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Abstract— In this paper, we present a direct fusion algorithm
for processing the combination of two Dirac mixture densities.
The proposed approach allows the multiplication of two Dirac
mixture densities without requiring identical support and thus
enables the fusion of two independently generated sample sets.
The resulting posterior Dirac mixture density is an approxima-
tion of the true continuous density that would result from the
processing of the underlying true continuous density functions.
This procedure is based on a suboptimal greedy approximation
of the joint state space by means of a Dirac mixture that
iteratively increases the resolution of the fusion result while
considering only the relevant regions in the joint state space,
where the fusion constraint holds.

NOTATION

x State vector ∈ IRN

x, x Random variable and random vector
δ(x) Dirac delta function
H(x) Heaviside step function
δ(x) Multi–dimensional Dirac delta function
f̃(x) True density function (to be approximated)
f(x) Approximate density function
F (x) Cumulative distribution function

N (·,m, σ) Gaussian density with
mean m and standard deviation σ

(·)p (Upper index p) Posterior quantity
x ↓ Z Projection of x onto subspace Z

I. INTRODUCTION

In many technical applications, the fusion of information
given as probability densities is an important issue. An
example of great interest lies in the area of processing
information by means of sensor networks, which are used in
observation of distributed phenomena [1]. Here, an important
problem is the exchange of information between single sensor
nodes [2], [3]. The computational task of the sensor nodes is
to perform the data fusion in a decentralized manner where
many nodes in the network perform the task, i.e., without a
central processing node.

Unfortunately, in many such applications, the processing
of the true continuous densities is either too complex or
impossible. In order to overcome this problem, the density
functions are approximated by parameterized functions that
are more suitable for further processing. Well–known methods
for estimation purposes are the Kalman filter [4] for linear
systems and extensions of it, like the Extended Kalman
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Fig. 1. Application example: Sensor network. Exchange of information in
form of probability density functions given as Dirac mixture densities.

Filter [5] or Unscented Kalman Filter [6]. Unfortunately, the
resulting Gaussian densities are not capable of representing
arbitrary density functions that may appear in estimation
problems of arbitrary nonlinear systems. Other density
representations include Gaussian mixture densities [7], grid–
based approaches [8], simple moments of probability density
functions [9], exponential densities [3], fourier series [10],
[11], the representation by means of sample sets [12], or Dirac
mixture densities [13], which are capable of representing more
general densities.

The advantages of these parameterizations, like fast and
simple processing, are at the expense of the versatility of
arbitrary processing of these densities. Often, fixed processing
steps are defined, which only solve some special problems,
like the Bayesian filter step or prediction step in a special
manner. Different mappings of density functions, like the
computation of the point wise maximum or average, are
often difficult to handle or intractable.

In this work, a special case of processing Dirac mixture
densities on continuous domains is considered. The Dirac
mixture representation, or sample set representation, is useful
for a number of applications. It allows simple and fast
processing, even for nonlinear systems, and the approximation
of arbitrary probability density functions. A main problem of
this representation is direct point wise multiplication, or the
direct Bayesian inference of two Dirac mixture densities.
Usually, the result of the multiplication of these density
representations is not well defined as the two densities
do not possess the same support. Here, the Dirac mixture
densities are assumed to represent underlying true continuous
densities, which is then exploited by approximating the



corresponding joint densities around the fusion constraint.
The Dirac mixture resulting from the direct fusion, i.e., by
evaluating the approximation of the joint density at the fusion
constraint, is then an approximation of the continuous density
that would result from fusing the underlying true continuous
densities.

The paper is structured as follows. In the next Section,
related works in the area of handling Dirac mixture functions
are briefly described. Section III gives an introduction to
Dirac mixture densities and the problem solved within this
work. A general approach for handling this kind of problem
by considering the joint state space for the processing function
is shown in Section IV. In Section V the approximation of
the joint state space by means of Dirac mixture that can be
transformed into the posterior density is described in detail.
In Section VI, the performance of the proposed procedure is
depicted in different examples.

II. RELATED WORK

For approximating continuous density functions by means
of Dirac mixture densities, different approaches exist. The
probably best known and in many cases easy to implement
algorithm is Monte Carlo sampling, applied in the particle
filter [12]. A drawback of this sampling algorithm is the
independent treatment of each sample, the non–determinism
of the representation, and thus, the need for a large number
of sample points. These problems are partially treated by
deterministic quasi Monte Carlo sampling techniques [14].

Further improvements include the systematic approximation
by minimizing a certain distance measure in cumulative
distribution space. For that purpose, two procedures have
been introduced: batch approaches and sequential approaches.
Batch approaches calculate the optimal positions and weights
of all Dirac mixture components simultaneously [13], [15],
whereas sequential approaches are iterative algorithms that
improve the approximation quality gradually by inserting
single Dirac components at specific locations [16], [17]. This
allows adjusting the approximation online, until the desired
quality is obtained, or until the algorithm runtime is consumed,
which enables the application of the given algorithm to be
used in realtime scenarios.

The main problem addressed in this paper is Bayesian
fusion of two sample sets given as Dirac mixture densities.
This problem has been considered by a few authors only
and has not been satisfactorily solved so far. Previous work
focused on the reconstruction of the underlying continuous
density from which the discrete sample sets are generated.
In the field of Bayesian analysis, the problem of estimating
parameters of continuous densities from samples is treated in
[18]. Problems within this framework arise from assumptions
on the underlying continuous density, like the kind of density
class or the number of components and parameters used,
which often do not comply with the true continuous density.
Other approaches include the use of Gaussian mixture models
and the estimation of their parameters by means of expectation
maximization [19] and the use of Gaussian kernels that
are placed onto every Dirac component. The choice of the
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Fig. 2. Processing of two true densities f̃x and f̃y . The approximations A
of the true densities and the processing step K̃ give fx, fy , and K, which
result in the posterior density fp that is an approximation of the resulting
true density f̃p.

variance of the Gaussian kernel is crucial, which serves as
a smoothing function of the discrete Dirac mixture density.
In this paper, the fusion of two Dirac mixture densities will
be performed directly without resorting to an intermediate
smoothed representation.

III. PROBLEM FORMULATION

First, some general definitions about Dirac delta functions δ
and their corresponding cumulative distribution, the Heaviside
distribution function H , are made.

Definition III.1 The one–dimensional Dirac delta function
is defined by

δ(x− ξ) =
{

undefined, x = ξ
0, elsewhere

with the property
∫∞
−∞ δ(x − ξ)dx = 1. The cumulative

distribution function of a Dirac delta function is the Heaviside
function

H(x− ξ) =

 0, x < ξ
1
2 , x = ξ
1, x > ξ

.

The N dimensional Dirac delta function is defined as the
product of N one–dimensional delta functions

δ(x− ξ) =
N∏
i=1

δ(xi − ξi) with x, ξ ∈ IRN .

Now, we consider two random vectors x and y on
continuous domains x ∈ IRN and y ∈ IRN characterized
by two Dirac mixture densities given by

fx(x) =
Lx∑
i=1

wxi δ(x− ξ
x

i
) ,

fy(y) =
Ly∑
i=1

wyi δ(y − ξ
y

i
) ,

(1)

whereas the corresponding weights wxi and wyi sum up to 1
for each Dirac mixture and are all positive. The two mixtures
generally possess a different number of components and do
not have the same support.

Our goal is to perform a Bayesian fusion of the two
random vectors x and y, i.e., multiplication with a subsequent
renormalization, which at first look is not possible as the



multiplication of two Dirac mixtures with different support
is not well-defined.

Here, we assume the Dirac mixture densities to be
approximations of underlying true continuous densities f̃x
and f̃y, see Fig. 2, that are unknown. Hence, a modified
Bayesian fusion mechanism denoted by K has to be found
that approximates the true fusion mechanism K̃ in such a
way that the direct fusion of the two Dirac mixtures results
in a new Dirac mixture, which is a close approximation of
the true continuous density f̃p that would result from fusing
the underlying true densities f̃x and f̃y .

IV. GENERAL APPROACH IN JOINT STATE SPACE

In this section, the general approach for the processing
of two Dirac mixture densities in the joint state space is
described.

Two N–dimensional random vectors x and y are described
by their probability density functions fx and fy. The joint
density is given as the 2N–dimensional Dirac mixture density

f(x, y) =
Lxy∑
i=1

wxyi δ

([
x
y

]
− ξxy

i

)
.

with weights xxyi and 2N–dimensional component locations
ξxy
i

. Note, that in the case of independent random variables,
the joint density function f(x, y) can be calculated according
to the product f(x, y) = fx(x) · fy(y).

In order to obtain the resulting posterior density fp(x),
the joint density has to be evaluated according to the fusion
constraint y = x, i.e., fp(x) = f(x, x). The problem is that
this result is usually zero, because there is no mutual support
of the single densities and thus the Dirac components ξxy

i
in

joint state space do not match to the fusion constraint.
In this paper we propose the approach of approximating

the given Dirac mixture density f(x, y) by a representation
that is well defined over the fusion constraint and can be
converted into the desired posterior density fp(x) in the
special case of combining two random vectors according to
the constraint y = x. Thus, an appropriate representation of
the joint density in the region of interest is needed without
any knowledge of the underlying true densities f̃x and f̃y .

V. DIRAC APPROXIMATION

A. Approximation of Joint Density

The approximation approach is a special case of Dirac ap-
proximation of arbitrary multi–dimensional density functions
[17]. Here, only Dirac mixture densities are considered.

Given are two Dirac mixture densities fx(x) and fy(x).
The algorithm for the approximation of 2N–dimensional joint
densities f̃(x, y) by means of Dirac mixture components is
based on a greedy algorithm that improves the approximation
quality at specific locations of interest. These regions have
two things in common: the approximation quality over these
regions is low, i.e., the approximation can be improved by
inserting Dirac components into the approximation inside of
these regions, and they comply with the constraint y = x to
a certain degree.

In this algorithm, the joint state space is divided into axis–
aligned rectangular regions. Within each region, one Dirac
component approximates the probability mass of the true
density function.

Definition V.1 An axis–aligned rectangular region is defined
by two vectors l and u. A point x is inside of the region, if
l ≤ x ≤ u holds. The region is referred to as [l, u].

Remark V.1 Note, that for two vectors x, y ∈ IRN with x =
[x1, x2, . . . , xN ]T and y = [y1, y2, . . . , yN ]T the relation x ≤
y holds, if and only if for every element i the relation xi ≤
yi, i ∈ {1, . . . , N} holds.

One Dirac component approximates the true underlying
joint density f̃(x, y) with the same probability mass

w =
∫ u

l

f(x) dx . (2)

In the case of a Dirac mixture density f̃(x, y), the integral
(2) turns into a simple sum of weights of the components
inside [l, u]

w =
∑

{i:l≤ξ
i
≤u}

wi .

The following Lemma treats the approximation of two 2N–
dimensional Dirac components by one Dirac component. This
Dirac interpolation is used for positioning Dirac components
that approximate the specified axis–aligned region with
multiple Dirac components inside.

Lemma V.1 The Dirac position ξ interpolating two Dirac
components at locations ξ

a
and ξ

b
is

ξ =
ξ
a

+ ξ
b

2
.

Remark V.2 The resulting Dirac position ξ is used to group
the Dirac components and associated weights into two groups.
As it will be seen later, this Dirac position defines the location
of the splitting line that is used to reduce the considered
region, and furthermore maximizes entropy. Note, that this
position is independent of the Dirac weights.

The position of the Dirac component that approximates
the given region [l, u] is defined by all one–dimensional
sub–marginals of 2N–dimensional joint state space over the
considered region, as defined in Definition V.2. In Lemma
V.2 the position is derived.

Definition V.2 The one–dimensional sub–marginal of dimen-
sion j (described by subspace Zj) inside of the region [l, u]
is a Dirac mixture density

fj(zj) =
n∑
i=1

wj,iδ(zj − ξj,i) ,

with zj = [x, y]T ↓ Zj and ξj,i = ξ
i
↓ Zj , if l ≤ [x, y]T ≤ u

holds. The weight wj,i is equal to the weight wi of the



corresponding Dirac component in joint state space, if for
the Dirac position l ≤ ξ ≤ u holds. For Diracs outside of the
region, the weight wj,i is zero. If multiple components share
the same position in the sub–marginal, they are merged and
their weights are cumulated.

Lemma V.2 The Dirac position in joint state space regarding
all one–dimensional sub–marginals of the region [l, u] is
constructed by identifying the two sets of Dirac components
that approximately halve the probability mass. The limiting
components ξ

a
and ξ

b
are defined by their indices

a = arg min
k

{∣∣∣∣∣
(

k∑
i=1

wj,i

)
−

(
n∑

i=k+1

wj,i

)∣∣∣∣∣
}

and

b = a+ 1 .

With these components, the Dirac position ξ can be de-
termined by applying the procedure successively to every
dimension and using Lemma V.1.

The overall approximation algorithm starts with an 2N–
dimensional axis–aligned region covering all the given compo-
nents of the Dirac mixture f̃(x, y). Then, the probability mass
is calculated and the first approximating Dirac component
is inserted. In the next step, the region is split into two new
regions. In the following steps, the region that will be split
is chosen and the splitting is performed on it. These two
steps are repeated until no more regions can be split or the
desired approximation quality is reached. The complexity
of the algorithm depends linearly on the number of Dirac
components Lx and Ly of f(x) and f(y) and the number of
dimensions N . The algorithm is shown in Algorithm 1.

Algorithm 1 Approximation Algorithm
1: initialize with one Dirac component
2: while splitting candidates left or approximation quality

below threshold do
3: choose next splitting region
4: determine splitting direction
5: perform splitting
6: update new Dirac components
7: end while

B. Region Selection

The selection of the splitting region is an essential part of
the algorithm, because it determines the overall behavior of
the approximation algorithm. The refinement of the approxi-
mation has to be made at locations, where it contributes to
the resulting posterior density, and at those regions, where
the approximation quality is poor. Here, the selection process
is simple. The first requirement is that the constraint y = x
holds at least for one point p inside of [l, u]:

∃p =
[
px
py

]
: py = px ∧ l ≤ p ≤ u .

The second requirement is that the splitting region has
maximum probability mass w. Here, it is assumed that the

l

u

ξ

Fig. 3. Different splittings of a 2–dimensional region [l, u] with the
corresponding Dirac component ξ. The given region can be split in two
directions, resulting in two different sets of new sub–regions.

approximation quality, i.e., the error between the underlying
true density function f̃(x, y) and the single Dirac component
inside of a region, depends on the probability mass w. In
this way it is guaranteed that important regions with high
probability mass are favored.

For implementation, only these regions, in which the
constraint y = x holds, have to be kept, all others can be
discarded. This keeps the required memory usage low and
the considered region is subsequently narrowed towards the
diagonal, which gives the desired result.

C. Splitting

The splitting introduced here improves the approximation
quality of the joint density over the selected region. This is
performed by splitting the given region into two new axis–
aligned regions, whereas the union of them is the former
region and the new probability masses sum up to the former
probability mass.

The region is divided at the position ξ of the Dirac
component along an axis, resulting in 2N potential splittings,
e.g., in the case of a two–dimensional joint state space the
splitting is performed in either x or y direction. The splitting
direction is chosen in order to get quadratic regions, i.e., a
regular approximation, and to minimize the considered region
of the complete joint state space.

The first criterion defining the splitting dimension is
constraint evaluation. A potential splitting candidate is chosen,
if the plane y = x intersects with only one of the new regions.
In this case, the splitting only reduces the considered region
in joint state space without increasing the number of Dirac
components of the posterior approximation result. In the
second criterion the region [l, u] is split in the dimension i
of it’s maximum extent

i = max
i∈{1,...,2N}

{ui − li} .

Note, that regions containing only one Dirac component
cannot be split further. This holds for the dimensions,
whose sub–marginals contain one Dirac component only, too.
Figure 4 shows the regions after 14 splitting steps. Within
the yellow shaded regions the linear constraint is hold and
these Dirac components are processed further.
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Fig. 4. Dirac approximation of 2–dimensional joint state space after 14
splittings. The constraint y = x is hold in the yellow regions. Computed
Dirac positions are marked with a blue dot.

D. Posterior Density

In order to keep the equations simple, we consider a two–
dimensional joint state space, i.e., N = 1, from here on. The
approach for deriving the posterior Dirac mixture density

fp(x) =
Lp∑
i=1

wpi δ(x− ξ
p
i )

based on an approximation of the joint density will be
explained now. Generally, two problems have to be solved,
namely computing the weights and the positions of the indi-
vidual Dirac mixture components. A straightforward approach
is using the same weights wi of the Dirac components in
joint state space for the weights wpi of the posterior density
function fp(x). Unfortunately, this leads to wrong results. The
proposed algorithm approximated the joint state space, and
thus the joint probability mass of a complete rectangular
region, whereas for the resulting posterior density, only
the density on the diagonal y = x, i.e., f(x, x), shall be
considered.

This discrepancy of probability representation of the region
and the evaluation on a straight line can be handled in
the following way, assuming uniform distribution of the
probability mass w inside of [l, u]. This can be stated by
having continuous and smooth true density functions f̃x(x)
and f̃y(y), which result in a smooth and almost uniform
distribution inside of [l, u] in joint state space, assumed that
the considered region is small enough, i.e., sufficient Dirac
components are used for the approximation f(x, y). Hence,
the Dirac representation of the considered region can be
transformed into a uniform density function

fu(x, y) = fu(z) =
{ wQm

i=1 ui−li , l ≤ z ≤ u
0, elsewhere

. (3)

Now, the probability density over the diagonal can be
computed by evaluating a line integral over the region. For
that purpose, the integration limits have to be defined, as in
the following Lemma.
Lemma V.3 The number of intersection points between the
straight line y = x and the boundary of the axis–aligned
region [l, u] is either zero or two. In case of intersection, the

x

y

y   = x

l

u

ξ

p

p
l

p
u

Fig. 5. The resulting Dirac component p is set at the center of the intersection
of the considered region and the straight line y = x and approximates the
probability mass of the region [l, u] on the diagonal.

points are at the locations

p
l
= [max{l},max{l}]T ∈ IR2 and

p
u

= [min{u},min{u}]T ∈ IR2 .

Now, the probabilty mass wp of the Dirac component of the
posterior density function is

wp ∝
∫ p

u

p
l

w∏m
i=1 ui − li

dp

=
√

2 (min{u} −max{l}) · w∏m
i=1 ui − li

. (4)

Note, that the probabiliy mass wp is only proportional to (4),
because the complete approximation of joint state space is
a normalized density. Thus, the diagonal f(x, x) is never a
normalized density function, however, the weights wp can be
normalized afterwards, after the processing of all posterior
weights wpi .

The second step in computing the posterior density is
the assignment of the Dirac position. Again, assuming
uniform distribution over the considered region (3) leads
to Theorem V.1, which states the optimal Dirac position p.
The geometrical layout of the region [l, u], the straight line
y = x, the intersection points p

l
, p

u
, and the resulting Dirac

position p are shown in Figure 5.

Theorem V.1 The Dirac position minimizing the Cramér-von
Mises distance measure of the posterior probabilty distribution
for a given region is

p =
p
l
+ p

u

2
.

PROOF. Let xp, xl, and xu be the projections of p, p
l

and p
u

onto
the one–dimensional X–subspace. Let the probability mass w be
uniformly distributed over the region [l, u]. wp is the probability
mass over the line integral according to (4). The projection of the
uniform density over the line integral onto X gives the density

fp
u(x) =


wp

xu−xl
, xl ≤ x ≤ xu

0, elsewhere
.

The one–dimensional Cramér-von Mises distance of the posterior
distributions can be calculated according to
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Fig. 6. Comparison of the processing of true density functions (blue) and their Dirac mixture approximations (red). The number of Dirac components used
was both 5 for f(x) and f(y). The posterior density consists of 7 Dirac components.

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

0.8

1

x→
F

p
(x

)
→

−3 −2 −1 0 1 2 30

0.2

0.4

y →

f
(y

)
→

−3 −2 −1 0 1 2 30

0.2

0.4

x→

f
(x

)
→

x→

Fig. 7. Comparison of the processing of true density functions (blue) and their Dirac mixture approximations (red). The number of Dirac components used
was both 10 for f(x) and f(y). The posterior density consists of 18 Dirac components.
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Fig. 8. Comparison of the processing of true density functions (blue) and their Dirac mixture approximations (red). The number of Dirac components used
was both 25 for f(x) and f(y). The posterior density consists of 35 Dirac components.

D(xp) =

Z ∞
−∞

(F p
u (x)−H(x− xp))2 dx

=

Z xu

xl

„
wp · (x− xl)

xu − xl
−H(x− xp)

«2

dx .

The root of the derivative
∂

∂xp
D(xp) =

(wp)2(xl + xu − 2xp)

xl − xu

is xl+xu

2
, which leads with the condition y = x directly to the

desired result for p. �

In the final step, the Dirac position p in joint state space
is projected onto the X subspace, which gives the position
ξp of the posterior Dirac mixture component. Note, that the
optimality regarding the Cramér-von Mises distance can only
be stated for one–dimensional problems.

VI. EXAMPLES

In this Section, examples are given for demonstrating the
usefulness and performance of the proposed fusion approach

for two Dirac mixture densities. For that purpose, two known
continuous densities are approximated by means of Dirac
mixtures. Then, the result of fusing the Dirac mixtures is
compared with the result of fusing the known continuous
densities.

Example VI.1 This example shows the result of processing
two Gaussian densities f̃(x) = N (x, 0.5, 1) and f̃(y) =
N (y, 0, 1.2) directly and via their Dirac mixture approximations
according to the algorithm described in [17]. Figure 6, Figure 7,
and Figure 8 show the processed densities and the results
for 5, 10 and 25 Dirac components used for both densities. In
the upper left of each figure, the true continuous density f̃(x)
(blue) and its Dirac mixture representation (red) are shown.
The lower left part displays the other density f̃(y) and the
corresponding Dirac mixture density. The processing result is
shown on the right hand side. Cumulative distribution functions
of the true distribution F̃ p (blue) and the approximation result
(red) are shown. It is obvious, that the Heaviside mixture
function representing the result of fusing the Dirac mixture
approximations directly approaches the result of fusing the
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Fig. 9. Cramér-von Mises distance D between the approximated distribution
F p(x) and the true distribution F̃ p(x).

underlying true continuous distribution function with a growing
number of components.

Example VI.2 In this example, the approximation quality is
investigated for a different number of Dirac mixture components.
The densities from Example VI.1 are approximated by two
Dirac mixtures with the same number of components. Figure 9
displays the Cramér–von Mises distance D between the
approximated posterior Distribution F p(x) and the true posterior
distribution F̃ p(x). The distance measure quickly decreases
with a growing number of components.

VII. CONCLUSION AND FUTURE WORK

A new approach is proposed for the fusion of two Dirac
mixture densities on continuous domains that are assumed to
be approximations of underlying but unknown continuous den-
sities. The Dirac mixtures are not required to possess the same
support and are processed directly without prior smoothing,
which results in a new Dirac mixture that approximates the
(fictitious) result of fusing the true continuous densities. This
is performed by approximating the corresponding joint density
around the fusion constraint with a subsequent evaluation at
the fusion constraint.

In a fusion mechanism, the new approach allows all the
continuous densities to be represented by Dirac mixtures
in an integrated manner and provides an efficient tool for
their processing. Its performance has been demonstrated by
simulations based on known underlying continuous densities.

In this paper, only the specific fusion constraint x = y for
the combination of two random vectors has been considered.
Future work will be concerned with more general fusion
constraints resulting from nonlinear measurement equations,
which also includes the case of random vectors with different
dimensions. As a result, including a measurement is different
from just multiplying the component weights with the
given likelihood function as performed in the particle filter
measurement update and allows a systematic reapproximation
of the update result.

In addition, the proposed new approach will be generalized
to more general operations on two densities such as the
point wise maximum or convolutions used for performing
the prediction step in stochastic dynamic systems.

For dependent random quantities to be fused, we have to
distinguish two cases. The first case, known dependencies,
can easily be treated with the approach proposed in this paper
by replacing the product of the two densities in the joint state
space by the given joint density. The second case, unknown
dependencies, is far more involved and the topic of current

research. It requires the reconstruction of the set of possible
joint densities from their respective marginals.
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