN−1 ≥ · · · ≥ b1. (15d)



Proof. Please refer to [8].

Constraint (15a) is related to the IR constraints. Constraints

(15b), (15c), and (15d) are related to the IC constraints.

Constraints (15b) and (15c) show that the IC constraints can be

transformed into the Local Downward Incentive Compatibility

(LDIC) and the Local Upward Incentive Compatibility (LUIC)

with monotonicity, respectively [8].

Based on Lemma 1, the optimal rewards for any allocated

bandwidth can be obtained by the following Lemma 2.

Lemma 2. For a feasible set of bandwidth b satisfying b1 ≤
· · · ≤ bn ≤ · · · ≤ bN , we can obtain the optimal reward as

R⋆
n =















b21
θ1

, n = 1,

Rn−1 +
b2n
θn

−
b2n−1

θn
, n = 2, . . . , N.

(16)

Proof. Please refer to [8].

Based on the iterative method, the optimal reward in (16)

can be rewritten as

R⋆
n =

b21
θ1

+

n
∑

i=1

∆i, n ∈ N , (17)

where ∆1 = 0 and ∆i =
b2
i
−b2

i−1

θi
, ∀i ∈ {2, . . . , N}. By

substituting the optimal reward (17) into the MSP’s utility

(11), we can get the MSP’s utility with respect to b. Therefore,

Problem 1 is reformulated as

Problem 2: max
b

Us(b)

s.t. b1 ≤ · · · ≤ bN ,
(18)

where Us(b) =
∑

n∈N
Us,n =

∑

n∈N
M(QnSn− enb

2
n), and

en is given by

en =



















Qn

θn
+

(

1

θn
−

1

θn+1

) N
∑

j=n+1

Qj , 1 ≤ n < N,

QN

θN
, n = N.

(19)

Since Us is not a concave function, which cannot be solved

by the standard convex optimization tools, we propose a

greedy algorithm to design the optimal contract referring to

[21]. Motivated by the above analysis, the detailed contract

design is shown in Algorithm 1. Firstly, we can obtain

the optimal bandwidth b⋆n by using the iterative method. If

b
⋆′

cannot satisfy the monotonicity constraint, the iterative

algorithm, i.e., Bunching and Ironing algorithm [22] is adopted

to obtain the optimal solution b
⋆, which ensures that the

monotonicity constraint is satisfied. Finally, the optimal reward

R⋆
n can be calculated by (16). Note that the computational

complexity of Algorithm 1 is O(N log ( bmax−bmin

ϕ
)), which

indicates that Algorithm 1 is actually efficient.

Algorithm 1: Optimal Contract Design

Input: Basic channel parameters {ρs, h0
m, ds,m, α,N0}

and MRPs’ types {θn, 1 ≤ n ≤ N}.

Output: The optimal bandwidth b
⋆ and the optimal

reward R
⋆.

1 for n = 1, . . . , N do

2 Initialize the iteration index z = 0, the step size ϕ,

the empty vector vs,n, and the feasible range of

bandwidth [bmin, bmax], where bmin = bzn = 105.

3 while bzn < bmax do

4 Calculate Us,n(b
z
n).

5 Set vs,n(z) = Us,n(b
z
n).

6 bzn = bzn + ϕ.

7 z = z + 1.

8 Obtain the optimal bandwidth b⋆n for the type-n
MRP by using the maximum value index in vs,n.

9 Obtain the optimal bandwidth vector

b
⋆′

= {b⋆1, . . . , b
⋆
n, . . . , b

⋆
N}.

10 if b⋆
′

does not satisfy the monotonicity condition then

11 Apply Bunching and Ironing algorithm [22] to

adjust b⋆
′

and output b⋆.

12 else

13 b
⋆ = b

⋆′

.

14 for n = 1, . . . , N do

15 Calculate the optimal reward R⋆
n based on (16).

16 Obtain the optimal reward vector

R
⋆ = {R⋆

1, . . . , R
⋆
n, . . . , R

⋆
N}.

17 return {b⋆,R⋆}.

TABLE I: Key Parameters in the Simulation.

Parameters Values

Transmit power of the MSP (ρs) 23 dBm

Noise power density (N0) −174 dBm/Hz

Path-loss coefficient (α) 2

The size of avatar data transmitted to
the MRP m (Dm)

[100 MB, 200 MB]

Unit profit for the satisfaction (β) 200

Unit bandwidth cost (am) [0.0001, 0.001]

Maximum tolerant AoMT (K) 50 s

Distance between the MSP and the
MRP m (ds,m)

500 m

The sum of the time of collecting data
and processing data (T )

5 s

V. NUMERICAL RESULTS

In this section, we consider M = 10 MRPs and the type-n
follows the uniform distribution [21]. Referring to [8], [21],

[23]–[25], the main parameters are listed in Table I. Firstly, we

validate the IC and IR constraints. Then, we compare the pro-

posed incentive mechanism with other incentive mechanisms:

1) Contract theory with complete information that the chan-

nel condition and the bandwidth cost of MRPs are known

by the MSP [8].
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Fig. 2: Utilities of MRPs under different types.

2) Contract theory with social maximization [26] that the

MSP aims to maximize social welfare under information

asymmetry [27].

Figure 2 shows the feasibility (i.e., IR and IC constraints)

of the proposed scheme under information asymmetry. The

utilities of four types of MRPs are shown when they sign

different contract items. We can find that the utilities of MRPs

are increasing with the increasing types of MRPs, and the

utility of the MRP choosing the corresponding contract item is

no less than 0, which demonstrates that our designed contract

guarantees the IR conditions. Besides, each MRP selects the

contract item corresponding to its own type that achieves the

maximum utility. For example, a type-1 MRP obtains the max-

imum utility only when it chooses the contract item (b1, R1),
which is exactly designed for its type. If the type-1 MRP

selects any other contract items (bn, Rn), n ∈ {2, . . . , N},

its utility will reduce. Note that a similar phenomenon can

be observed for all other types of MRPs when they choose

the contract item designed for their corresponding types.

Therefore, the above observations validate that our designed

contract satisfies the IR and IC conditions. Based on the above

analysis, we conclude that MRPs will automatically reveal

their types to the MSP after choosing the contract item, which

means that by utilizing the proposed scheme, the MSP can

capture the MRPs’ private information and thus effectively

alleviate the impact of information asymmetry.

Figure 3 shows the utility of the MSP corresponding to

different avatar data sizes D under three incentive mecha-

nisms. From Fig. 3, we can observe that regardless of the

incentive mechanism, the utility of the MSP decreases as the

avatar data size D increases. The reason is that to meet the

delay requirement of the avatar migration, the bigger avatar

data size D indicates that the MSP requires more bandwidth

resources from MRPs and pays more rewards to them, thus

decreasing the utility of the MSP. Besides, the utility of the

MSP under the contract theory with complete information

is always greater than that under the contract theory with

asymmetric information, which indicates that the MSP obtains

fewer benefits because of information asymmetry. The reason

is that although the proposed scheme can effectively mitigate

the effects of information asymmetry by leveraging contract

theory [8], a rational MSP still has a chance to provide false

information maliciously and cheat for more rewards, which

decreases the utility of the MSP.

Figure 4 shows the sum utilities of MRPs correspond-

ing to different avatar data sizes D under three incentive

mechanisms. From Fig. 4, we can observe that as the avatar

data size D increases, the sum utilities of MRPs under the

contract theory with complete information are always 0, which

indicates that the MRP receives rewards equal to its bandwidth

cost with complete information. We can also find that the sum

utilities of MRPs increase as the avatar data size D increases

under the contract theory with asymmetric information or

the contract theory with social maximization. The reason is

that since the amount of avatar data migrated increases, the

MRPs can obtain more rewards based on the designed contract

when they contribute more bandwidth resources for avatar

migrations. Therefore, the sum utilities of MRPs increase as

the avatar data size D increases. Besides, the MRPs obtain

the optimal utilities under the contract theory with social

maximization, and the sum utilities of the MRPs under the

contract theory with asymmetric information are greater than

those under the contract theory with complete information.

VI. CONCLUSION

In this paper, we have studied VT migrations in vehicular

metaverses and formulated the incentive mechanism under

asymmetric information for avatar migrations (as an example

of VT migrations). We have proposed a novel metric named

AoMT based on the concept of AoI for vehicular metaverses

to quantify the task freshness of the avatar migration, which

can evaluate the MSP’s satisfaction. Furthermore, to improve

the efficiency of avatar migrations, we have designed an

AoMT-based contract model under information asymmetry

for incentivizing MRPs to contribute bandwidth resources.

Finally, numerical results have demonstrated the efficiency

of the proposed incentive mechanism for avatar migrations

in vehicular metaverses. In the future, we will improve the

mathematical model to adapt to the VT migration. Besides, we

may design a prototype system to evaluate our scheme and use

artificial intelligence tools like deep reinforcement learning to

enhance the solution methodology.
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