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ocusing primarily on system architecture, 
this article describes the current status of 
autonomous land vehicle (ALV) research at F Carnegie Mellon University’s Robotics Insti- 

tute. We will (1) discuss issues concerning outdoor 
navigation; (2) describe our system’s perception, plan- 
ning, and control components that address these 
issues; (3) examine Codger, the software system that 
integrates these components into a single system, syn- 
chronizing the dataflow between them (thereby rnax- 
imizing parallelism); and (4) present the results of our 
experiments, problems uncovered in the process, and 
plans for addressing those problems. 

Carnegie Mellon’s ALV group has created an 

autonomous mobile robot system capable of operating 
in outdoor environments. Using two sensors-a color 
camera and a laser range finder-our system can drive 
a robot vehicle continuously on a network of side- 
walks, up a bicycle slope, and over a curved road 
through an area populated with trees. The complexity 
of real-world domains and requirements for continu- 
ous and real-time motion require that such robot sys- 
tems provide architectural support for multiple sensors 
and parallel processing-capabilities not found in sim- 
pler robot systems. At CMU, we are studying mobile 
robot system architecture and have developed a navi- 
gation system working at two test sites and on two 
experimental vehicles. 
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We use two test sites, the CMU campus and Schen- 
ley Park-a city park adjoining the campus. The 
campus site contains a sidewalk network including 
intersections, stairs, and bicycle slopes (see Figure 1). 
Schenley Park has sidewalks curving through a treed 
area (see Figure 2). 

Figure 3 presents our two experimental vehicles- 
NavLab (used in the Schenley Park test site) and Terre- 
gator (used in the CMU campus test site). Each is 
equipped with a color TV camera, plus a laser range 
finder made by ERIM. NavLab carries four general- 
purpose Sun-3 computers on board. Terregator links 
by radio to Sun-3s in the laboratory. The SUN-3s 
interconnect with an Ethernet. Our navigation system 
works on both vehicles in both test sites. 

Current system capabilities. Currently, the system 

Executes a prespecified user mission over a 
mapped network of sidewalks, including turns at 
intersections and driving up  the bicycle slope; 
Recognizes landmarks, stairs, and intersections; 
Drives on unmapped, curved, or ill-defined roads 
using assumptions about local road linearity; 
Detects obstacles and stops until they move 
away; 
Avoids obstacles; and 
Travels continuously at 200mm per second. 

~ 

Figure 1. The CMU campus test site 

Figure 2.The Schenley Park test site. 

W 
Figure 3. Navlab (above) and Terregator (on the right.) 
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Figure 4. Outdoor navigation. 
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This section defines goals of our outdoor naviga- 
tion system and its design principles, and analyzes the 
outdoor navigation task itself. We will describe our 
system architecture as it is shaped by these principles 
and analyses. 

Design goals and principles. Our outdoor naviga- 

Map-driven mission execution-The system 
drives the vehicle to a given position (goal); 
On- and off-road navigation-Navigation envi- 
ronments include roads and open terrain; 
Landmark recognition-Landmark sightings are 
essential when correcting for drift in the vehicle’s 
dead-reckoning system; 

humans; and 

motion is inadequate for our purposes. Percep- 
tion, planning, and control should be carried out 
while the vehicle is moving at a reasonable speed. 

To satisfy these goals, we have adopted the follow- 

Sensor fusion-A single sensor is not enough to 
analyze complex outdoor environments. In addi- 
tion to a TV camera and range finder, sensors 
include an inertial navigation sensor and a wheel 
rotation counter; 
Parallel execution-Parallelism is essential when 
processing data from many sensors, making 
global and local plans, and driving the vehicle in 
real time;and 
Flexibility and extensibility-Also essential since 
the whole system is quite large, requiring the inte- 
gration of many modules. 

tion system seeks the following goals: 

Obstacle avoidance-As wise for robots as for 

Continuous motion in real time-Stop-and-go 

ing design principles: 

Outdoor navigation tasks. Outdoor navigation 
includes different navigation modes-Figure 4 illus- 
trates several examples. On-road versus off-road is 
just one example. Even during on-road navigation, 
turning at intersections requires more sophisticated 
driving skill than road following. In road following, 
assuming that the ground is flat makes perception eas- 
ier. But driving through the forest does not satisfy 
this assumption, requiring more complex perception 
processing. 

According to this analysis, we decompose outdoor 
navigation into two navigation levels-global and 
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local. At the global level, system tasks are (1) to select 
the best route to reach destinations given by user mis- 
sions, and (2) to divide the route into segments, each 
corresponding to a uniform driving mode. The cur- 
rent system supports three navigation modes- 
following roads, turning at intersections, and driving 
up slopes. 

Local navigation involves driving within a single 
route segment. The navigation mode is uniform. The 
system drives the vehicle along the route segment con- 
tinuously, perceiving objects, planning paths, and 
controlling the vehicle. These important tasks- 
perception, planning, and control-form a cycle and 
can be executed concurrently. 

System architecture. Figure 5 presents a block dia- 
gram of our system architecture, consisting of several 
modules and a communications database linking the 
modules together. 

Module structure. To support tasks described in the 
previous section, we first decomposed the whole sys- 
tem into the following modules: 

Captain executes user mission commands and 
sends each mission’s destination and constraints 
step-by-step to the Map Navigator, then awaits 
the result of each mission step; 

selects the best route, decomposes it into a route 
segment sequence, generates a route segment 
description including mapped objects visible 
from the route segment, and sends all of this to 
the Pilot; 
Pilot coordinates the activities of Perception and 
Helm, performing local navigation continuously 
within a single route segment. Pilot is decom- 
posed into several submodules that run concur- 
rently (see Figure 6); 
Perception uses sensors to find objects predicted 
to lie within the vehicle’s field of view, and esti- 
mates vehicle position when possible; 
Helm gets the local-path plan generated by Pilot 
and drives the vehicle; 
Driving Monitor decomposes the route segment 
into small pieces called driving units. A driving 
unit comprises the basic unit for perception, 
planning, and control processing at the local 
navigation level. For example, Perception must 
be able to process a whole driving unit with a sin- 
gle image. Driving Monitor creates a driving unit 
description describing objects in the driving unit, 

Map Navigator searches the map database, 

and sends that description to the following sub- 
modules: 

sending the driving unit description to-and get- 
ting the result from-Perception; 

using the results of Perception and dead 
reckoning; 
Driving Unit Navigator determines admissible 
passages through which to drive the vehicle; and 
Local Path Planner generates path plans within 
the driving unit, avoids obstacles, and keeps the 
vehicle in its admissible passage. The path plan is 
sent to Helm. 

Driving Unit Finder functions as an interface, 

Position Estimator estimates vehicle position, 

Codger. The second system architecture design 
problem is module connection. Based on our design 
principles, we have created a software system called 
Codger (communications database with geometric 
reasoning) that supports parallel asynchronous execu- 
tion and communication between modules. The next 
section describes Codger in detail. 

We have employed parallelism in our perception, 
planning, and control subsystems to navigate in real 
time. Our computing resources consist of several 
Sun-3 microcomputers, VAX minicomputers, and a 
high-speed parallel processor known as the Warp-all 
interconnected with an Ethernet. We have designed 
and implemented the Codger software system to effec- 
tively utilize this parallelism. 

The Codger system for parallel processing. Codger 
consists of a central database (local map), a process 
called LMB (local map builder) that manages this 
database, and the LMB interface (a function library 
for accessing data, as shown in Figure 7). The LMB 
interface compiles the system’s perceptual, planning, 
and control modules; the modules, in turn, invoke 
functions to store and retrieve data from the central 
database. We can run Codger on any mix of Sun-3s 
and VAXs to  handle data type conversions automati- 
cally, permitting highly modular development that 
requires recompilation only for modules directly 
affected by changes. 

Data representation. Tokens-lists of attribute- 
value pairs-represent local map data. We can use 
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Figure 7. The Codger software system. 

tokens to represent physical objects, hypotheses, 
plans, commands, and reports. A template file read 
by the LMB at system startup time defines token 
types. Attribute types can be the usual scalars (for 
example, floats and integers), sets of scalars, or geo- 
metric locations. Geometric locations consist of a 
two-dimensional polygonal shape and a reference 
coordinate frame. Codger provides mechanisms for 
defining coordinate frames and automatically con- 
verting geometric data from one frame to another, 
thereby ( I )  enabling modules to retrieve data from the 
database and (2)  representing that data in a form 
meaningful to the modules. Geometric data is the 
on ly  data that Codger interprets; all other data types 
are interpreted by the modules using them. 

.Sj,nchroni,-ation. The LMB interface provides func- 
tiops for storing and retrieving data from the central 
database. Tokens can be retrieved using specifications 
(Boolean expressions evaluated across token attribute 
values). Specifications can include computations such 
as mathematical expressions, Boolean relations, and 
comparisons between attribute values. Geometric 
indexing is particularly important for mobile robot 
systems. For example, planners must search a map 
object database to locate suitable landmarks or to 
find the shortest path to goals. Codger provides many 

functions, including those for computing distance and 
intersections of locations-functions that can be 
embedded in specifications and matched to the 
database. 

Codger embeds a set of primitives synchronizing 
and smoothing data transfer between system modules. 
The data retrieval mechanism implements synchroni- 
zation. Modules send specifications to the LMB as 
either one-shot or standing requests: The calling mod- 
ule blocks for one-shot specs, while the LMB matches 
the spec to the tokens and retrieves matching tokens, 
and the module resumes execution. I f  no tokens 
match, the module either stays blocked until a match- 
ing token appears in the database-or an error is 
returned and the module resumes execution- 
depending on an option specified in the request. For 
example, before it can plan a path, the path planner 
may use a one-shot request to find obstacles stored in 
the database. In contrast, Helm (controlling the vehi- 
cle) uses a standing spec to retrieve tokens that supply 
steering commands whenever those tokens appear. 

Parallel asynchronous execution of modules. Thus 
far, we have run ou r  scenarios with four Sun-3s inter- 
connected through an Ethernet. Captain, Map Navi- 
gator, Pilot, and Helm are separate modules in the 
system; Perception comprises two modules (range and 
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camera image processing). The modules run in paral- 
lel, synchronizing themselves through the LMB 
database. 

Global and local navigation. The interaction 
between Captain, Map Navigator, and Pilot exempli- 
fies Codger’s parallelism. Captain and Map Navigator 
search the map database to plan the vehicle’s global 
path in accordance with mission specifications. Pilot 
coordinates Perception, Path Planning, and control 
through Helm to navigate locally. Global and local 
navigation operations r u n  in parallel. Map Navigator 
monitors Pilot’s progress to ensure that Pilot’s transi- 
tion from one route segment to the next occurs 
s ni oo t h 1 y . 

Driving pipeline. Another good example of parallel- 
ism occurs wi thin  Pilot itself. As described earlier, 
Pilot monitors local navigation. For each driving unit, 
Pilot performs operations in the following order: 
Pilot predicts the driving unit, recognizes it with the 
camera and scans i t  for obstacles with the range 
finder, plans a path through it ,  oversees the vehicle’s 
execution of it, and establishes driving constraints. 
These four operations are separate modules in Pilot, 
linked together in a pipeline (see Figure 8). While in 
steady state, Pilot ( 1 )  predicts a driving unit 12 to 16 
meters in front of the vehicle, (2) recognizes a driving 
uni t ,  ( 3 )  scans i t  for obstacles (in parallel) eight to 12 
meters in front, (4) plans a path four to eight meters 
in front, and (5) drives to a point four meters in 
front. The stages of the pipeline synchronize them- 
selves through Codger’s database. 

Processing times vary for each stage as a function 
of the navigation task. The vision subsystem requires 
about 10 seconds of real time per image when navigat- 
ing on uncluttered roads, the range subsystem 
requires about six seconds, and Local Path Planner 
requires less than a second. I n  this case, the pipeline’s 
stage time equals the vision subsystem’s-specifically, 
10 seconds. In cluttered environments, Local Path 
Planner may require I O  to 20 seconds or more- 
thereby becoming a bottleneck. In either case, Helm 
does not permit the vehicle to drive onto a driving 
uni t  unti l  that driving unit  has propagated through all 
stages of the pipeline (that is, until all operations have 
been performed on it). For example, when driving 
around the corner of a building, the vision stage must 
wait u n t i l  the vehicle reaches the corner to see the next 
dri1,ing un i t .  And once the vehicle reaches the corner, 
i t  mus t  wait for the vision, scanning, and planning 
stages to process the driving unit before driving again. 

- 
Recog n ize/Scan 

Plan 

~~ ~ 

Figure 8. The driving pipeline. 

NavLab and Terregator are equipped with many 
sensors including a laser range finder, color cameras, 
and motion sensors such as a gyro and shaft-encoder 
counter. To obtain a single, consistent interpretation of 
the vehicle’s environment, sensor results must be 
fused. 

Types of sensor fusion. We have identified three 
types of sensor fusion:‘ 

Competitive fusion-Sensors provide data that 
either agrees or conflicts. Both cases arise when 
sensors provide data of the same modality. In  
CMU’s systems, determining the vehicle’s posi- 
tion best characterizes this type of fusion. Read- 
ings from the vehicle’s dead-reckoning system 
and landmark sightings provide vehicle position 
estimates. 
Complementary fusion-Sensors provide data of 
different modalities. Recognizing three- 
dimensional objects illustrates this kind of 
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fusion. Using a color camera and laser range 
finder, CMU systems recognize a set of stairs. 
The color camera provides image information 
(such as color and texture) while the laser range 
finder provides three-dimensional information. 
Independent fusion-CMU systems use a single 
sensor for each task. For example, distant land- 
mark recognition requires a single sensor. In this 
case, only the camera is used for landmarks 
beyond the range of the laser range finder. 

Examples of sensor fusion tasks. Vehicle position 
estimation and landmark sighting exemplify sensor 
fusion tasks. 

Vehicle position estimation. In our road-following 
scenarios, vehicle position estimation has been the 
most important sensor fusion task. By vehicle posi- 
tion, we mean the vehicle’s position and orientation in 
the ground plane (three degrees of freedom) relative 
to the world coordinate frame. The current system 
has two sources of position information. 

First, dead reckoning provides vehicle-based posi- 
tion information. Codger maintains a history of steer- 
ing commands issued to the vehicle, effectively 
recording the vehicle’s trajectory from its starting 
point. 

Second, landmark sightings directly pinpoint the 
vehicle’s position with respect to the world at a given 
time. In the campus test site, the system has access to 
a complete topographical map of sidewalks and inter- 
sections on which it drives; it uses a color camera to  
sight the intersections and sidewalks, and uses these 
sightings to correct the vehicle’s estimated position. 
Intersections are of rank three, meaning that the vehi- 
cle’s position and orientation with respect to the inter- 
section can be determined fully (to three degrees of 
freedom) from the sighting. 

Our tests have shown such landmark sightings to be 
far more accurate-but less reliable-than the current 
dead-reckoning system; that is, landmark sightings 
provide more accurate vehicle position estimates but 
the sightings occasionally fail. If  vehicle position esti- 
mates from landmark sighting and dead-reckoning 
disagree drastically, Codger settles the conflict in 
favor of the dead-reckoning system; otherwise, the 
landmark sighting is used. In such cases, Codger 
adjusts the vehicle trajectory record to agree with the 
most recent landmark sighting and discards all previ- 
ous sightings. 

Codger can handle landmark sightings of less than 
rank three. The sidewalk on which the vehicle drives 
is our most common landmark. Since a sidewalk 
sighting provides only the orientation and perpendicu- 
lar distance of the vehicle to  the sidewalk, the correc- 
tion is of rank two. Therefore, the vehicle’s position 
is constrained to lie on a straight line. Codger projects 
the vehicle’s position from dead reckoning onto this 
line, using the projected point as a full (rank three) 
correction. This approximation works well since most 
vehicle motion error is lateral drift from the road. 

Pilot control. Complementary fusion is grounded in 
Pilot’s control functions. Pilot ensures that the vehi- 
cle travels only where it is permitted and where it is 
able. For example, the color camera segments road 
from nonroad surfaces. The laser range finder scans 
the area before the vehicle for obstacles or unnaviga- 
ble (that is, rough or steep) terrain. The road surface 
is fused with free space and passed to Local Path 
Planner. Since the two sensor operations do not 
necessarily occur simultaneously, the vehicle’s dead- 
reckoning system also comes into play. 

Colored range image. Another example of camera 
and range data complementary fusion is the colored 
range image, created by “painting” a color image 
onto a range image depth map. Our systems use the, 
resultant image to recognize complicated three- 
dimensional objects (such as a set of stairs). To avoid 
relatively large error in the vehicle’s dead-reckoning 
system, the vehicle remains motionless while digitizing 
a corresponding pair of camera and range images.’ 

Problems and future work. We plan to improve our 
sensor fusion mechanisms. Currently, Codger handles 
competing sensor data by retaining the most recent 
measurement and discarding all others. This is 
undesirable for the following reasons: First, a single 
bad measurement (for example, a landmark sighting) 
can easily throw the vehicle off track. Second, meas- 
urements can reinforce each other. By discarding old 
measurements, Codger loses useful information. The 
system needs a weighting scheme to combine compet- 
ing sensor data. In many cases, it’s useful to model 
error in sensor data as Gaussian noise. For example, 
dead-reckoning error can arise from random error in 
wheel velocities. Likewise, quantization error in range 
and camera images can be modeled as Gaussian noise. 
Various schemes exist for fusing such data, ranging 
from simple Kalman filtering techniques to full-blown 
Bayesian observation networks.”’ 
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Management of driving units and sensor view 
frames is essential in local control. This section dis- 
cusses control problems in local navigation. 

Adaptive driving units and sensor view frames. For 
each driving unit (each minimum control unit), the 
CMU system perceives objects, generates a path plan, 
and drives the vehicle. The Perception module digi- 
tizes an image in each driving unit, and the vehicle’s 
position is estimated and its trajectory is planned once 
in each driving unit. Therefore, stable control requires 
an appropriate driving unit size. For example, the sen- 
sor view frame cannot cover avery large driving unit. 
Conversely, small driving units place rigid constraints 
on Local Path Planner because of the short distance 
between starting point and goal point. Aiming the 
sensor view frame determines the point at which to 
digitize an image and to update vehicle position and 
path plan. 

Our current system’s sensor view frame is always 
fixed with respect to the vehicle. Driving unit size is 
fixed for driving on roads (four to six meters in 
length) and is changed for turning at intersections so 
that the entire intersection appears in a single image 
(for easy recognition) and to increase driving stability 
(see Figure 9). In current test sites, this method almost 
always works well. 

For intersections requiring sharp turns (about 135 
degrees), the current method does not suffice. 
Because there is only one driving unit at intersections, 
the system digitizes an image, estimates vehicle posi- 
tion, and generates a path plan only once for a large 
turn. Furthermore, since the camera’s field of view is 
fixed straight ahead, the system cannot see the driving 
unit after an intersection until the vehicle has turned 
through the intersection. Though actual paths gener- 
ated are not so bad, they are potentially unstable. 

This experimental result indicates that the system 
should scan for an admissible passage, and update 
vehicle position estimation and local path plan more 
frequently when the vehicle changes its course faster. 
We have the following plan to improve our method 
for managing driving units: 

Driving unit length-The length of the driving 
unit is bounded at the low end by Local Path 
Planner’s requirements for generating reasonable 
path plans, and at the high end by the view frame 
that Perception requires for recognizing given 
objects . 

swalk4 

. . . . 

Figure 9. An intersection driving unit. 
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Figure 10. Adaptive driving units. 

Driving unit interval-The distance between 
centers of adjacent driving units is the driving 
unit interval. Adjacent driving units can be over- 
lapped: that is, they can be placed such that their 
interval is shorter than their length (see Figure 
10). 
Adjusting driving unit length and interval-In 
simple passages, the lengths and intervals of driv- 
ing units are long. If the passage is complex (for 
example, on highly curved roads and intersec- 

._ 
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tions or in the presence of obstacles) the lengths 
and intervals are shorter. And if the required 
driving unit interval must be shorter than the 
driving unit length, driving units are overlapped. 
Therefore, the vehicle’s position is estimated and 
a local path is planned more frequently so that 
the vehicle drives stably, as Figure 10 illustrates. 
Adjusting sensor view frame-The sensor view 
frame with respect to the vehicle (that is, the dis- 
tance and direction from the vehicle to the driv- 
ing unit) is adjusted using the pan-and-tilt 
mechanism of the sensor. In most cases, a longer 
distance to the next driving unit allows a higher 
vehicle speed. If Perception and Pilot processing 
times are constant, the longer distance means a 
higher vehicle speed. But the longer distance 
produces less accuracy in perception and vehicle 
position estimation. Therefore, distance is deter- 
mined for required accuracy, depending on the 
passage’s complexity. Using the pan-and-tilt 
mechanism, Perception digitizes an image at the 
best distance from the driving unit, since the sen- 
sor’s view frame is less rigidly tied to the vehicle’s 
orientation and position. 

Vehicle speed. Autonomous mobile robots must be 
able to adjust vehicle speed automatically so that 
vehicles drive safely at the highest possible speed. The 
current system slows the vehicle in turning to reduce 
driving error. 

Delays in processing in Local Path Planner and 
communication between Helm and the actual vehicle 
mechanism cause error in vehicle position estimation. 
For example, because of continuous motion and non- 
zero processing time, vehicle position used as a start- 
ing point by Local Path Planner differs slightly from 
vehicle position when the vehicle starts executing the 
plan. Because smaller turning radii give rise to larger 
errors in vehicle heading, which are more serious than 
displacement errors, Helm slows the vehicle for 
smaller turning radii-a useful method for stabilizing 
vehicle mqtion. 

tem to adjust vehicle speed to the highest possible 
value automatically: 

.. 

I ’  

We have the following method for enabling our sys- 

Schedule token-In each cycle, modules and sub- 
modules working at the local navigation level 
store their predicted processing times in a sched- 
ule token. Perception is the most time-consuming 
module, and its processing time varies drastically 
from task to task. 

Adjusting vehicle speed-Using the path plan 
and predicted processing time stored in the sched- 
ule token, Helm calculates and adjusts vehicle 
speed to maximum acceleration and the modules 
can finish processing the driving unit before the 
vehicle reaches the end of its planned trajectory. 

Local path planning and obstacle avoidance. Local 
path planning finds a trajectory for the vehicle 
through admissible space to a goal point. Our vehicles 
are constrained to move in ground planes around 
obstacles (represented by polygons) while remaining 
within a driving unit (also a polygon). We have 
employed a configuration space How- 
ever, this algorithm assumes the vehicle is omnidirec- 
tional. Since our vehicles are not, we smooth the 
resultant path to ensure that the vehicle can execute it. 
The smoothed path is not guaranteed to miss obsta- 
cles. We plan to overcome this problem by developing 
a path planner that reasons about constraints on the 
vehicle’s motion. 

Some a priori information about the vehicle’s envi- 
ronment must be supplied to the system-even if that 
information is incomplete, and even if it is nothing 
more than a data format for storing explored terrain. 
For example, the user mission “turn at the second 
cross intersection and slop in front of the three oak 
trees” does not make sense to the system without 
environmental description. The navigation map is a 
database storing the environment description needed 
for navigation. 

Map Structure. The navigation map-a description 
of physical objects in the navigation world-is com- 
posed of two parts: the geographical map, and the 
object database. The geographical map stores object 
locations with their contour polylines. The object 
database stores object geometrical shapes and other 
attributes; for example, the navigational cost of 
objects. Our current system describes all objects with 
both the geographical map and the object database; in 
general, however, either of them can be unused. For 
example, the location of a particular flight of stairs is 
known but its shape is unknown. 

first layer stores shape attributes (such as road width, 
road length, stair height, or number of steps). The 

Shape descriptions are composed of two layers. The 
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Figure 11. Extended system architecture. 

second layer stores actual geometrical shapes repre- 
sented by the surface description. It is easy to describe 
incomplete shape information with only the first 
layer. 

Data retrieval. Map data is stored in the Codger 
database as a set of tokens forming tree structure. To 
retrieve map data, parent tokens contain indexes to 
children tokens. Because Codger currently provides 
modules with a token retrieval mechanism that picks 
up only one token at a time, retrieving large portions 
of the map is cumbersome. We plan to extend Codger 
so that it can match and retrieve larger structures, 
possibly combining that with an inheritance 
mechanism. 

While navigation is one goal of a mobile robot sys- 
tem, navigation itself is not an end; instead, it is a 
means for achieving the final goals of the autonomous 
mobile robot system-goals such as exploration, 
refueling, and carrying baggage. Therefore, system 
architecture must accommodate tasks other than navi- 
gation. 

Figure 11 illustrates one example of an extended sys- 
tem architecture that loads, delivers, and unloads bag- 

gage. Four layers comprise the whole system-mission 
control, vehicle resource management, signal process- 
ing, and physical hardware. Captain (only one module 
in the mission control layer) stores the user mission 
steps, sends them to the vehicle resource management 
layer one by one, and oversees their execution. 

In the vehicle resource management layer, different 
modules work for different tasks. Although their tasks 
are different, modules work in a symbolic domain and 
do not handle the physical world directly. They oversee 
mission execution, generate plans, and pass informa- 
tion to modules in the signal processing layer. Through 
Codger, they communicate with each other if neces- 
sary. Included in the vehicle resource management 
layer are Map Navigator and Pilot, parts of the navi- 
gation system. Manipulator makes a plan (for exam- 
ple, how to load and unload baggage with the arm) 
and sends it to Arm Controller. 

Using sensors and actuators, modules in the signal 
processing layer interact with the physical world; for 
example, Perception processes sensor signals, Helm 
drives the physical vehicle, and Arm Controller oper- 
ates the robot arm. The bottom level contains the real 
hardware, even if it includes some primitive controller. 
This layer includes the sensors, the physical vehicle, 
and the robot arm. 

Codger system, we can easily expand it to include 
these additional capabilities. 

Since we built our current system architecture on the 

.. 

.. 

.. 
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W e have described the CMU architecture 
for autonomous outdoor navigation-a 
highly modular architecture including 
components for both global and local 

navigation. A route planner carries out global naviga- 
tion, searching a map database to find the path best 
satisfying a mission, and overseeing its execution. 
Modules carry out local navigation, using a color 
camera and a laser range finder to recognize roads and 
landmarks, scanning for obstacles, reasoning about 
geometry to plan paths, and overseeing the vehicle’s 
execution of a planned trajectory. 

A single system integrates perception, planning, and 
control components through the Codger software sys- 
tem. Codger provides a common data representation 
scheme for all modules in the system, paying special 
attention to geometry. Codger also provides primitives 
for synchronizing modules to maximize parallelism at 
both local and global levels. 

We have demonstrated our system’s ability to drive 
around a network of sidewalks and along a curved 
road, to recognize complicated landmarks, and to 
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avoid obstacles. Future work will focus on improving 
Codger to handle more difficult sensor fusion prob- 
lems. This work will seek better schemes for local 
navigation and will strive to reduce our dependence on 
map data. [B 
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