
Empowering Software Development Environments
by Automatic Software Measurement

Bernhard Daubner
Bayreuth University

Chair of Applied Computer Science I
95440 Bayreuth, Germany

bernhard.daubner@uni-bayreuth.de

Abstract

In order to facilitate the application of software mea-
surement the gathering of software measures should be
automated as far as possible by the integration of the
software measurement process into the software devel-
opment environment. This paper suggests to tie soft-
ware measures up to the elements of a software process
model. Then we present the prototypical implementa-
tion of a tool called Metrics Builder, which allows the
definition of arbitrary software measures that can then
be used within the software development environment.

1. Motivation

Today’s software development environments (SDE)
contain a variety of information about many elements of
the software development process. Not only attributes
of the edited source code can be analyzed, but also
a lot of information about the project resources (e.g.
personnel effort, development time) and project activ-
ities (e.g. analyzing, coding, testing) is provided. Vari-
ous software measures could be applied on these pieces
of information. Besides the software measures for the
work products there exist also measures for the process
roles, the activities and the whole software development
process. A systematic overview on applicable measures
for the different elements of a software process can be
found in the books of Fenton/Pfleeger [3] or Grady [4].

But this variety is scarcely supported by current
SDE. Instead of that most SDE (e.g. Together Control-
Center) are limited to the computation of size and com-
plexity measures for the source code. And it is even less
possible for the user to combine several of the measures
provided by the SDE in order to analyse certain aspects
of the current software development process or to show

relationships between certain elements of the software
development process.

This paper wants to outline an approach, which
makes a more exhaustive use of the information pro-
vided by the SDE in order to define and analyse soft-
ware measures. Especially we want to be able to de-
fine software measures for the activities of a software
development process and to make individual process
characteristics like productivity or progress measurable.
Thereby we use a software process model in order to
define the anchor points for the software measures, a
project management tool to get information about the
structure of the actual project and a software develop-
ment environment to evaluate the software measures we
have defined on the basis of the process model.

2. The V-Modell XT process model

The V-Modell XT [2] is the standard process model
in Germany for managing government IT develop-
ment projects and describes the software development
process as a collaboration between roles that perform
activities on work products. Thereby it defines process
building blocks in order to combine those roles, activ-
ities and products that are crucial for a certain task.
Activities and products with a strong relationship to
one anothere are combined within the process build-
ing blocks to activity groups and product groups re-
spectively. Thus the process building blocks are or-
ganized hierarchically and build the modules of the V-
Modell XT.

We want to use this process model for the definition
of anchor points for the software measures. To illus-
trate this we look at the process building block Software
Development, which contains the activity groups Sys-
tem Design, System Specification and System Elements.
Three product groups with the same name are dedi-



cated to these three activity groups. Within the acvitity
group System Design the products Software Architec-
ture, Database Design and Implementation, Integration
and Testing Plan are built.

Starting from this hierarchical structure one can im-
mediately derive corresponding size and effort mea-
sures, which can be applied on several levels of abstrac-
tion on the products and activities, the product groups
and activity groups and finally on the process building
block itself.

3. The Measurement Approach

Within the software development environment the
software measures under consideration are to be eval-
uated. Therefore the evaluation software has to know
for example that the effort for a entity-relationship di-
agram created within the SDE has to be accounted for
the activity Database Design within the activity group
System Design of the process building block Software
Development. This information though can be provided
by the project management tool.

When tailoring and instantiating the software pro-
cess model for an actual software development project
one certainly has to establish a project plan in order to
assign the individual tasks to members of the project.
This information normally is managed within the work
breakdown structue (WBS) [6] where each work pack-
age has got a unique identification number (WBS code).
Thus it is possible to assign to each work product (i.e.
an entity-relationship diagram) the corresponding WBS
code that can be used by the software measurement
evaluation software to identify the work product within
the software process model. Additionally it makes
sense within a company to establish parallel to the soft-
ware process model a standard work breakdown struc-
ture in order to reuse the numbering system over all de-
velopment projects.

Measurement of project progress

One interesting area of software measurement is the
measurement of the project progress. The International
Function Point Users Group reports about two possibil-
ities to do this [5]:

• Measure progress in terms of the number of per-
centage of completed activities.

• Measure progress in terms of the number of per-
centage of completed product units.

In order to apply one of these approaches one has to
know either the complete set of activities to be done or

the total amount of work products to complete. Since
the work products are administered within the SDE we
can at least count the completed work products and the
work products under work. The hierarchical structure
of the process building blocks of the V-Modell XT to-
gether with the work breakdown structure allow it ad-
ditionally to examine the working states of the prod-
uct groups and products belonging to a certain process
building block by querying the project repository within
the configuration management system. Additionally
one can think of plausibility checks regarding the size of
these elements in order to assess the degree of process-
ing of this process building block.

Measures for process chains

The V-Modell XT defines dependencies both between
the process building blocks and between individual
work products. We want to call this sequence of process
building blocks and activities respectively a process
chain. The sequence of the activities analysing – de-
signing – coding is such a process chain for instance.

The process chains can be utilized to compare the
amount of produced work products or the expended ef-
fort between the single steps of the chains. So a dis-
proportion between a large effort for the design activity
and an exceptional small effort for the coding activity
would be remarkable. Since in this case one would be
in doubt about the completeness of this activity we gain
an additional plausibility check by means of this soft-
ware measure.

4. Vision

In order to assist the project members at the applica-
tion of software measures we want to implement a tool
which should allow to define and apply software mea-
sures. In contrast to the contemporary SDE the user
should not be limited to the off-the-shelf measures pro-
vided by the manufacturer of the SDE. The user should
instead be able to define abstract measures for certain
elements of the software development process defined
by the software process model. Such a measure for in-
stance could be the coding productivity in terms of the
average amount of source code produced at one person-
day. At run time the users then can decide on which ele-
ments within the SDE’s repository this measure should
be applied. The Metrics Builder determines from the
work breakdown structure which work products have to
be taken into account and computes the software mea-
sure.

The Metrics Builder should not only consider the
current project in order to assess the accomplished mea-



surements. Instead it should enable the user to com-
pare the current measurement results with results ob-
tained by the application of the same measures on for-
mer projects. So one can compare for instance mea-
sures like the coding productivity. Therefore we sug-
gest to use a consistent numbering system within the
work breakdown structure.

In the previous section we have introduced the appli-
cation of software measures on so called process chains.
The Metrics Builder should also support this. For that
purpose the user should be able to define and maintain
distribution ratios of effort and time spent on the activ-
ities of several projects. Such effort and time distrib-
ution ratios are reported for instance by Barry Boehm
[1]. This way the Metrics Builder can check whether
the effort and time measures of the current project fit to
this ratio scheme or not.

5. Prototypical implementation

General considerations

Currently the Metrics Builder is being implemented as
a module for the SDE Together ControlCenter 6.1 by
Borland Software Corporation. Although this prod-
uct will be discontinued in the near future it has es-
pecially for our purposes some advantages against the
Eclipse IDE: First of all Together ControlCenter already
contains a metrics framework which is passably docu-
mented. For Eclipse such a metrics plugin only exists
as a commercial (closed source) plugin. And secondly
the Eclipse IDE itself does not support UML diagrams.
For this you again have to revert to commercial plugins
like the Together Edition for Eclipse.

Current implementation status

The first prototype of the Metrics Builder uses the met-
rics framework of Together ControlCenter which is part
of Together’s Quality Assurance Module. This module
contains already more then 50 measures (Lines of Code,
Cyclomatic Complexity, Comment Ratio) implemented
by the producer of Together ControlCenter. These mea-
sures are only applicable to the source code that is
worked on within the IDE. A short documentation is
included to encourage the user to implement his own
measures.

Since Together mainly maintains the source code
and the corresponding UML diagrams of a development
project information about activities and roles have to
be acquired somewhere else. One first source of in-
formation about the people involved in the project and
their coding activities is the version control system (e.g.

Figure 1. Productivity as combined measure of
LOC and effort

CVS, Subversion or commercial products like IBM Ra-
tional ClearCase). This can be queried about who has
worked on a piece of source code and, utilizing some as-
sumptions about the programmers’ working modus, one
can estimate the effort in person-hours, that has been
spent on this source code artifact. As a more simple
first step to get this information into the Metrics Builder
the effort spent on each Java file has bin recorded in the
Java file itself as JavaDoc comment.

A more elaborated version of the Metrics Builder
will use the WBS code assigned to the software ele-
ment to look up within the project management system
the amount of working time that has been accounted for
this work package.

A first look at the program

In Figure 1 three measures for a Java project are shown.
They belong to the Cash Sales project that is shipped to-
gether with Together ControlCenter as a sample project.
The measures Lines of Code and Programming effort
in person hours have been applied on the Java package
problem_domain. Then the combined productivity
measure LOC per person-hour has been computed.

References

[1] B. W. Boehm. Software Engineering Economics. Pren-
tice-Hall, Englewood Cliffs, New Jersey, 1981.

[2] Bundesministerium des Innern (BMI). V-Modell XT,
Version 1.01, 2004. http://www.v-modell-xt.de.

[3] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rig-
orous and Practical Approach. PWS Publishing Com-
pany, Boston, Massachusetts, second edition, 1998.

[4] R. B. Grady. Practical Software Metrics For Project
Management And Process Improvement. Prentice Hall,
Englewood Cliffs, New Jersey, 1992.

[5] IFPUG, editor. IT Measurement: Practical Advice from
the Experts. Addison-Wesley, Boston, Massachusetts,
2002.

[6] H. Kerzner. Project Management — A Systems Approach
to Planning, Scheduling and Controlling. John Wiley &
Sons, New York, seventh edition, 2001.


