
A tag-less ultrawide-band passive tracking system
Luca Santoro, Matteo Nardello, Davide Eccher, Mattia Sittoni, Davide Brunelli and Daniele Fontanelli

Department of Industrial Engineering, University of Trento, Trento, Italy
name.surname@unitn.it

Abstract—UltraWide-Band (UWB) low-power devices are be-
coming an increasingly effective solution for tracking and po-
sitioning systems, especially in IoT devices with limited power
sources. Background models can be created by analysing the
radio frequency or channel impulse response in a static en-
vironment. Comparing this background model with runtime
measurements it is possible to identify moving objects inducing
changes in the impulse responses, and as a consequence, we can
compute the distance of the object from the radar devices, usually
consisting of one transmitter and one receiver. In particular, using
multiple receivers, it becomes possible to elaborate a 2D position
of the moving object. This type of tag-less passive tracking system
has the advantage of retrieving the trajectory of a moving object
without the adoption of any additional electronic device. In this
paper, we present an IoT positioning architecture achieving an
RMSE of about 30 cm.

Index Terms—UltraWide-Band, device-free localisation,
sensor-less sensing, multipath-assisted localisation, passive
localisation.

I. INTRODUCTION

Internet of Things (IoT) has quickly become pervasive
in many application scenarios (e.g., as smart farming [1],
[2], surveillance [3], [4], building automation [5], traffic
telematics [6], structural health monitoring [7], environmental
monitoring [8]) thanks to the increasing availability of compact
and low-power devices used for data transmission and accurate
sensing.

IoT uses many different Radio-Frequency (RF) technolo-
gies, like Wi-Fi, Bluetooth, 5G, or Ultrawide-Band (UWB),
exploiting communication signals and their features at best.
Moreover, techniques such as Received Strength Signal (RSS),
Angle of Arrival (AoA), Phase of Arrival (PoA) or Time of
Flight (ToF) are of primary importance for, e.g., obtaining
spatial awareness about moving entities within an area. Sev-
eral works are proposed in the literature for indoor/outdoor
tracking and positioning systems based on such technologies.
More in depth, we can classify localisation methods as Device-
Based and Device-Free. The former assumes the entity to be
tracked endowed with a device that participates actively in the
localisation solution, while RF-based device-free localisation
systems are tag-less, i.e., without the need of an electronic
device mounted on the target. In [9], an indoor positioning sys-
tem based on Bluetooth 5.1 and angle of arrival measurements
is presented. [10] proposes a UWB infrastructure that utilises
Time Difference of Arrival (TDoA) for tracking purposes. [11]
adaptively builds a network of UWB anchors while exploring
and unknown environments, while the study of the achievable
accuracy is studied in details in [12]. The work in [13] uses
a system based on Radio Signal Strength (RSS) to estimate

the distance between one node and a target. Whereas, [14]
introduces a UWB technology-based system that can track an
unlimited number of receivers while maintaining the overall
update rate and minimising the target uncertainty. In the
context of a positioning system, [15] presents a discussion on
a human-follower robot utilising ultrawide-band-vision data,
while [16] proposes a leader-follower application for human-
robot interaction based on UWB tracking.

Instead, the device-free approach is getting increasing atten-
tion as a solution in different application scenarios where we
can not - or do not want to - equip the entity to be tracked with
an electronic device. For example, as reported in [17], seniors’
assistance or people with brain-related diseases assistance
is the typical case in which the everyday duty of wearing,
activating and recharging an electronic device may become
a critical task. This is a typical case in which vision-based
human activity monitoring comes handy, although it suffers
several drawbacks, such as energy consumption, cost, and
privacy concerns. In [18], a vision-based approach obtains
excellent results at the cost of a reduced privacy level, not
suitable in low-light conditions and high computational cost.
In [19], an ultrasound positioning system is presented, which
uses the echo signals to retrieve the distance between the
emitter and the target, but it is prone to interference from
other audio signals [20].

Apart from big radar systems developed at the beginning of
the 20th century, low-power radio systems and human-centric
services have revamped the research interests on device-free
localisation, focusing on indoor and IoT applications. In this
respect, a deep insight into IoT localisation methods could
be found in [21]. Among the RF-based techniques, the most
promising technology is the UltraWide-Band, due to its well-
known characteristics of robustness to multipath [22] and to
radio communication technologies. By means of an analysis
on how the UWB radio frequency spectrum is affected by the
moving entity and specifically addressing the Channel Impulse
Response (CIR), it is possible to locate moving objects inside
the propagation area. The CIR is a measure of the signal power
at different time delays, and it is informative of the different
paths a signal takes when traveling from a transmitter to a
receiver. Hence, UWB radar systems can detect objects based
on the trace spotted in the measured CIR. An interesting way
to use the UWB sensor is in a radar-like system inspired by
the pulsed radar. As described in [23], [24], when an entity
is moving in an RF-flooded environment, the target’s location
can be detected thanks to the induced disturbance on the RF
spectrum. This kind of localisation technique is referred to



as multipath-assisted localisation, based on detecting the RF
scattering source leveraging the multipath components or the
originally transmitted signal. In this case, the analysis of the
RF spectrum of the static environment is needed to create the
background model. Once a moving entity enters the scene, we
can compare the background and RF spectrum to localise the
entity by observing the CIR time variations.

This paper extends the preliminary evaluation done in [23]
of an ultrawide-band bistatic radar in the following ways:

• We introduce a cost function to improve the estimates;
• We realised a distributed system to detect and track

moving entities in the surrounding environment;
• We developed an IoT architecture to handle and sort the

data using as much as possible the available bandwidth
of the chosen UWB module;

• We enhance the processing update rate of the receiver,
improving the maximum target velocity that the proposed
system can track.

The rest of the paper is organised as follows. In Section II,
we briefly present equations and mathematical models to infer
from the CIR measurements the distance of the moving entity.
Section III outlines the solutions we implemented to enhance
the tracking system performance. Experimental results are
discussed with the description of the IoT network and the
prototype in Section IV. Section V concludes this work
with final remarks, highlighting possible improvements and
identifying new research problems.

II. BACKGROUND AND PROBLEM FORMULATION

This section provides a brief overview of the equations
and models utilised position estimation of a mobile entity.
However, for a more detailed understanding, we refer to our
previous work that provides an in-depth reference on the
topic [23].

Without compromising generality, we assume a scenario
with three UWB transceivers consisting of one transmitter and
two receivers deployed in a known area. We can describe each
node by its known coordinates Pi, i.e.,

P = [PTX1 , PRX2 , PRX3 ] =

[
x1 x2 x3

y1 y2 y3

]
. (1)

By employing the UWB signal propagation model and sequen-
tially gathering CIRs, we can extract the multipath components
scattered from the target we intend to track. The Channel
Impulse Response model, which includes deterministic multi-
path components with amplitude ai and delays τi, and diffuse
multipath components ε(t) modelled as Additive Gaussian
White Noise is reported next

h(t) =

l∑
i=1

aiδ(t− τi) + ε(t), (2)

where l is the length of the CIR signal and where the
autocorrelation of the uncertainty ε(t) is given by

E(ε(t) ∗ ε(t)) = S(t)δ(t− τ). (3)
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Figure 1. Bistatic radar configuration. τFP
LOS is the time of flight (ToF) in

line-of-sight condition between receiver and transmitter, τRx
T and τTx

T is
the ToF of the reflected signal between target and receiver and transmitter,
respectively, τR the ToF with respect the centre of the bistatic radar and the
target and τT is the major axis of the ellipse.

The tracked target can be considered as a virtual anchor
with coordinates PT = [xT , yT ]T that transmits a delayed
and attenuated version of the original signal emitted from the
transmitter. The time of flight ti between the receiver PRXi
and the target for the i-th multipath component is given by

ti =
1

c
‖Pi − T‖. (4)

Considering a bistatic radar configuration as reported in Fig-
ure 1, the maximum distance at which the target is detectable
can be calculated using the transmitted power peak and the
sampling resolution of the receiver [25]. By imposing the
following system of inequalities

w = c l tref ,
τFP
LOS

2

4 + τ2
R = τRxT

2
,

τFP
LOS

2

4 + τ2
R = τTxT

2
,

τTxT
2

+ τRxT
2 ≤ w,

(5)

we can compute the theoretical maximum distance for which
the delayed signal falls inside the observation window permit-
ted by the selected hardware, i.e., the hardware enables varying
CIR lengths, which establishes the maximum duration of the
observation window. In (5), the observation window is denoted
by w, the speed of light by c, the length of the CIR by l, and the
unit time for each CIR sample by tref . Additionally, we define
τFPLOS as the time-of-flight (ToF) in line-of-sight (LoS) between
the transmitter and receiver, τR as the ToF between the target
and the baseline of the bistatic radar, and τRxT and τTxT as
the ToF between the target and the receiver and transmitter
respectively.

The CIR signal should remain constant in a stable environ-
ment, but due to the instability of transmitters and receivers, a
phase difference can occur between them. As a result, when a
single receiver samples the CIR of a packet, the sampling point
may differ from the previous sample. This sampling drift can
be utilised to accumulate data and generate a more detailed
structure of the CIR. In other words, by exploiting clock drift,
we can obtain multiple samples, resulting in a wider sample
rate compared to a single sampling operation. Once a series
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Figure 2. Representation of the detection area identified by anchors and
transmitter.

of consecutive CIRs are obtained, they can be aligned based
on the line-of-sight (LOS) peak time instant τFPLOS .

In a static environment, a TX-RX couple will consistently
produce the same response to a known RF signal, resulting in
the same Multipath Components (MPCs) being generated. As
such, the model of the background response hB through the
CIRs measurements can be obtained. A moving object into the
environment results in new MPCs within the CIR associated
with this entity. Computing the differences between the incom-
ing and the background CIRs, the MPCs components coming
from the moving entity can be determined. Considering each
bistatic configuration of the system proposed in Figure 1, the
target’s position PT , is subject to the constraint of lying on
an ellipse. This ellipse has focal points located at PTX1 and
PRXi , major axis equal to c τT , and is described by

‖PRXi − PT ‖+ ‖PTX1 − PT ‖ = c τT , (6)

where τT is obtained using a variation of the algorithm de-
scribed in [23], [24] . Once the location PT is determined, we
implicitly obtain the ranging information. With two receivers,
we can compute the target position within the convex area
defined by the line-of-sight between each couple TX-RX as
shown in Figure 2, with a maximum detecting range defined
by (5).

A. Position estimation

Once τT is obtained, different approaches could be used
to estimate the coordinate of the target P̂T = [x̂T , ŷT ]T .
For example, in [26] a method is presented that employs
analytical techniques to determine the intersection points of
multiple ellipses. In [27], an ellipse-resampling particle filter
is developed for cooperative target tracking. This article does
not focus on creating a complex estimation filter. Instead, we
aim to enhance the precision of the raw data, which motivates
the use of a particle filter. The particles’ movements are
modelled using a random walk, meaning that the position of
each particle p = [xp, yp]

T is assumed to change over time as{
xt+∆t
p = xp(t) + ∆tηxp

(t),

yt+∆t
p = yp(t) + ∆tηyp(t).

(7)

At each prediction step, particle positions are updated with ∆t,
that is the elapsed time since the last measurement reception.
The random variables ηxp(t) and ηyp(t) are a realisation of a
stochastic process that follows a normal distribution with zero
mean and standard deviation ση . Whenever an estimated τ̂T is
received, the particles’ weights are updated according to the
marginalisation

wp = p(τT |τ̂T ), (8)

where the expected τT is calculated using (6).

B. Problem formulation and solution overview

Considering a multi-static radar as depicted in Figure 2
and given the CIRs measurements h(t) in (2), we want to
improve the (τ̂RX1

T , τ̂RX2

T ) estimates. Besides, an IoT archi-
tecture capable of handling, sorting, and processing the CIRs
measurements to estimate the target location p̂T within the
tracked area is required.

We have developed an IoT infrastructure using MQTT
for realising data sharing between the UWB nodes and the
processing unit. We have also introduced a new cost function
to enhance the estimates of τ̂T and increased the update rate of
the bistatic radar, thus making the infrastructure more flexible
and user-friendly. Moreover, to prevent the bottleneck effect,
we have implemented a message size reduction strategy to
minimise the data transmitted within the IoT network.

III. SOLUTION

To estimate the target distance from each TX-RX couple,
we need to build the RF response of the static environment by
using consecutive CIR measurements h. Once the background
model hB is computed, to highlight the foreground hF , i.e.,
the moving objects, the following background subtraction
technique is performed

hF = h− αhB , (9)

where α ∈ (1, 2] is a constant value that scales the background
signal to avoid ripples for very small values after applying (9).
To improve the precision of the estimate of τ̂T , we introduce
a cost function to weight each single values of the signal hF ,
i.e.

cost = W (hFi , h
F
j )

hFi
hFmax

hFpeak
hFmax

, (10)

where W (hFi , h
F
j ) is the observation window, whose length

is defined by the number of elements in {i, . . . ,min{j ∈
N|hFj ≤ hfi ∧ j ≥ i} − 1}, hFpeak is the value of the the first
peak within W (hFi , h

F
j ), hFi is the i-th sample of the resulting

signal hF , and hFmax the maximum value of the entire CIR.
The cost function in (10) emphasises the significance of

several factors that affects the estimate of τ̂T . One such factor
is the window dimension, since it should be large enough to
ensure that the detected target has produced multiple MPCs
that were not present in the background model. The starting
value hi of the window is also essential, as a higher value
suggests that the target detection is more significant. Finally,
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Figure 3. Experimental setup

the first peak value is critical since it indicates the direct mul-
tipath generated when an object enters the scene. This value
should be sufficiently high to ensure that the starting point of
the window coincides precisely with the direct multipath time
location τ̂T . To avoid erroneous timestamps transmitted by the
receivers, caused by the influence of ambient noise that may
lead to a faulty reading of the complex values to reconstruct
the CIR, the incoming signals are filtered by a Gaussian filter.
At this stage, we can multiply the value of τ̂T by the speed
of light c to obtain the estimated distance between the i-th
radar baseline and the target. Once at least two measurements
τ̂T are collected, we can use the particle filter to estimate the
target position.

Sensor data is gathered and transmitted to a Raspberry Pi via
the UART interface, which enables string-based data transfer.
As a result, all important sensor data must be serialised to
obtain a string of data representing the incoming information
in ASCII format. To optimise the performance in real-time
applications, we strive to keep the size of the transmitted data
as small as possible.

After decoding all the data, they need to be sent to the
central computing unit for processing and extracting the loca-
tion of the tracked object. To achieve this, we utilise MQTT
middleware, which operates on a publish/subscribe protocol.
The overall architecture is reported for reference in Figure 3.

IV. EXPERIMENTAL RESULTS

We performed multiple tests to evaluate the proposed archi-
tecture and the effectiveness of the cost function. Initially, we
concentrated on a single couple TX-RX, to assess the effec-
tiveness of the previously depicted estimation process of τT .
This first phase is also helpful to highlight the issues related
to the reconstruction using sequential CIR measurements and
the leading edge detection algorithm

A. Hardware

We have developed an UWB radar node, as shown in Fig-
ure 4, to implement the proposed IoT architecture. The UWB
radio module is built around the Qorvo DWM1001 transceiver,
compliant with the IEEE 802.15.4-2011 standard [28]. It
can operate on six different frequency bands with centre
frequencies ranging from 3.5 to 6.5 GHz and bandwidths
of either 500 or 900 MHz. The chip can measure range
and retrieve the measured CIR, and it offers three different
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Figure 4. In (a) the developed prototype, in (b) the HW architecture.

data rates: 110 kbps, 850 kbps, and 6.8 Mbps. The DW1000
timestamps transmitted and received frames with a precision
of 40 bits, using a nominal 64 GHz resolution. This results in a
timing precision of 15.65 ps for packet timestamps. The UWB
module is connected to an Espressif ESP32 microcontroller
through the UART port. This microcontroller is powered by
the Xtensa dual-core 32 bit LX6 microprocessor with a clock
speed of up to 240 MHz. It also features WI-FI and Bluetooth
modules enabling seamless wireless network integration. The
microcontroller is also optimised for low power consumption,
making it well-suited for wireless IoT applications. In order
to facilitate tracking in areas without access to electricity, we
have incorporated two solar panels to power the radar node.
We track the experimental area using both the radar system and
a motion capture system, which provides the ground truth to
evaluate the accuracy of the proposed system. For the follow-
ing experiments, we used a motion capture system provided
by Qualisys with 8 Arqus A9 cameras, a synchronisation unit,
and a dedicated workstation (see Figure 3).

One crucial factor to consider in the setup is the placement
of the sensors within the environment. It is imperative to
position the receivers at a distance from each wall in the room
that is not similar to the distance estimated for the tracked
entity. Otherwise, the wall could cause a peak in CIRs, leading
to a false detection by the leading edge detection algorithm.
In order to address this issue, it may be advisable to relocate
the transceiver nearer to the wall. However, in our particular
experimental configuration, this course of action is not feasible
due to the physical limitations imposed by the furniture and
the requirement to connect the receivers to a USB cable for
the purpose of downloading supplementary data that is crucial
to validate the proposed system.

B. Results

Initially, a single couple TX-RX is used to evaluate the
proposed method’s effectiveness in distance calculation. In
Figure 5-(a) is shown the results of the experiment conducted
while performing a backward-forth movement with a varying
motion speed ranging from 0.5 m/s to 1.5 m/s. As highlighted
in Figure 5-(a) and described in the previous work [23],
regions that are closer or farther away from the bistatic radar
exhibit greater errors in the distance estimation. In Figure 5-
(b) is reported the histogram of the experiment, with a mean
error µ = 101 mm and a standard deviation σ = 195 mm.
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It is worthwhile to note that the sampling rate of the
receivers is fundamental. In our previous work [23], we limit
the target velocity to be lower than 0.15 m/s to account for
the system sampling rate and increase the tracking precision.
Indeed, the bottleneck of the previous architecture was related
to the bandwidth of the UART interface. Due to this constraint,
we take care of the data encoding and, after the fine-tuning
the algorithm, the system can now process and transmit data
via MQTT at a frequency of 115 Hz, which is four times the
previous work, that was capable of operating at 30 Hz rate.

Finally, Figure 6 shows the result of one tracking exper-
iment. After the initial stage of convergence, the estimated
position has an RMSE(P̂T ) of approximately 30 centimetres.

V. CONCLUSION

Device-Free localisation offers many opportunities for var-
ious security, logistics, or IoT services applications. In this
paper, we have further investigated the leading edge algorithm
and introduced a cost function to refine the estimate of
τ̂T . We have also established a comprehensive IoT network
and created a self-powered UWB radar node. We have also
addressed the data size issue and improved the receiver unit’s
processing capacity from 30 Hz to 110 Hz. By implementing
these measures, we have been able to increase the tracking
speed of the low-cost UWB chip-based radar system from

0.15 m/s to 1.5 m/s. A particle filter has enabled us to achieve
an RMSE(P̂T ) of approximately 30 cm.

The potential of the presented work paves the way for
several extensions as future works. We will expand the number
of receivers within the network to enhance the accuracy of
estimated positions for moving entities. We will also improve
multi-target tracking methods for scaling up to tens of entities.
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