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Abstract— The goal of the MICS (Made in Italy, Circular 
and Sustainable) project is to develop new models and 
techniques to support the entire pipeline for applying Data 
Science algorithms to data from industrial processes. Although 
many libraries and tools are already available to aid the analysis 
of data, we believe that each different application domain 
requires individual study to propose appropriate methods and 
tools that accommodate the specific peculiarities of its data. In 
this position paper, we discuss the following points by also 
outlining our case studies. 

Keywords—digital factories, data management, machine 
learning pipeline, case study 

I. INTRODUCTION 
The fourth industrial revolution, known as Industry 4.0, 

implies an industrial infrastructure based on cyber-physical 
systems with sensor networks connected to the physical world 
through the Industrial Internet of Things (IIOT) [1]. This 
definition provides a framework for a smart industry where all 
the processes are digitalized and characterized by real-time 
analysis, shifting towards increasing sustainability in 
manufacturing [2]. Such an automated solution offers several 
advantages, including optimizing energy consumption in 
intensive industries as well as small but critical productive 
assets. By introducing Industry 4.0, a transition toward the in-
process use of longer-range sensors has received considerable 
attention not only in the field of monitoring and condition 
tracking but also as a key component to establishing a virtual 
representation of complex physical systems known as Digital 
Twin (DT) [3]. Undoubtedly, DT is one of the pillars of 
Industry 4.0 towards achieving comprehensive control and 
communication between labor, machines, and management. A 
working definition of DT is a representation of a fabrication 
process or service in the digital world where its main 
complexity lies within both the reliable sensor networks for 
environment realization and accurate functional 
representation of the physical system in a consequential 
virtual representation. This results in digital transformation 
and description in a cyber-world context of real-world 

processes/items along with their surroundings where the 
Energy Management Information System (EMIS) and 
Prognostic Health Management System (PHMS) can be 
applied directly. Consequently, a complement EMIS/PHMS 
following the Digital Twin (DT) paradigm, which is the aim 
of MICS project.  

As highlighted in the 2021 Annual Report of the World 
Manufacturing Forum, the development of a country must be 
directed towards enhancing sustainable and circular 
performances to optimize resource consumption and 
consequently minimize waste and emissions. To maintain 
competitiveness, the Italian industrial ecosystem is called to 
develop best practices on research and technology transfer to 
be adopted by small-medium enterprises. To do this, the 
Italian government has launched an economic recovery plan 
called the National Recovery and Resilience Plan (PNRR), 
which fundamentally relies on the MICS. Mainly, the MICS 
focuses on promoting digital transformation, innovation, and 
administrative simplification in various sectors of the Italian 
economy. As shown in Figure 1, it proposes eight thematic 
areas that need to be focused on to address the challenges that 
currently confront existing models of design, production, 
consumption, the End-of-Life of materials, products, 
production technologies, and processes necessary for moving 
towards greener and circular pathways and patterns. 

 
Fig. 1. MICS: Thematic areas 
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One thematic area, so-called Spoke 8, has the ambition to 
create a new concept for a sustainable and resilient digital 
factory in which Artificial Intelligence (AI), digital 
technologies, and collaborative robotics will establish a 
trustworthy human-machine coevolution relationship and lead 
to high-performance, inclusive, sustainable human-machine 
working systems.  

To this end, we aim to devise new models and techniques 
for the support the entire pipeline of application of Data 
Science algorithms to data from industrial process [4]. There 
are indeed various libraries and tools available to support the 
analysis of data, possibly coming from different sources. 
However, we claim that each specific application domain 
needs to be studied, to the end of proposing appropriate 
methods and tools to support the peculiarities of its data. Data 
Science integrates research tools and methods from statistics 
and computer science, applicable to research in various 
application domains, such as social science, digital 
humanities and, of course, industry. The 2015 National 
Science Foundation (NSF) report, summarizing the NSF-
sponsored workshop on data science education, introduced a 
definition of data science that reflects the perspective of data 
science as a workflow: “Data science is a process, including 
all aspects of gathering, cleaning, organizing, analysing, 
interpreting, and visualizing the facts represented by the raw 
data.” Data science is indeed commonly presented as an 
iterative workflow for generating value and data-driven 
actions from data (see Figure 2). 

 
Fig. 2: Data Science Venn Diagram 

In this position paper, we propose a specific pipeline for 
the MICS project, and we outline possible industrial case 
studies to be adopted for experimenting and validating our 
outcomes. 

II. DATA SCIENCE PIPELINE 
Figure 3 reports a typical Data Science pipeline. 

Data Acquisition consists in selecting the data needed for 
the analysis on the basis of the analysis objective. This is a 
critical step in the data science pipeline. It involves collecting 
data coming from different sources and collecting it 
accurately and comprehensively is vital to obtain a good 
result. 

Different strategies must be adopted considering the 
nature and origin of the data to assess the quality of the 

collected data. For instance, data coming from sensors must 
be qualified from a metrological point of view. 

Data cleaning is motivated by the consideration that real-
world data is often inaccurate, noisy, uncertain, and 
incomplete, leading to low-quality, possibly wrong, and even 
dangerous results of the Data Science algorithms. Manual 
intervention can often solve these problems, but it is time-
consuming, and thus not scalable with respect to the amount 
of data nowadays available. The activities of data cleaning 
(possibly to be placed or repeated after data integration) 
include data transformation, data reduction, deduplication, 
error detection, missing value imputation, and space 
transformations in the case of multimedia data [5][6][7]. The 
overall task is complicated also by the fact that optimizing 
one dimension of data quality might cause a quality loss for 
another dimension. In this respect, the preliminary study of 
the specific analysis objective will also be useful to support 
the reconciliation of conflicts that exist among the different 
data quality dimensions. 

As for data annotation, we propose associating appropriate 
descriptions called Metadata to the acquired data. These 
descriptions are partly provided by the data owners and partly 
obtained as output from the data cleaning activity, and they 
are used to retain information that will be useful in various 
processing phases [8]. Metadata has different classifications; 
this paper presents an idea of general categories that must be 
refined and specialized during the project to create a 
classification appropriate for industrial process data. 

• Governance Metadata: These cover all security and 
privacy policies, access rights, ownership and 
responsibility roles, acquisition information, data 
quality, data authenticity, and other legal 
requirements.  

• Data Life Cycle Metadata: These are related to data 
provenance, including the source of the data, all 
transformations performed and existing versions, 
usage tracking, and information required to preserve 
and use the data, including technical specifications. 
This group is approximately comparable to what is 
also referred to as use metadata. 

• Descriptive Metadata: These describe data for 
purposes of identification and discovery purposes. 
Since this is a very comprehensive definition, they are 
further divided into subcategories (Business-specific, 
describing the meaning of the dataset or domain-
specific metadata; Intrinsic, characteristics of the 
dataset and its value, and Inter-Relationship, 
describing possible relationships among different 
datasets). 

Data integration is the problem of combining data residing 
at different sources and providing the user with a unified view 
of this data [9][10][11][12][13][14]. This entails detecting 
correspondences between similar objects that come from 
different sources, solving conflicts, and performing final data 
fusion. In this project, we will study the need for a data 
integration process and explore specific tools that can be 
applied to industrial process datasets in various circumstances. 

What are the main problems related to integrating data from 
an industrial environment? There are three main questions to 
address: 
 

428

Authorized licensed use limited to: Politecnico di Milano. Downloaded on February 21,2024 at 10:47:15 UTC from IEEE Xplore.  Restrictions apply. 



  

 

 
Fig. 3: Typical Data Science pipeline 

 
 

• Is it necessary to ‘put together’ all the data related to 
a specific industrial process? Is this «putting 
together» somehow similar to the traditional idea 
typical of integration of business data? 

• Do we need also to ’put together’ the data related to 
different processes as well? Again, how is this 
similar to the traditional idea of data integration? 

• Probably, we need to compare data of any kind (e.g., 
images, time series, etc...) to the end of deriving 
their similarities and differences. Data comparison 
is a typical step of data integration. 

Data lake technologies are promising solutions for 
enhancing data management and supporting data integration 
for data science capabilities: (i) managing big-data volume 
and variety, as those typically found in industrial settings, and 
(ii) providing data analysts with a self-service environment in 
which advanced analytics can be applied. Such technologies 
should support: 

• Connectivity; 
• Integration of heterogeneous data; 
• Data-storage capacity; 
• Appropriate solutions to ingest, store, and process the 

enormous amount of heterogeneous information 
coming from all the industrial devices; 

• Possibility to support data-analysis capabilities 
(Statistics, Data Mining, Machine Learning). 

Data modeling and analysis consists of (i) parameters 
tuning, (ii) model training and deployment, (iii) analysis, and 
(iv) visualization and interpretation. Analysis is strongly 
dependent on the machine learning task considered in the 
application at hand. In the context of Industry 4.0, several 
applications have been developed in recent years to improve 
sustainability, quality and operations associated with 
manufacturing processes and related control and maintenance 
operations. In the following, a list of the most important data-
driven industrial applications and the related data analysis 
task are summarized: 

• Predictive maintenance (PdM) is a proactive 
maintenance strategy that uses data analysis and 
machine learning techniques to predict when 
equipment or machinery is likely to fail or require 

maintenance. By analyzing data from sensors, 
monitoring equipment, and other sources, predictive 
maintenance can help reduce downtime, optimize 
maintenance schedules, and increase efficiency and 
reliability. The PdM task is typically formalized as a 
Remaining Useful Life (RUL) prediction problem 
[15], making it a supervised regression task from a 
data analytics perspective. Other approaches in the 
literature also include supervised classification, 
leveraging the fact that PdM users are typically not 
interested in high granularity in the prediction but 
more in obtaining a good balance between unexpected 
breakdowns and unexploited lifetime [16]. 

• Anomaly Detection (AD) solutions are diagnostic 
tools capable of identifying unusual or unexpected 
patterns or events in processes. It involves analyzing 
data to identify outliers or anomalies that do not fit 
the expected or normal behavior of the system or 
process being monitored. AD is highly applicable in 
many scenarios, since it doesn’t require labelled data 
[17]. AD solutions resort to unsupervised 
multivariate approaches capable of handling 
heterogeneous and complex data [18]. 

• Fault Detection (FD) is the supervised equivalent of 
anomaly detection (AD). If labeled data is available, 
diagnostic tools can not only provide an indication of 
abnormal conditions, but also they can point out 
which failure is currently happening [19]. In this 
case, supervised classification approaches are 
typically in place. 

• Soft Sensing (SS) or Virtual Metrology/Virtual 
Sensing are software technologies that estimate 
quantities that are costly or impossible to be 
measured by leveraging historical data and, typically, 
supervised regression approaches. SS approaches are 
used to improve quality monitoring, control, and 
sampling in production [20]; 

• Dynamic Sampling (DS) strategies are approaches 
able to optimize measurement and sampling in 
complex manufacturing environments [21]. DS 
approaches typically rely on regression analysis and 
optimization approaches [22]; 
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• Computer Vision-based control and monitoring is 
widely adopted in the industry thanks to the diffusion 
of low-cost effective industrial cameras and the 
incredible advancements of Deep Learning 
approaches in recent years. In this context, 
supervised classification and segmentation 
approaches to recognize defects [23] are some of the 
most popular techniques adopted, but unsupervised 
methodologies have been used in the industry [24]. 

• Optimization and dynamic model predictive control 
design [25] are popular methods nowadays for 
enhancing production capacity and energy 
consumption in the digital factory. According to a 
data-driven approach, and by means of Machine 
Learning methods, data collected from the plant are 
used to estimate a dynamic model of the system. This 
model is then used on-line to optimize the plant’s 
behavior by minimizing a suitable cost function while 
adhering to constraints on the process variables. 
Adaptive versions can be employed to modify, in a 
largely autonomous way, the control algorithms to 
adapt to production scenarios characterized by 
strongly varying working conditions. 

Data visualization and interpretation are of fundamental 
importance when dealing with Machine Learning (ML)-
based approaches in the industry. One of the main reasons is 
that many of the aforementioned applications are consumed 
by users through decision support systems [26]. While ML 
tools provide predictions and elaborations, it is up to the users 
to take actions and make the final decision on many 
monitoring and control tasks. Users may need to have 
additional information beside the model prediction/outcome 
in order to act on the process/equipment. In light of this, users 
may benefit from eXplainable Artificial Intelligence (XAI) 
methods in order to get valuable additional knowledge [27]. 
XAI methods may provide for example: 
-  feature importance, making users and operators know 

which are the relevant variables for a ML model (global 
importance) or for its outcomes (local importance) [28]; 

- the relationship between output and input in complex 
black box models [29]; 

- in computer vision tasks, the pixels of an image that are 
relevant for the task at hand [30]. 

XAI approaches and, more in general, visualizations and 
statistics are fundamental tools also for increasing the trust of 
process/machine experts without a background in Machine 
Learning, fostering the adoption of such technologies in the 
industry. Nevertheless, XAI suggestions must be tailored for 
the industrial audience and must be provided in pseudo real-
time in order to be used in the manufacturing environment. 

 

III. CASE STUDIES 
Two engineering fields closely linked to energy efficiency 

are upgradeable EMIS and PHMS. The EMIS focuses on 
monitoring and control systems that can transform the 
collected data into correlated and usable information, while 
the PHMS manages anomaly detections, identifies fault 
causes, and predicts remaining useful life to support effective 
decision-making driven by condition-based techniques. Both 
EMIS and PHMS combine sensor networks, software, and 

data to provide support in managing energy at the process, 
system, facility, and enterprise levels. To achieve a 
complement EMIS/PHMS following the Digital Twin (DT) 
paradigm, two industrial cases studies have been defined as 
follows:  

A. Monitoring of apparatus energy consumption 
In this case study, energy consumption monitoring is 

focused on industrial equipment such as high-speed and 
precision spindles used in small-scale machinery tools or 
highly modular machining centers developed for the large-
scale woodworking industry. To perform such an analysis, 
the first step is to create a digital twin of the apparatus. Later, 
the model will be integrated with data acquired from physical 
assets for validation. 

B. Energy forecasting and modeling in industrial building 
and process 
The second case study is dedicated to energy consumption 

monitoring in industrial plants, especially focused on the 
woodworking industry. Therefore, the fundamental task is to 
create a scalable digital twin of the process or the plant. Once 
completed, the validation will be performed based on 
acquired data in the field.  

Following the cases studies and using the digital twin 
created earlier, it is possible to generate synthetic data that 
can simulate inefficiencies, failures, or other critical aspects 
that cannot be easily replicated in the real world. This 
synthetic data can then be used to create and validate new 
machine-learning algorithms in terms of EMIS/PHMS. 

IV. CONCLUSION 
In this position paper, we introduce a specific data science 

pipeline aimed at enacting in the MICS project – spoke 8, with 
the specific aim of supporting Industry 4.0 applications in the 
Italian industrial landscape. We argue that the results of the 
activities will be applicable in similar scenarios, especially in 
Europe, where the features of industrial players of large vs. 
medium enterprises are quite like the Italian ones. Therefore, 
they will constitute an advancement over the current state of 
the art, which has been surveyed in this paper. Future activities 
will address all the specific challenges outlined in this paper.  
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