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Abstract—This study reports on a novel Smart-Fabric based
wireless Body Area Sensor Network for assessing psychological
and physiological work risk levels. The combination of smart-
sensing fabrics advantages, high electronic miniaturization, and
the latest machine learning enables the system to assess the risk
level of the worker. The body area sensor network includes a
smartphone, an artificial intelligence algorithm for risk assess-
ment, and a set of sensor-nodes integrated into a textile substrate
(i.e., activity detection, electrocardiogram (ECG), sweat rate,
body temperature, and textile integrated respiration sensors).
Preliminary and encouraging results are shown in terms of
physiological signals and physical activity detection.

Index Terms—Biomedical Signal Processing, Wireless Body
Area Sensor Network, Smart Textile, Work Risk Assessment,
Machine Learning, Mobile Platform.

I. INTRODUCTION

The latter decades have seen fast development and diffusion
of new technologies, which enable new ways of keeping
safe conditions in the workplace and preventing injuries and
death. Even though new typologies of risks for workers arise
continuously, the achievements in high-level miniaturization,
advanced sensors development, flexible electronics, and the
internet of things (IoT) open to innovative strategies for
preventing and mitigating the risks themselves. Recently, a
rapid increase of both flexible and wearable electronics (e.g.,
bracelets, watches) for physiological signal monitoring as well

INAIL is kindly acknowledged for supporting this study within the Sense-
Risc project ID10/2018 (Sviluppo di abiti intelligENti Sensorizzati per pre-
venzione e mitigazione di RIschi per la SiCurezza dei lavoratori).

as smart fabric capability has enabled system integration in
many different types of clothes [1], [2]. Moreover, National
Health System has highlighted how increase of workload can
lead to occupational stress [3], affecting several work aspects
such as staff turnover, job satisfaction, well-being, and the
quality of work [4]. From a physiological point of view,
stress induces a plethora of negative physiological states and
psychological responses occurring in situations where individ-
uals perceive threats on their well-being. For this reason, all
evidence-based strategies able to recognize and mitigate these
issues are crucial in the management of health in workplaces
[5]. Furthermore, combining and integrating into smart fabrics
wearable sensors and nanotechnologies, in an IoT context,
open to innovative workplace accident prevention paradigm
that focuses on the worker, his state of health, and the work-
correlated stress [6]. This manuscript proposes a new Smart-
Fabrics Wireless Body Area Sensor Network (SF-WBASN) for
risk assessment in workplaces developed within the framework
of the Italian National Funded Project Sense-Risc. The project
aims at developing new smart clothes able to prevent physical
and psychological injures of workers during their working-life
through continuous risk level assessment.
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II. SENSE-RISC SMART-FABRIC WIRELESS BODY AREA

SENSOR NETWORK(WBASN)

Sense-Risc FB-WBASN system consists of three parts: four
autonomous sensor-nodes integrated into textile support; a
mobile platform, and a machine learning algorithm running
in a cloud (i.e., online). The four sensor-nodes are the respi-
ration sensor, the ECG sensor, the sweat-rate sensor, and the
inertial platform sensors. Each sensor includes a sensitive part
connected to an electronic module for signal acquisition and
Bluetooth communication (see fig. 3). Figures 1 and 2 show
where sensor-nodes are located in the garment.

The mobile platform (i.e., smartphone), which has a central
role in the system, as it is responsible for both sensor networks
and (see fig.4) cloud management. Moreover, the online ma-
chine learning algorithm assesses the work risk level. The next
sections will describe each part of the system in more detail.

Fig. 1. Front View of the Sense-Risc SF-WBASN.

Fig. 2. Back View of the Sense-Risc SF-WBASN.

Fig. 3. Sensor board of the Sense-Risc SF-WBASN.

A. Central Platform

The Central Platform (CP) allows to use the system in
different scenarios and also provides structured data to be
correctly stored. It implements basic security rules, e.g., a
user can read and write only his/her data while other custom

Fig. 4. Basic schema of the GUI, the risk model and the Cloud platform.
The green area shows some of the information displayed in the GUI.

rules can be further customized. CP comprises a Graphical
Users Interface (GUI) and two modules (see fig.4). The GUI
shows signals in Realtime, while the two modules send data
to the cloud, receive the output of the online algorithm, and
show the risk level. Moreover, CP interrogates all sensor-
nodes following a predefined timeline and enables only the
sensor-node that are relevant in the specific work scenarios. CP
receives sensor-nodes data through the Bluetooth Low Energy
modules (BLE) notification mechanism. The platform uses an
ad-hoc protocol able to synchronize the nodes with an error
< 1 ms. Of note, the Sense-Risc SF-WBASN P has been
implemented within the Firebase platform: a web development
platform owned by Google [7]. This allows the storage of
relatively long raw signals inside a JSON-like document file
through a noSQL database (Firestore Instance). It includes a
machine learning tool (ML kit) to implement on-line custom
TensorFlow Lite models (TFLM).

B. ECG Sensor

The ECG is monitored through a wearable wireless device,
which is part of the SeisMote system (a wireless nodes
network with sensors). Each node of the SeisMote system
monitors a variety of signals: one-lead ECG, photoplethysmo-
gram, 3D accelerations, 3D rotations (from gyroscope) (see
fig. 5). The nodes can be directly positioned on the body by
adhesive tapes, elastic straps, clips, or integrated into smart
garments. During monitoring, data can be locally stored in the
an internal memory card, or transmitted wireless to a computer
for real-time visualization and analysis. The integration of one
node of the SeisMote platform into the Sense-Risc WBASN
for the ECG collection is foreseen for the SenseRisc project.
ECG will be acquired at 200 Hz on 16 bits of accuracy, and
the node will transmit data to the BAN receiver by the BLE
protocol [8].

C. Respiration Sensor

Textile-conductive strain sensors are used to monitor res-
piratory activity. The sensing mechanism of these conductive
sensors relies on the inherent design of the yarns. The ap-
plication of a strain causes the rearrangement of the contact
points between adjacent loops and a consequent variation of
the electrical resistance. The relative change of the electrical
resistance ( ∆R

R0
)is proportional to the applied strain (ε). The

respiration sensors can be directly printed on the shirt itself
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Fig. 5. The SeisMote system.

by a screen printing technique. The front-end electronics trans-
forms sensor resistance variations in voltage outputs, which
are either stored in a local memory or wirelessly streamed
to a computer for real- time visualization and analysis. In
Sense-Risc project, four sensors will be applied to thorax and
abdomen for recording the respiratory activity (see Fig. 1).

D. Inertial Platform Sensor

ST Microelectronic SensorTile, which embeds magneto-
inertial sensors LSM6DSM (3-axes accelerometer, 3-axes
gyroscope) and LSM303AGR (3-axes accelerometer, 3-axes
magnetometer), will be used to monitor the movement of the
worker. This node can be directly placed on the garment by
adhesive tapes or be integrated into the smart garments (see
Figure .1). Data can be locally stored in the internal memory,
or wirelessly transmitted.

E. Sweat-rate Sensor

The sweat-rate sensor is based on an open chamber ap-
proach and will be placed on the back of the garment (see Fig-
ure ig.2). It consists of a cylindrical structure embedding two
temperature and humidity sensors at different heights from the
skin. Once the sensor is put in place, a diffusive flow through
the chamber starts due to insensible and sensible perspiration.
The sweat rate can be calculated from the humidity gradient
thanks to either the first Ficks law or calibration. Along the
chamber axis, the Ficks law can be written as follows:

J = −Ddϕ
dz

(1)

where J is the diffusion flux [kg/(m2s)], i.e. the amount
of water vapour flowing through a unit area during a unit time
interval, D is the diffusion coefficient or diffusivity [m2/s], φ
is concentration [kg/m3], and z is the distance from the skin
[m].

Fig. 6. Sweat and Temperature Sensor platform.

Fig. 7. Block scheme of the proposed classification system.

F. Risk level assessment

Data integration and interpretation has an essential role in
the Sense-Risc project. Acquired data will be used to assess
the work risk level during work activities. An ML approach
will be adopted to estimate the risk level of the worker. A
set of features will identify those parameters with the highest
impact on the classification performance, and then a supervised
algorithm will use the best subset of features to classify
the risk level. In particular, a specific intelligent system will
be implemented for each type activity. Currently, k nearest
neighbours classifier (k-NN) is the candidate algorithm for
Sense-Risc as it relies only on the training data without mod-
elling decision boundaries that can lead to misclassification
errors. The algorithm will be implemented within the third part
platform Google Firebase to have an efficient ML model also
able to satisfy privacy issues. Figure 7 shows a block scheme
of the proposed approach. Data collection will be performed
through simulations of risky situations to provide a reliable
tool to classify and foresee risk levels. The risky situations
will be labeled by using some indices already known in the
literature, such as the ones introduced in [9] that can act as
an estimation of the worker’s heat stress.

III. RESULT

Since the project is at an early stage, we present only
preliminary experimental results on data acquired from the
already implemented sensor-nodes in laboratory settings. Fur-
thermore, an intense working activity has been simulated to
analyse the physiological signal changes that will be adopted
as an input to the ML approach in estimating the workers risk
level. Preliminary tests have been performed to compute both
mechanical and electrical responses of the textile-conductive
strain sensor. Figure 8 shows the sensor behaviour in terms
of stress response and resistance changes to a series of sinu-
soidal mechanical deformation stimuli (100 cycles, amplitude
2 centimetres). Moreover, a set of preliminary experiments
with the smart-fabrics-conductive strain sensor have been
performed on one healthy volunteer for evaluating eupnoea
(Figure 9, first subplot) and tachypnoea (Figure 9, second
subplot). The voltage output (∆Voutput) decreases during the
inspiratory phase while the expiratory phase causes an increase
of ∆Voutput. In the time domain, the time elapsed between
two consecutive minimum peaks will allow calculating the
breath-by-breath respiratory rate. Figure 10 shows an example
of the IMU output (i.e., accelerometer and three-ax gyroscope)
during a one-minute walk. Figure 11 shows the physiological
signals acquired during light and intense physical activity (i.e.
walking and running on a treadmill at a sustained speed) with
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Fig. 8. (a):Stress and Resistance response to 100 mechanical stimuli cycles of
over time; (b) Zoom-in of the Stress and Resistance response; (c):Resistance-
Strain diagram of the smart-fabrics-conductive sensor

Fig. 9. Two examples of respiratory signals recorded by one respiration sensor
during eupnoea (12 breaths/min) and tachypnoea (41 breaths/min).

commercial sensors such as Shimmer3GSR+, measuring the
galvanic skin response, and BioHarness Zephyr, monitoring
both heart and respiration rate. The black dashed vertical line
represents the starting of the intense physical activity. There
is an evident modification of the parameters according to the
activity executed by the monitored user. An ML approach will
be, therefore, a good solution to estimate such changes and
classify risky situations.

Fig. 10. Example IMU tri-axial accelerometer and gyroscope during 9[sec]
of rest and 60[sec] of walking at 2Km/h.

IV. CONCLUSION AND DISCUSSION

This manuscript presented the implementation of the Sense-
Risc SF-WBASN platform . Preliminary results are encourag-
ing and show good accuracy of the sensor-nodes in detect-
ing their specific information. The system exploit a network
architecture based on Blue-tooth Real-Time communication
mode (BRT), to obtain a continuous streaming of signals in

Fig. 11. Behaviour of the galvanic skin response, heart rate and respiration
rate during a relaxing and an intense physical activity

BLE protocol versus the central platform and an efficient
evaluation approach. The use of Google Firebase in CP and
on-line ML implementation provides several benefits such
as a reduction of the developing time, concise and effective
software architecture, reduced boiler-plate code, data security,
anonymity, and protection rules.

The final goal of the project , i.e., a continuously assessment
of the work risk level in several work conditions, is highly
ambitious. However, the achieved preliminary results and the
level of the system implementation show a concrete possibility
in reaching good final outcomes. Of note, all of the proposed
implementation strategies and sensor-node functionalities need
a careful validation in a large dataset acquired from workers
in real setting scenarios.
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