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Abstract—Currently many autonomous vehicles require a per-
son to monitor the system and take over when an unexpected
or unusual event occurs. A person may be able to monitor
multiple such vehicles but a question arises as to how many,
and how to measure the cognitive requirements. Brain Computer
Interfaces (BCI) operating passively could aid in assisting remote
operators in such tasks but there is as yet significant research
to be undertaken before such technology becomes robust and
effective. To this end we describe a platform for acquisition
of multi-modal data for passive hybrid Brain Computer Inter-
face (phBCI) development purposes. The open source system
integrates electroencephalography (EEG), computer vision and
a wearable inertial measurement unit (IMU) along with time-
stamped event markers for a subject engaged in a set of
driving-related tasks as applied to blended control of multi-
ple vehicles. The vehicular control task is realised both with
graded complexity simulations and physical scale autonomous
vehicles. This platform has the following significant advantages:
reduced experimental variability due to data acquisition system
implementation decisions; ease of reproduction of experiments
through shareable configuration information; and acceleration
of open science dataset accumulation. Consequently this freely
available open source platform has the potential to enhance the
reproducibility of passive hybrid BCI experimental research.

I. INTRODUCTION

Autonomous vehicles are becoming more and more ubiq-
uitous[1]. Whilst these vehicles should do as much of the
journey in autonomous mode as possible, the current state of
the art depends heavily on a more blended control system,
often requiring an operator to take over control[2] to maneuver
the vehicle around unexpected obstacles or events, etc.

In the case of autonomous delivery vehicles for example,
a future scenario would envisage such an operator having a
number of autonomous delivery vehicles to monitor remotely
and a question arises of how best to monitor the cognitive
workload on this remote operator so that the operation of the
service balances efficiency (i.e. have an operator monitor as
many remote vehicles as possible) with safety[3] (i.e. an oper-
ator does not miss a potentially hazardous event). For example,
as the increasing number of robots compete for the same
cognitive resources, full attention cannot be given to every

robot at once resulting in declines in concentration, attention
or mental fatigue[4]. This is compounded even further when
a robot requires assistance or rescue.

In this work, we describe a platform for the collection of
physiological and behavioural data e.g. brain activity and other
signals which may be related to operator state during driving-
related tasks. In particular our focus is applied to the blended
control of multiple vehicles capable of self-driving operation.
This information has the potential to assist in the develop-
ment of load sharing systems by detecting when an operator
may be bored or overwhelmed by the task presented. This
platform has been designed with the intention of supporting
future work in the study of, for example, the combination of
electroencephalogram (EEG) data with video and other sensor
data to train a machine learning algorithm to predict task
load. However, this paper is restricted to the description of the
data-acquisition platform. The contribution of this paper is the
presentation of the design, development and testing of a novel
open source platform for integrated data collection and testing
of human-robot interactions in the context of neuroergonomics
specifically passive hybrid brain computer interfaces (phBCI).

II. PLATFORM OVERVIEW

Fig.1 illustrates an overview of the platform consisting of
two parts, the monitoring system and task load simulator which
in turn consists of two different sub-task examples; simulated
and scaled. The monitoring system collects multi-modal data
from the remote operator while they are engaged in one of
the two robot control related simulated tasks. The monitoring
system also receives data from the task generator e.g. event
markers or annotations, to register and correlate EEG events.

The task generators simulate operator related tasks as ap-
plied to blended control of multiple vehicles with increasing
ecological validity.

III. MONITORING SYSTEM

Whilst there are many ways to measure physiological and
behavioural data[5], there is no one sensor that can give full



Fig. 1. Platform overview using scale autonomous vehicle task generator.

information on how a person is responding to a particular task.
For this platform, we employ use of the following sensors and
systems:

• Electroencephalogram
• Computer Vision
• Inertial Measurement Unit

A. Electroencephalogram

Brain-computer-interfaces (BCI) offer a communication
pathway between a brain and an external device. By measuring
the brain’s electrical activity, EEG is the primary signal of
interest for translating brain state into data with suitable
processing[6]. EEG data can be used to monitor the brain
including cognitive workload. It is understood for example that
the latency and amplitude of a person’s evoked potential corre-
sponds to improved cognitive abilities[7]. Evoked potential can
be measured in real time using EEG sensors and the equipment
we used in this project for monitoring such brainwave activity
is the Ant Neuro eego rt 16 channel wearable EEG system[8]
as depicted in Fig.2.

Fig. 2. The Ant Neuro eego rt 16 channel wearable EEG system.

B. Computer Vision

EEG is an inherently noisy signal, evoked potential for ex-
ample is detected by averaging over several trials. As contam-
ination of eye movement and blink artifacts in EEG recording
makes the analysis of EEG data more difficult and could result
in erroneous findings[9], using video and computer vision
algorithms in synchronous with the EEG data can potentially
be used to identify and remove ocular and ambulatory artifacts
from the EEG data. Computer vision algorithms can also be
employed to monitor attention levels directly[10]. Video of

Fig. 3. Eye tracking computer vision

the subject performing the tasks is recorded and this is run
through our computer vision (CV) software post experiment as
illustrated in Fig.3. Using OpenCV[11] existing and bespoke
open-source algorithms, our software outputs various time
stamped data such as head and eye tracking, changes in blink
frequency, yawn detection, pupil dilation, eye’s widening,
etc[12]. Such information can be employed to indicate changes
in attention level[13]. We can also employ CV to detect causes
of distractions such as when the subject is using a cellphone
for example[14].

C. Inertial Measurement Unit

Whilst we can detect head movement in 3D using CV algo-
rithms, another sensor we employed for increased accuracy is
the IMU. An IMU is a sensor that contains an accelerometer
and gyroscope, and commonly a magnetometer. It measures
acceleration and angular velocity and is small enough to be
attached to an EEG cap to allow for accurate head tracking. We
employed a head tracker system using the Arduino Nano 33
BLE with an embedded 9 axis inertial sensor[15]. This open
source software is originally designed for FPV head tracking
of remote control aircraft. Fig.4 depicts the open source GUI
with pan, tilt, and yaw graph. Our branch of the software has
an added function of outputting the tracked coordinates.

By combining physiological data and behavioral data from
the different modalities of EEG, CV and IMU systems, a
greater representation of operator response to cognitively
challenging tasks can be achieved[16]. This data-set may
potentially be used to train a machine learning system to infer



Fig. 4. Open-source Head Tracker GUI

cognitive state from the video data only, as wearing EEG and
other sensors may prove impractical in real world operational
settings. This goal is that of the lager project of which this
data capture platform is a part.

IV. TASK SIMULATORS

For the purpose of illustrating the data collection platform,
we collected multimodal data using two operator task generat-
ing systems. However, our open-source platform is not limited
to any particular task system and can for example, be used in
conjunction with packages such as PsychoPy[17]. PsychoPy
is a free cross-platform package allowing researchers to run a
wide range of experiments in the behavioral sciences. There
are two main scenarios used during the experimental sessions
to generate tasks. The first scenario is an abstracted task
simulator designed to be run at three levels in game form.
The second scenario is real world robot operator role using
scale autonomous vehicles.

A. Cognitive Loading Game

The game is designed to simulate various discrete tasks
types that may occur during a blended control operation. The
game tasks that the player (operator) must control are:

1) Keep a ball moving around the screen perimeter by
clicking when it stops.

2) Keep a constantly leaking water level between two limits
by clicking a valve.

3) Answer simple math questions.
4) A Stroop colour word test (SCWT)[18].

5) Turning off lights when they illuminate.
Tasks 1 and 5 simulate reactions to something suddenly
occurring whereas Task 2 is predictable. Tasks 3 and 4 take
some mental focus to accomplish. The reaction time for each
task is recorded and a score is calculated from the average
reaction time for all tasks.

Fig. 5. Task Simulator Game at Level 3.

The game is presented in three levels played by an operator
for 10 minutes each. In the first level, the event changes are
rare so that the operator has very little to do for the 10 minutes
of game play.

The second level is designed to be more challenging but
still achievable. There is a constant stream of tasks but no
overlapping tasks. During this level, the operator is not over-
tasked but also does not have cognitive space for external
distraction.

The third level has multiple overlapping tasks and it is
generally not possible to keep up with all of the tasks. An
example screen shot of the simulator game at level 3 is shown
in Fig.5. Although the tasks within each level have no priority
order, the objective is to keep completing tasks oldest to
newest to minimise the delay count build.

The objective of the varying the task level is so that
for example, the different levels of task simulation may be
used to investigate the changes in physiological data and
behaviour that occurs when a person is switched between
under-loaded to overloaded situations during task operation.
The game software output stream consists of a sequence of
events, rates and annotations to the physiological data-stream.
This software package is presented open-source python on our
GitHub server[19].

B. Small Scale Autonomous Vehicles

While simulations and game-play are useful for repro-
ducibility, the psychological risk and stress associated with
attention retention is reduced[20]. To generate more ecologi-
cally valid data as related to blended control of autonomous
vehicles, we have employed the supervision of small scale
autonomous vehicles. A low cost open source example of such
scale autonomous vehicles, is a platform known as Donkey
Car[21].

The Donkey Car project website describes how to build and
train an open source scale autonomous vehicle. An operator



Fig. 6. Donkey car small ( 1
10

) scale autonomous vehicle navigating a 5mx5m
printed road.

can connect to a Donkey Car using a web based user interface
(UI) and can see the car’s view in first person (FPV) as in
Fig.7 along with other telemetry data. The operator can also
take control of the car through the UI to both train and operate
the vehicle. Training consists of an operator driving along the
track a number of times (circa 10 laps) and recording video
from the on-board camera. We have designed a 5m x 5m track
that is printed on a vinyl mat for a 1

10 scale Donkey Car as
depicted in Fig. 6. Some additional useful training data can
be achieved by placing obstacles on the track and recording
how the operator avoids them. It is further useful to record
corrective moves such as returning to the track in case of over
or under steer. Training should be done at various speeds.

As for the case with the simulated tasks, we have three levels
of workload for the scale autonomous vehicles. For level 1,
we have only one car on the track and if well trained, the car
should have no problem navigating the track autonomously
while the operator observes the FPV. In this case, it is easy
for the operator to become distracted as they will have little
if any engagement. For level 2 we add an additional vehicle.
Now the operator must interact and assist if the two vehicles
will collide or need to overtake. It is more common in this
scenario for the vehicle to lose track of the road and require re-
orientating by the operator. For the third level, we add another
vehicle or reduce the training level of the vehicle. With this,
the operator must take control more often and many collisions
and corrections occur. This platform is fully open-source[21]
and can be used for as a starting point for further annotations
to the physiological data. Modifications to design files and 3D
printing files can be found at our GitHub server[19].

V. SYNCHRONISATION

Because we have 5 different sources of data, we must have
a method of synchronising all of these together to produce a
single data-set for each task. The sources are:

• EEG data
• IMU data
• Video of subject and CV processed data
• Video feed from simulator/Donkey car web UI
• Mouse/keyboard events

Fig. 7. Donkey car small scale autonomous vehicle onboard web UI with
first person view.

Each data packet is timestamped with ticks when captured.
In addition a visual and physical marker is generated at the
beginning and ending of a session to recognise any drift within
the sequence. This is achieved by having the subject tap
the EEG cap with the mouse button introducing a technical
artifact into the EEG signal. The subject does this three
times to indicated the beginning of the session and twice to
indicated the end. This tapping can be seen by the subject’s
camera, is sensed and recorded by the EEG cap and the
IMU (Fig.9) and mouse events are recorded by the input to
simulator or donkey car controller. To ensure the video feed
is synchronised, a small mirror is placed behind the subject to
capture the screen information on the subject’s camera. Any
drift can be detected using this technique. In our experiments,
the data was manually synchronised using the three/two sets
of spikes in the data, however, it is envisaged that this could be
automated in future experiments where the number of sample
are larger. Further refinements to the platform will use Lab
Streaming Layer (LSL) and similar techniques[22] to automate
the synchronisation of the data streams.

VI. RESULTS

Although at the time of writing our results are preliminary
and mainly for use of fine tuning the synchronisation steps, our
vision system correctly identified and tagged 100% of ocular
blinks as depicted in Fig.8 for example. Such annotated data
stream from combined CV processed video and EEG data and
can be potentially used to remove ocular artifacts from EEG
data. Similarly, the synchronised IMU data can potentially be
used to remove ambulatory head movement from the EEG
data. An example of the graphed output is depicted in Fig.9.
The full open source code for the simulator, video capture, CV
system and IMU can be found at our GitHub repository[19].
The raw and processed data-sets are available from our Zenodo
repository[23]. It should be noted the for data protection, only
the post-processed video data is available from Zenodo.



Fig. 8. EEG graph with CV identified blink annotations (IMU data not
displayed)

Fig. 9. Sample of IMU Head Tracking stream showing synchronisation peaks.
The three lines depict Pan, Tilt and Yaw motion in degrees over time in
milliseconds.

VII. FURTHER WORK

Our next steps in this work are to conduct experiments
with more subjects so to produce a large number of data-sets
which we make available at the project’s Zenodo repository
for the purposes of data mining and the development of
machine learning systems in the context of hybrid passive BCI.
Currently the sensor capture systems are loosely coupled and
future work considers tighter integration of the data acquisition
software into a single monolithic application to simplify syn-
chronisation and operation. We are currently investigating LSL
to assist with the automation of this process. This will facilitate
improved synchronisation among the incoming sensor data
streams. To further assist this, real-time vision processing will
reduce the post processing requirements.

VIII. CONCLUSION

We have described a new open platform to capture multi-
modal data-sets including event markers for the purposes of
accelerating passive hybrid Brain Computer Interface research.
The system consists of EEG, eye tracking and wearable IMU
streams along with event markers while users supervise gener-
ated task from simulated tasks and scale autonomous vehicles.
Each of the generated task systems has 3 distinct levels of
load, easy, manageable, and overwhelming. The preliminary
results with synchronised video, EEG and IMU data identified
and tagged ocular and ambulatory movement that can be
used to clean inherently noisy EEG artifact data. Overall the
system can contribute to enhancing EEG-based passive hybrid

BCI research through improving experimental reproducibility.
This is achieved through ease of sharing of experimental
set-ups, a reduction in sources of experimental error due to
technical implementation idiosyncrasies, and if community-
adopted, acceleration of shareable open datasets for mining
and algorithm development with a concomitant impact on
independent algorithm performance verification activities.
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