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Abstract 

Software inspections have established an impressive track record for early de-
fect detection and correction. To increase their benefits, recent research efforts 
have focused on two different areas: systematic reading techniques and defect 
content estimation techniques. While reading techniques are to provide guid-
ance for inspection participants on how to scrutinize a software artifact in a 
systematic manner, defect content estimation techniques aim at controlling 
and evaluating the inspection process by providing an estimate of the total 
number of defects in an inspected document. Although several empirical stud-
ies have been conducted to evaluate the accuracy of defect content estimation 
techniques, only few consider the reading approach as an influential factor. 

In this paper we examine the impact of two specific reading techniques - a 
scenario-based reading technique and checklist-based reading - on the accu-
racy of different defect content estimation techniques. The examination is 
based on data that were collected in a large experiment with students of the 
Vienna University of Technology. The results suggest that the choice of the 
reading technique has little impact on the accuracy of defect content estima-
tion techniques. Although more empirical work is necessary to corroborate this 
finding, it implies that practitioners can use defect content estimation tech-
niques without any consideration of their current reading technique. 
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1 Introduction  

Software organizations must deliver high quality products on time and within 
budget to remain competitive in the marketplace. However, the reliable and 
predictable development of high quality software continues to be a major 
problem, largely due to the inadequate and late removal of defects. 

One of the proposed solutions for early detection and removal of defects is 
software inspection [15] [17]. A software inspection represents a method that 
allows the detection and removal of defects immediately after software docu-
ments have been created. Since its inception in the early 1970s, the software 
inspection methodology has evolved into one of the most cost-effective meth-
ods for early defect detection and removal.  

To increase the benefits of the inspection method, recent research work has 
concentrated on systematic reading techniques and defect content estimation 
techniques. A reading technique can be defined as a series of steps or proce-
dures that help an inspector perform the defect detection activity of an inspec-
tion. In this way it supports an inspector in acquiring a deep understanding of 
the software artifact. Understanding is a major prerequisite for detecting subtle 
and/or complex defects, which often cause most of the problems if detected in 
later life cycle phases. In a sense, a reading technique can be regarded as a 
mechanism for an inspector to detect defects in the software artifact. While 
most industrial inspection implementations use either no specific reading ap-
proach (often termed ad-hoc) or checklist-based reading (CBR) during defect 
detection [15][17], researchers recently suggested more procedural scenario-
based techniques, such as defect-based or perspective-based reading, and vali-
dated them empirically [2] [19] [26]. 

Defect content estimation techniques (DCET), on the other hand, are used as a 
basis for estimating the number of remaining defects in a software document 
after an inspection. Based on this information, the inspection team can decide 
whether to re-inspect a document to ensure that it is below a pre-specified 
quality threshold, and that the inspection process itself has attained a minimal 
level of effectiveness. Several classes of DCETs have been described and em-
pirically studied: Subjective defect content estimation (SDCE) [14], Capture-
Recapture (CR) models [13][5] [23], and curve-fitting models (CF) [36]. 

SDCE requires inspection participants, such as the most experienced inspector 
to estimate the number or percentage of defects detected. Based on this esti-
mate, one can calculate the total number of defects in the document and de-
cide whether to perform a re-inspection. CR models originate from wildlife re-
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search and have been applied in biology to the estimation of the size of animal 
populations. The same models can be used in an inspection context to estimate 
the number of defects in a software document. CF models involve fitting a 
curve to the data obtained from an inspection, and using the curve for predict-
ing the total number of defects in a document.  

It becomes clear from the description that both approaches, reading tech-
niques and defect content estimation techniques, address the cost-
effectiveness of inspections from a different angle. While reading techniques 
focus on finding a maximum number of defects in the inspected document, 
DCETs help evaluate the document and inspection process quality. Hence, it 
should be beneficial to use and optimize both approaches in an inspection im-
plementation. However, some of the DCETs make assumptions that are clearly 
violated by reading techniques in general and the more procedural scenario-
based ones in particular. Thus, the effect of using a particular reading tech-
nique on the accuracy of different DCETs needs to be investigated empirically. 
After an initial investigation based on simulated inspection data [29], this paper 
examines this issue using data from inspections performed. 

This paper is organized as follows. In Section 2 we explain defect content esti-
mation techniques, reading techniques, and their combination in more detail. 
Section 3 describes the experiment in which the data were collected. Section 4 
presents a discussion of our results. Finally, Section 5 concludes the paper with 
a summary and suggestions for future work. 
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2 Background 

This section presents background information on reading techniques, defect 
content estimation approaches, and their combination. 

2.1 Reading Techniques 

In practice, most industrial inspection implementations use either no specific 
reading approach (often termed ad-hoc) or checklist-based reading (CBR) dur-
ing the defect detection activity of an inspection. Ad-hoc reading, as its name 
implies, provides no explicit advice for inspectors as to how to proceed, or 
what specifically to look for, during the reading activity. Hence, the results of 
the reading activity in terms of potential defects or problem spots are fully de-
pendent on human experience and expertise. Checklists offer stronger support 
mainly in the form of yes/no-questions that inspectors need to answer while 
reading a software document. Gilb and Graham [17] state that checklist ques-
tions interpret specified rules within a project or an organization. Although a 
checklist provides advice on what to look for in an inspection, it does not de-
scribe how to identify the necessary information and how to perform the re-
quired checks. Moreover, for CBR as well as for ad-hoc it remains unclear to 
what degree a systematic reading process was applied. 

Recently, Victor Basili [2] proposed scenario-based reading techniques. These 
techniques make use of so-called scenarios.  Scenarios are algorithmic guide-
lines for the inspector that describe how to go about finding the required in-
formation in a software document, as well as what that information should 
look like. Since these techniques offer more procedural support for the defect 
detection activity, they are more prescriptive than either the ad-hoc or the 
checklist-based technique.   

Several scenario-based reading techniques have been suggested so far [2]. 
Amongst them were defect-based reading [26], perspective-based reading [1], 
and traceability-based reading [32].  The scenario-based approach that we are 
focusing on in this paper is a combination of perspective-based reading 
(PBR)[1][19] and traceability-based reading (TBR) [32]. The idea of PBR is to use 
a multi-view approach that allows different inspection participants to adopt 
different stakeholder perspectives. The viewpoints from which to read are pri-
marily derived from the roles in the software development process. When us-
ing the PBR technique the documentation to be inspected is read, for example, 
from the perspective of the developer of the previous documents and the de-
veloper of the subsequent documents, and the tester.  The essence of the 
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traceability-based reading technique (TBR) is the tracing of information be-
tween various parts of an artifact to ensure their consistency, correctness, and 
completeness. Hence, this technique provides a well-defined, systematic set of 
checks that an inspector needs to perform.  

Since the large number of required checks usually overwhelms a single inspec-
tor, we combined the PBR and TBR technique in the following manner to re-
duce the workload. We identified various stakeholder perspectives according to 
PBR principles. For each perspective, we developed a specific scenario. The sce-
nario provides guidance for an inspector in the form of procedures for extract-
ing the information relevant for a particular stakeholder as well as procedures 
for examining the extracted information. The latter were selected from the re-
quired consistency, completeness, and correctness checks of the TBR tech-
nique. In this way, an inspector performs only those checks that are relevant 
for a particular stakeholder perspective and not all of them in a systematic 
manner.  

An inspection team, thus, consists of inspectors, each of whom has read the 
document from a different angle and has performed a particular set of checks. 
As a consequence, each inspector can make a unique contribution to the in-
spection results and little defect detection effort is duplicated. A more detailed 
description of these techniques can be found in [19] and [32]. 

2.2 Defect Content Estimation Techniques 

Defect Content Estimation Techniques aim at estimating the total number of 
defects that are contained in an inspected software artifact. Using this estimate 
and the known number of defects found in the inspection, it is possible to es-
timate the number of remaining defects in the inspected document. Based on 
this information, the inspection team can make an informed decision whether 
to re-inspect the document to reduce its defect content before passing it on to 
the next activities of the development life cycle.  

As an additional application of the defect content estimate it is possible to de-
termine the percentage of total defects found. Using this information, the 
quality of the inspection process can be determined directly after the inspec-
tion meeting. 

Several techniques have been proposed to estimate the total number of de-
fects in a document after an inspection. As shown in Figure 2, these tech-
niques can be classified as subjective and objective.  
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Figure 1:  Overview of DCETs 

In the following, each one of them is explained in more detail.  

2.2.1 Subjective Approach.  

The basic concept behind subjective estimation is to ask inspectors after an in-
spection to estimate the percentage of defects in the artifact they believe they 
have actually found or the number or percentage of defects still remaining in 
the inspected document. Using this estimate, one can calculate the total num-
ber of defects and the remaining number of defects in the inspected artifact. 
The latter is the basis for deciding whether to perform a re-inspection.  

The overall advantage of the subjective approach is its simplicity. No specific 
data except the estimate need to be collected. On the other hand, this ap-
proach relies on human judgement and the ability of the inspectors as estima-
tors. This raises issues with respect to human variation and the reliability of the 
defect content estimate. However, current evidence with professional develop-
ers indicates that subjective estimates can provide very accurate results [14]. 

In contrast to the point estimate studied in [14] we asked the inspectors in our 
study to provide three estimates of the number of remaining defects, namely 
for the most-likely value, the maximum value, and the minimum value for the 
number of remaining defects. Adding these estimates to the number of de-
fects detected resulted in a three-point estimate of the total number of de-
fects. 

The rationale for eliciting a three-point estimate was that we considered it eas-
ier for the inspectors to express the uncertainty in their estimate by providing 
an additional range, which is given by minimum, most-likely, and maximum es-
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timate, instead of forcing them to provide a single value [6]. When making the 
re-inspection decision, the magnitude of this range can give an indication of 
the risk associated with the decision. However, for this purpose the properties 
of the three-point estimate need to be investigated. Ideally, we would expect 
the maximum value to overestimate the actual number of defects, the mini-
mum value to underestimate, and the most-likely one to be quite accurate. 

2.2.2 Capture-Recapture Models.  

CR models have their origin in biology and wildlife research. In these disci-
plines, the models are used to estimate the size of an animal population based 
on incomplete samples of the animal population captured in several trapping 
occasions [23]. Since this problem is comparable to estimating the total num-
ber of defects in an inspection based on the samples of defects found by the 
inspectors, it is possible to apply these models in an inspection context. 

To illustrate the rationale behind CR models, the following example is given: 
Suppose two independent inspectors scrutinize a document for defects. The 
document has N defects and each inspector has the same probability p to de-
tect a single defect. Let n1 denote the number of defects detected by inspector 
1, n2 the number of defects detected by inspector 2, and n12 the number of 
defects detected by both inspectors (i.e., the number of defects both inspec-
tors had detected in common). 

With pNn ×=1 , pNn ×=2 , and ppNn ××=12  one can estimate the total 
number of defects N̂ in the following manner:  

12

21)()(ˆ
n

nn
ppN

pNpNN ×=
××

×××=  

In biology, this estimator is known as the Lincoln-Peterson estimator. 

Based on this rationale, different models and estimators have been suggested 
so far. They differ in the assumptions they make about the “detectability” of 
defects. For example, the model presented above assumes that the inspectors 
have the same probability of detecting defects and that all defects have the 
same probability of being detected.  

This simple model is not realistic for inspections for two reasons. First, the 
probability of detecting defects usually differs among inspectors. For example, 
more experienced inspectors have a higher probability of detecting defects 
than less experienced ones. Second, defects usually have different probabilities 
of being detected. For example, defects that are easy to detect have a higher 
probability of being detected than defects that are difficult to detect. 
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Generally, existing CR models vary in the assumptions made on the probability 
of defects being detected and the probability of the inspectors to detect de-
fects. If defects with varying probabilities of being detected are assumed, this is 
called the heterogeneity source of variation1. If inspectors with varying detec-
tion probabilities are assumed, this is called the time response source of varia-
tion. 

With these two sources of variation, there exist four different CR models, each 
of which with one or two estimators. The models with their assumptions and 
estimators are depicted in Table 1. 

Model Assumptions Estimator 
M0 Every defect has the probability p of being 

detected by every inspector. Thus, all defects 
have the same detection probability, and all 
inspectors have the same detection capability. 

Maximum Likelihood Estimator 
M0(MLE) [23] 

Maximum Likelihood Estimator  
Mt(MLE) [23] 
 

Mt Every inspector i has the probability pi of 
detecting every defect. Thus, all different 
defects have the same detection probability, 
but the inspectors have different detection 
capabilities.  

Chao’s Estimator Mt(Ch)[9] 

Jackknife Estimator Mh(JE) [8] Mh Every defect j has the probability pj of being 
detected, which is the same for every inspec-
tor. Thus, different defects can vary in their 
detection probability, but all inspectors have 
the same detection capability.  

Chao’s Estimator Mh(JE) [10] 

Mth Every defect j has the probability pj of being 
detected and every inspector i has the prob-
ability pi of detecting defects. The probability 
pij that inspector i detects defect j is com-
puted as pij = pipj. This allows for different 
detection probabilities for the different de-
fects and inspectors. 

Chao’s Estimator Mth(Ch) [11] 

Table 1:  Overview of capture-recapture models 

2.2.3 Curve-fitting Models.  

Wohlin and Runeson proposed curve-fitting models for estimating defect con-
tent [36]. The rationale of this type of model is to sort the defect data accord-
ing to a given criterion, plot the sorted defect data in a graph, and use regres-
sion techniques to fit a curve through the data points. Based on the fitted 
curve, an estimate of the total number of defects is made. The most-widely in-
vestigated approach following this procedure is the Detection Profile Method 
(DPM) [36]. 

                                                
1 These expressions have their origin in the biological domain of the CR models 
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Figure 2:  Example of the Detection Profile Method 

To apply the DPM, the defects are plotted with the defect index on the x-axis 
and the number of inspectors that detected a defect on the y-axis. The defects 
are sorted in a decreasing order with the number of inspectors as sorting crite-
rion. This results in a graph similar to the one depicted in Figure 2. The DPM 
approach assumes that the shape of the data points can be described by an 
exponential curve. Thus, an exponential curve is fitted through the data points, 
which is then used to estimate the total number of defects. In particular, the 
estimate of the total number of defects is the largest integer that results in the 
fitted curve being greater than 0.5. The rationale in selecting this value is that 
the continuous values of the exponential curve are rounded to the nearest in-
teger value. Thus, in selecting 0.5 as a threshold, one essentially searches for 
the largest defect index that one inspector should have detected. 

Based on the rationale of curve-fitting models, various alternatives to the DPM 
approach have been proposed and investigated [3] [24] [25] [30] [36]. How-
ever, in these studies the performance of the alternative CF models was overall 
found either to be inferior to the DPM approach or comparable to it. There-
fore, we decided to select only the DPM as a representative of a CF model in 
our study. 

2.3 The Combination of Reading Techniques and DCETs  

When using existing state-of-the-practice reading techniques, such as CBR, in-
spectors look for all kinds of defects in the documents. Thus, all inspectors fo-
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cus on the same set of defects. However, when following the description of a 
scenario, the inspectors target a specific set of defects. With a scenario-based 
approach, a subset of the defects in the document has, therefore, a high prob-
ability of being detected, while the remainder of the defects has a relatively 
low probability of being detected. Conversely, with CBR one would expect 
more uniformity in the detection probability of defects [19][21]. We can depict 
this in a simple case with a scenario-based and a CBR inspection team consist-
ing of two inspectors respectively in Table 2. 

 Team 1 Team 2 
 Inspector 1 Inspector 2 Inspector 3 Inspector 4 
Reading 
Technique 

Scenario A Scenario B Checklist Checklist 

Subset A PA-High PB-Low P P 
Subset B PA-Low PB-High P P 

Table 2:  Detection Probabilities for Scenario- and Checklist-based Reading. 

Table 2 represents an idealistic and simplified situation to explain the theory of 
our expectations. In practice, the situation is often complicated by the fact that 
inspection teams usually consist of more than two inspectors and that within 
the different defect subsets, some defects are easy and some are difficult to 
detect (i.e., there is further subdivision). 

The specific subset focus of a scenario-based reading technique has two impli-
cations. First, individual inspectors using a scenario need not be more effective 
than if they were using a checklist. Any effectiveness benefit of the scenario-
based reading technique should therefore become apparent on the team level. 
This line of reasoning is more elaborated upon in [21]. Second, since defect 
content estimates are often based on individual findings, the use of a scenario-
based reading technique with a specific subset focus in combination with a 
specific DCET may lead to less accurate predictions. In the following we discuss 
the consequences of these effects in more detail according to the different 
types of DCETs.  

2.3.1 Subjective Estimation 

If inspectors apply the scenario-based technique, they will only look for a spe-
cific subset of defects. Hence, their subjective estimates represent the total 
number of defects in the subset or a number of subsets rather than the total 
number of defects in the document. Hence, we expect severe underestimation 
of the true defect content and, thus, less accurate results for the scenario-
based approach compared to CBR. 
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2.3.2 Capture-Recapture Methods 

The fundamental principle behind using CR models for software inspections is 
to let several inspectors draw samples from the population of defects. Based 
on the overlap of defects amongst inspectors, one can estimate the number of 
defects remaining in a software document using a statistical estimator.  

Since the estimate is based on the overlap of defects amongst inspectors, its 
accuracy is biased when using a scenario-based reading technique. This effect 
stems from the fact that scenario-based techniques modify the defect detec-
tion probabilities of inspectors. The modification of defect detection probabili-
ties, however, directly leads to a violation of the assumptions of all CR models 
as described above. Hence, we can expect less accurate estimates if inspectors 
follow a scenario-based reading technique and lower estimates for the sce-
nario-based reading technique than for CBR [16].   

2.3.3 Curve-fitting Models 

The idea behind using CF models is to fit a curve to the data obtained from an 
inspection, and to use the curve for predicting the total number of defects in a 
document. However, it is difficult to make a prediction of the behavior of CF 
models based on theoretical considerations. 

On the one hand, one can expect that almost all defects might be found by 
more than one inspector when CBR is used. However, as discussed in [3], a 
problem of the DPM is that it tends to severely overestimate if no defect was 
found by exactly one inspector. This overestimation leads to less accurate re-
sults.  

On the other hand, with a scenario-based approach one can expect that only 
one inspector detects defects of a specific subset. This may result in a very long 
tail of the fitted curve and, thus, also in less accurate estimations.  
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3 Empirical Study  

In this section we describe the approach for collecting and analyzing the data. 

3.1 Experimental Context and Subjects 

The experiment was part of a two-semester university software development 
workshop that taught more than 200 undergraduate students on how to de-
velop a medium-sized software product. 169 students participated in the ex-
periment. The participants had a varying degree of development experience. 
While all of them knew how to develop small programs, about ten percent had 
professional experience with the development of larger systems. 

3.2 Experimental Material 

The inspected artifact was a requirements document describing a distributed 
administrative information system for managing ticket sales. The document no-
tation was text in natural language (introduction, business functions, non-
functional requirements), and graphical models (an object-oriented class model 
and class description, and a relational database model). 

The size of the document was 35 pages containing 9000 words, 6 diagrams, 
and 86 seeded defects. The defects were the ones that have been found dur-
ing the development of the requirements documents. All defects could be 
found without a need for reference to external documentation. A defect in the 
requirements document was classified as either missing, unnecessary, wrong, 
ambiguous, or inconsistent information [1]. 

The experiment primarily investigated the effects of checklist-based reading 
(CBR) and scenario-based reading techniques (SBR) for a requirements docu-
ment. The checklist was developed before the development of the require-
ments specification. To avoid any bias later on, the person responsible for the 
creation of the checklist did not participate in the development of the specifi-
cation. The checklist consisted of seven quality sections, e.g., completeness and 
testability. For each section, questions were asked that hinted on defects. Ex-
amples for questions are the following:   

− ‘Are there any business functions that lack proper description of input or 
necessary information on processing?’  
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− ‘Are there any defects with respect to the notation of data, function, or ob-
ject models?’ 

To support SBR, we tailored scenarios from the perspective-based reading 
technique (PBR) [1] [19], which originally dealt with natural language require-
ments, and scenarios from the traceability-based reading technique (TBR) [32], 
which dealt with graphical models of the Unified Modeling Language, to our 
inspection situation. The scenarios were created for the perspectives of a user, 
a designer, and a tester. The user task was to derive use cases from context in-
formation and business functions, and to check business functions and their 
constraints with data model entities and their integrity rules. The designer task 
was the construction of sequence diagrams from the business functions and 
the object model, and the consistency check of these models. The tester task 
required the development of test cases from business function input and non-
functional requirements, and involved checks of the consistency between enti-
ties and attributes of the data model and the object model. 

3.3 Experimental Design and Conduct 

The ideal of experimentation is to construct an environment in which all of the 
variation in the dependent variable is systematically related to the experi-
menter’s manipulation of one or more independent variables [33]. In this case, 
systematic variation can only attributed to the treatment effect. The dependent 
variable in our experiment is the accuracy of the various DCETs, the independ-
ent variable is the reading technique. 

Since the subjects in our experiment had varying degrees of development ex-
perience, and since our primary interest was in the inspection team results, we 
needed to ensure that the teams were relatively homogeneous. To control this 
source of variation, we used “blocking” [33] based upon the results of a pre-
test. The pretest consisted of rating students by workshop supervisors based 
on their scores for developing a small object-oriented application, and resulted 
in three student groups: Students with excellent skills, students with medium 
skills, and students with little skills.  

To ensure homogeneity, we randomly selected students from all three groups 
for one inspection team. Following this approach, we could eliminate known 
sources of discrepancy in the experience level. The teams themselves were ran-
domly assigned to the reading technique. This means that unknown sources of 
discrepancy are forced by randomization to contribute homogeneously to both 
treatments2. Within each team, each subject independently inspected the re-
quirements document using either the checklist or one of the three scenarios. 
We formed teams with a varying number of subjects, i.e., 4 to 6, so that 3 

                                                
2 In the design of the experiment, we followed the suggestion presented in [7]: Block what you can and 

randomize what you cannot! 
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teams with 4 inspectors, 11 teams with 5 inspectors, and 17 teams with 6 in-
spectors participated in the experiment.. 

The experiment itself consisted of a training session, an individual preparation, 
and a meeting phase. In the training phase the subjects were taught inspection 
methods, their assigned defect detection technique, and the experimental pro-
cedure. Moreover, the subjects performed an exercise inspection on a sample 
software requirements document to familiarize themselves with the inspection 
process and the forms. 

Throughout the individual preparation phase, each subject applied the assigned 
reading technique independently to scrutinize the document for defects. Re-
sults of this activity were a defect list and an inspection protocol, which in-
cludes estimates on the number of defects remaining in the document.  

In the meeting phase, the inspection team met to consolidate their individual 
defect lists and to create a joint team defect list.  

Inspection supervisors performed an initial data analysis: They checked the 
completeness and validity of the collected defect and effort data and tried to 
match each defect on the team defect list with a defect in the reference defect 
list, which had been provided by the inspection team. False positives were not 
considered in this study as it is assumed that the document author represented 
by the inspection supervisors would have identified and rejected those false 
positives.  

3.4 Validity Considerations 

As any empirical study, this experiment exhibits a number of threats to internal 
and external validity [27] [34].  

The primary threat to internal validity is selection. This comes from the selec-
tion of subjects and their assignments to particular treatments. In our case, we 
used blocking to ensure homogeneity among the inspection teams.  

A second threat to internal validity is process conformance. To address this is-
sue, we checked whether the subjects performed the required tasks for the 
scenario-based approach in a qualitative manner (e.g., whether they created 
the models or test cases). Under the assumption that the application of the 
scenario-based approach might not have led to “scenario-based data3”, the 
experiment still provides some value, since it examines whether different DCETs 
provide practically useful results.  

                                                
3 Scenario-based data is characterized by the fact that defect detection probabilities are clearly different for 

the various scenarios. However, this is difficult to determine in practice. 
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With respect to external validity, we took a specification from a real application 
context to deal with an inspection object that was representative of an indus-
trial development situation.  Moreover, we used inspection activities that had 
been installed in a number of professional development environments [20]. Of 
course, the subjects were students participating in a university course. As 
pointed out in the literature [12], students may not be representative of real 
developers. In our case, this can have two implications. First, participants may 
not be as effective in their defect detection activity as professional developers, 
i.e. they find fewer defects. Second, they find different (types of) defects than 
professionals. However, these effects impact all the DCETs in a similar manner. 
Hence, although our estimates may not be as accurate with students as with 
professional developers our findings are conservative with respect to the identi-
fication of the best models. Hence, our results expose some external validity.  

3.5 Data Analysis Approach  

The first step in the data analysis was the estimation of the defect content for 
each inspection team. This was performed for all DCETs presented in section 
2.2. 

The second step was the selection of a set of criteria by which the defect con-
tent estimates were compared. Two criteria have been used in the past to 
evaluate DCETs: The relative error criterion [5] [22] [35] and the relative deci-
sion accuracy criterion [14]. The relative error criterion measures the accuracy 
of the defect content estimates in terms of the relative error (RE), which is de-
fined as  

numberactual
numberactualnumberestimatedRE

_
__ −=  

 
RE allows us to distinguish between overestimation (too many defects are es-
timated, thus, a positive RE is obtained) and underestimation (too few defects 
are estimated, thus, a negative RE is obtained). To assess the performance of 
the estimators, we investigated the RE distributions generated from the set of 
RE values from all inspection teams. In doing so, we investigated the central 
tendency of the RE distribution measured as the median relative error. This 
median value can be seen as bias of the estimator. Additionally, it is also im-
portant to look at the RE variability. Variability tells us whether a large variation 
around the central tendency can be expected, e.g., whether the model pro-
duces extreme outliers. We use interquartile ranges as measure of variability. 

In a recent study the relative decision accuracy of a defect content estimate 
was used as evaluation criterion [14]. This criterion assesses the suitability of a 
DCET for making the re-inspection decision. To do so, the re-inspection deci-
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sion based on the defect content estimate is compared to the decision of never 
re-inspecting a document. 

The primary objective of this study is to investigate the accuracy of the DCET 
estimates when different reading techniques are employed. To be able to in-
vestigate this relationship in this manner, the relative error criterion was pre-
ferred over the relative decision accuracy criterion. 

To compare the RE distribution for various DCETs, boxplots were generated. 
These boxplots show the central tendency of the relative error by means of the 
median relative error and the variability around the central tendency by means 
of the interquartile range. 

In addition to the interpretation of the boxplot, statistical testing was per-
formed. Two questions were to be answered with the testing approach. The 
first one was whether there is any statistical significance between the DCETs’ 
bias for CBR and SBR. For this purpose, the Mann-Whitney Test [28] was used 
to investigate whether there is a significant difference among the DCETs’ abso-
lute bias. We use absolute values here because we do not make a distinction 
between over- and under- estimation. For this test, the following null hypothe-
sis was stated for each DCET: 

H
01
: There is no difference in the absolute bias of DCETs between CBR and SBR. 

The second question was, which of the DCETs would represent a recommend-
able DCET to be used in the investigated environment. For this purpose, a simi-
lar testing strategy as proposed in [4] was chosen. First, the CR models where 
compared to each other to investigate whether one CR model could be se-
lected as best CR model. Subsequently, the selected CR model, the curve-
fitting model (i.e., the DPM), and the subjective approach (SDCE) were com-
pared to each other for selecting the best type of DCET. 

Prior to the two steps of selecting a best CR model and selecting the best type 
of DCET, the Kruskal-Wallis test [28], a non-parametric alternative to the 
ANOVA, was performed. For this test, the following null hypothesis was stated: 

H
02
: There is no difference in the absolute bias between the considered DCETs. 

If this hypothesis can be rejected, a significant difference between the DCET 
exists and further testing takes place to identify the best one. 

To address the first issue on selecting the best CR model in this environment, 
two steps were performed. First, we determined which of the two estimators 
for model Mh and Mt should be used. This was done using the two-tailed 
Mann-Whitney U Test on the absolute bias for the 31 inspections [28].  
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Subsequently, we determined which sources of variation ought to be taken 
into account: heterogeneity, time response, or both. We would expect that, as 
more sources of variation are considered, the absolute estimation bias would 
decrease. This means that M0(MLE) is expected to perform worst, and Mth(Ch) 
is expected to perform best. For this, we use a one-tailed test. For all tests, we 
consider an alpha level of α = 0.1 as our significance level.  

In several studies, the number of inspectors has been shown to have an impact 
on the accuracy of the defect content estimate [4][22]. Specifically, a minimal 
number of three to four inspectors was recommended for the application of 
DCETs in these studies. Since all our inspection teams consisted of four or more 
inspectors, we did not consider the number of inspectors as an additional fac-
tor in the analysis. 

To address the second issue of selecting the best type of DCET in this environ-
ment, we performed a pair-wise comparison of the three DCETs using the two-
tailed Mann-Whitney U Test. 
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4 Results and Discussion  

4.1 The Difference between CBR and SBR 

The first question we investigated was: “Is there a difference in the accuracy of 
the defect content estimates when different reading techniques are used?”. To 
answer this question, the boxplots for the various DCETs are depicted in Figure 
3. It shows the relative error distribution for the considered DCETs for both 
checklist-based reading (CBR) and scenario-based reading (SBR). 
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Subjective Estimate (SDCE)
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Figure 3:  Accuracy of DCETs for CBR and SBR. 

The detailed statistics for the median relative error are shown in Table 3. 

DCET CBR-Bias SBR-Bias 
M0(MLE) -0.337 -0.349 
MH(JE) -0.174 -0.233 
MT(MLE) -0.355 -0.372 
MT(CH) -0.285 -0.349 
MH(CH) -0.215 -0.221 
MTH(CH) -0.198 -0.256 
DPM -0.302 -0.330 
SDCE(min) -0.413 -0.500 
SDCE(mlv) -0.256 -0.314 
SDCE(max) 0.006 -0.116 

Table 3: Median relative error for CBR and SBR 

According to Figure 3, there is very little difference in the bias between CBR 
and SBR estimates. The median relative error does not seem to be very differ-
ent for the two reading techniques. The concrete numbers in Table 3 confirm 
this for the median relative error. The table shows that the absolute median 
relative error is between 1% and 6% smaller for CBR than for SBR. Thus, the 
defect content estimates are more prone to underestimation with SBR than 
with CBR. For CR models, this contradicts our expectation while our expecta-
tion for curve-fitting models and SDCE was met. However, it has to be investi-
gated whether these differences are statistically significant (i.e., are not due to 
chance). 

Therefore, we performed the Mann-Whitney U Test to investigate hypothesis 
H01. The test results are depicted in Table 4. The table shows the U-value for 
each DCET. With sample sizes larger than 20, the sampling distribution rapidly 
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approaches the normal distribution. Hence, the Z-values from the normal dis-
tribution and the corresponding p-levels are given.  

DCET U Z p-level 
M0(MLE) 108.5 -0.455 0.649 
MH(JE) 94 -1.028 0.304 
MT(MLE) 109.5 -0.415 0.678 
MT(CH) 109.5 -0.415 0.678 
MTH(CH) 102 -0.716 0.477 
MH(CH) 95.5 -0.968 0.332 
DPM 110 0.395 0.693 
SDCE(mlv) 99.5 -0.810 0.418 

Table 4:  Mann-Whitney test results for the absolute median relative error (CBR vs. SBR) 

It can be seen that for all estimators the p-levels are far from the chosen α-
level of 0.1. Thus, no statistically significant difference in the absolute bias be-
tween CBR and SBR can be observed and we cannot reject H01. 

Also, when looking at the variability of the estimates in Figure 3, no difference 
between CBR and SBR can be observed. However, one observation is that 
Chao’s estimators seem to be more prone to outliers for SBR than for CBR. For 
these estimators it was shown that they could produce large outliers when few 
data (e.g., due to a small number of inspectors) are available ([5]). Thus, this 
observation might indicate that Chao’s estimators could be affected by using 
SBR. This, however, has to be investigated further. 

The practical consequence of this result is that – although, strictly speaking, 
SBR violates the assumptions of CR models – it might be possible to rely on the 
estimates nevertheless. In [31] it was investigated whether the adherence of 
the inspection to the DCETs’ assumptions had an impact on the accuracy of 
the models. However, no relationship could be determined. Possible explana-
tions for the result in [31] were either that the measures for the adherence to 
the assumptions are not appropriate, or that other factors beside the assump-
tion affect the accuracy of the defect content estimates. Our result can be seen 
as a confirmation of the latter explanation. 

4.2 Comparing DCETs 

The next question we addressed was, which DCET would have been a reason-
able choice for the environment of this study. Since in the previous section we 
concluded that the reading technique does not influence accuracy in a statisti-
cally significant manner, we did not distinguish the different reading tech-
niques.  
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Similarly to section 4.1, we first present the overall results as a boxplot. This is 
shown in Figure 4. 
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Figure 4:  The accuracy for all DCETs 

DCET Bias 
M0(MLE) -0.349 
MH(JE) -0.186 
MT(MLE) -0.372 
MT(CH) -0.302 
MH(CH) -0.221 
MTH(CH) -0.233 
DPM -0.313 
SDCE(min) -0.465 
SDCE(mlv) -0.291 
SDCE(max) -0.105 

Table 5:  Bias (median relative error) for all DCETs 

In Figure 4, the following observations can be made: 

− Overall, the DCETs tend to underestimate the actual number of defects. This 
observation is confirmed by the median relative error for the DCETs in Table 
5. The same observation was also made in previous studies [5][4][22]. The 
practical consequence of this underestimation is that a re-inspection deci-
sion based on a defect content estimate is “safe” in the sense that if the es-
timate calls for a re-inspection, a re-inspection is really necessary, since due 
to the underestimation even more defects remain in the document. 

− Those models from the CR models seem preferable that include the source 
of heterogeneity. This finding corroborates the findings made in other stud-
ies [4] [5] [22]. Especially the Mh(JE) estimator shows good properties with a 
small bias and variability. 
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− For subjective estimates (SDCE) the bias of the most-likely estimate is lower 
than the bias for the CR models Mt and M0 and comparable to the curve-
fitting model (i.e., the DPM). However, the variability is larger. We attribute 
the large variability to the lack of experience with the kind of estimation 
task. Studies with industry practitioners showed more accurate results with 
smaller variability [14]. We therefore recommend for practitioners to adhere 
to subjective estimates for making the reinspection decision if data collec-
tion for objective DCETs is not in place.4 

 
In addition to the most-likely value, we asked the inspectors for estimates of 
minimum and maximum values. As discussed in section 2.2.1, we ideally ex-
pect the maximum value to overestimate and the minimum value to underes-
timate. However, the maximum estimate is underestimating in 50% of all in-
spections. Therefore, it is not recommendable to rely on this estimate as an 
upper bound of the defect content. 

To test whether the differences are statistically significant, we follow the test-
ing strategy described in section 3.5.  

4.2.1 Statistical Testing to Select one CR Model 

 The Kruskal-Wallis test indicated that there is indeed a statistically significant 
difference (p=0.0041) between the CRs’ median relative error (bias). Therefore, 
following the testing strategy was a reasonable approach. 

4.2.1.1 Selecting one estimator per CR model 

For model Mh, two estimators are available (Mh(JE) and Mh(Ch)), also for 
Model Mt (Mt(MLE) and Mt(Ch). The first step was to determine whether for a 
specific model one estimator is favorable in terms of bias or variability. 

For both models the two available estimators are not statistically different in 
their absolute bias as shown in Table 6. According to Figure 4, the estimators 
do not differ in their variability either. Therefore, it was not possible to select 
one representative estimator per model based on these criteria. Hence, in the 
following both estimators were considered for each model. 

                                                
4 Although a reinspection decision is part of many industrial inspection implementations, it is often not 

based upon any kind of defect content estimate. Hence, we suggest the subjective approach, since it 
makes at least one decision criterion for reinspection visible to other members in the development team, 
such as quality assurance managers. 
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DCET U Z p-level 
Mh(JE) vs. Mh(Ch) 462.5 -

0.253 
0.800 

Mt(MLE) vs. Mt(Ch) 374.5 1.492 0.136 

Table 6:  Test results for models Mt and Mh 
 

4.2.1.2 Determining the most appropriate model 

Figure 7 presents the results of the statistical tests. The nodes represent the 
models and their estimators with the absolute median relative error (absolute 
bias). The edges indicate a comparison using the Mann-Whitney U Test. The p 
values for each (one-tailed) comparison are also given. 

As can be seen, the model Mh improves the mean absolute bias over M0 (Mh 
vs. M0), whereas model Mt adds no improvement to M0 (Mt vs. M0). On the 
other hand, if the time response source of variation is added to the heteroge-
neity source of variation (Mh vs. Mth), no significant improvement in the abso-
lute bias can be obtained, while adding heterogeneity to time response (Mt vs. 
Mth) does improve the absolute bias. 

This overall pattern of results suggests that the heterogeneity effect dominates 
the other sources of variation. We can therefore recommend either model Mh 
or Mth. Since between the estimators of these models no significant difference 
can be established, we select Mh(JE) as a representative for CR models, as it 
was also done in other studies5 [5][22][30]. 

Mh(JE)
|bias|=0.2442

Mh(Ch)
|bias|=0.2442

Mt(MLE)
|bias|=0.3721

Mt(Ch)
|bias|=0.3023

Mth(Ch)
|bias|=0.2558

M0(MLE)
|bias|=0.3488

p=0.4329

p=0.0382 p=0.2795 p=0.1521p=0.0099

p=0.3390 p=0.0929p=0.0045

 
Figure 5:  Test results for CR models 

                                                
5 When using multiple comparison procedures such as described in [5], there is no statistically significant dif-

ference between MH(JE)/M0(MLE) and Mt(Ch)/Mth(Ch). These test results however would not influence 
the decision to select Mh(JE) as recommended CR estimator.  
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4.2.2 Statistical Testing to Select a Type of DCET 

The next question is whether there is a significant difference between the dif-
ferent types of DCETs: subjective estimates, CR models, and CF models. To test 
whether there is a difference in the population median of these samples, 
again, a Kruskal-Wallis test was performed. A p-value of p=0.0004 indicates 
that in terms of bias there is a statistically significant difference among these 
DCETs, i.e., we could reject H

02
. 

The absolute median relative error for these three types of models is shown in 
Table 7. 

DCET Absolute median relative 
error 

Mh(JE)  0.2442 
DPM 0.3126 
SDCE(mlv) 0.3140 

Table 7:  Absolute bias for the three model types 

Performing the Mann-Whitney U Test on each of these pairs reveals the results 
in Table 8. Mh(JE) is significantly better than the other two approaches, 
whereas the curve-fitting model and the subjective approach are not signifi-
cantly different. Thus, overall the Mh(JE) seems a reasonable choice over all 
DCETs6. 

DCET U Z p-level 
Mh(JE) vs. DPM 330 2.1188 0.0341 
Mh(JE) vs. SDCE 225 -3.597 0.0003 
DPM vs. SDCE 478 0.0352 0.9719 

Table 8:  Comparison between DCETs 

It is interesting to note that the subjective approach is not significantly worse 
than the more objective curve fitting models. In fact, the subjective approach is 
quite similar to most objective DCETs with respect to the median values. The 
fact that Mh(JE) outperforms the subjective approach may be based on the lar-
ger variation of the subjective approach. The latter might be explained by the 
fact that the subjects were students and not professional developers, i.e., their 
inexperience led to large variations in their predictions. Thus, we would expect 
less variation in the estimates of professional developers. In this case, if there is 
no established inspection data collection approach for objective DCETs in place, 
subjective estimates might offer a cost-effective alternative. Some initial em-
pirical underpinning for our expectation is presented in [14].  

                                                
6 When using multiple comparison procedures such as described in [5], there is no statistically significant dif-

ference between MH(JE)/DPM and DPM/SDCE. The difference between the pair Mh(JE)/SDCE is statistically 
significant. These test results however do not impact our interpretation.  
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However, more research on SDCE is required. One question, for example, 
whether there is a difference when the inspectors provide an estimate for the 
number or percentage of defects detected or for the defects remaining in the 
document.   
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5 Conclusion 

This paper examined the combined effects of reading and defect content esti-
mation techniques for software inspections. The examination was based on 
data collected at an experiment performed at the Technical University of Vi-
enna. The main objective of the investigation was the accuracy of various 
DCETs when two different reading techniques were used for defect detection. 
The reading techniques were a scenario–based approach (i.e., a combination of 
perspective-based reading and traceability-based reading) and checklist-based 
reading.  

In contrast to our expectations we could not observe a difference in the accu-
racy of defect content estimates between the two reading techniques. These 
results allow for several conclusions. First, factors other than the reading tech-
nique are more important for the accuracy of the DCETs. These need to be 
identified and studied. Second, there is no difference in the data set although 
two reading techniques were applied. This requires analysis techniques to de-
termine the crucial characteristics of a data set, e.g., to determine whether 
scenario-based data were available.  

Although further corroborative evidence needs to be collected and replication 
is necessary, the practical consequences of this study are that practitioners can 
use DCETs independent of the reading technique used. If an objective model is 
suggested, Mh(JE) will be the most accurate estimator. Moreover, we found 
the subjective approach surprisingly accurate in comparison with the more ob-
jective DCETs. However, the estimates exhibit large variation, which may result 
from the lack of experience of our subjects. Since lack of experience is often 
not an issue in industrial environments, we therefore suggest following the 
subjective defect content estimation approach if the required data for using 
objective DCETs, is unavailable.   
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