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Abstract— In seismic, radar, and sonar imaging the exact de-
termination of the reflectivity distribution is usually intractable
so that approximations have to be applied. A method called
synthetic aperture focusing technique (SAFT) is typically used
for such applications as it provides a fast and simple method to
reconstruct (3D) images. Nevertheless, this approach has several
drawbacks such as causing image artifacts as well as offering
no possibility to model system-specific uncertainties.

In this paper, a statistical approach is derived, which models
the region of interest as a probability density function (PDF)
representing spatial reflectivity occurrences. To process the
nonlinear measurements, the exact PDF is approximated by
well-placed Extended Kalman Filters allowing for efficient and
robust data processing.

The performance of the proposed method is demonstrated
for a 3D ultrasound computer tomograph and comparisons are
carried out with the SAFT image reconstruction.

I. INTRODUCTION

The determination of the reflectivity distribution of a

region of interest (ROI) addresses a wide area of applications.

Application fields may be found in radar imaging of the earth

[1], sonar imaging of the ocean bed [2], seismic imaging of

the earth’s crust [3] as well as in medical application based

on ultrasound imaging systems [4].

The measurement setup for analyzing reflectivity distri-

butions regarded in this paper consists of an arbitrarily

distributed sensor network that acquires reflectivity infor-

mation about a ROI. Additionally, unfocussed transmission

of pulses is regarded as this leads to faster data acquisition

especially for 3D applications. For each emitter and receiver

one data set is acquired, which are then fused to achieve

high resolution and high contrast images. By shifting the

transducers to different positions, e.g., the movement of an

airplane in synthetic aperture radar, the sensing aperture is

increased.

The reconstruction of the unknown reflectivity from the

measured data is called an inverse problem [5]. The inverse

problem refers to the situation of knowing the incidence

field of the emitter and the measured data of the receivers

and trying to reconstruct the object causing the variation of

the incidence field. This requires a precise knowledge of

the characteristics of the transducers as well as the physics

behind the propagation of the incidence wave and its inter-

action with the object under investigation. The mathematical
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solution of this inverse scattering problem is intractable, thus

approximation schemes are applied to yield an analytic [6]

or a numerical [7] solution. The solution with the smallest

number of approximations is known as diffraction tomogra-

phy [8], which is, however, computationally expensive as the

solution has to be determined iteratively.

To overcome these difficulties, the 3D reflectivity distribu-

tion is described by a statistical approach. For this purpose

the reflectivity in the ROI is modeled as a probability density

function (PDF), which may be of arbitrary shape representing

sharp peaks (point scatterers) and structural information

about the object under study. The PDF is approximated by

spatially well-placed Extended Kalman Filters, each of them

estimating a local reflectivity. After the complete data set

is processed, the estimates of all Kalman Filters are fused

to construct a global reflectivity estimate in an efficient and

robust way.

The paper is organized as follows: Section II gives a gen-

eral overview on the problem of determining the reflectivity

distribution measured by an arbitrarily placed sensor network

and presents the general key idea. In Section III, the proposed

solution is introduced and explained. Section IV presents

an application of the proposed image reconstruction method

on a 3D ultrasound computer tomograph and compares the

results with the usually applied synthetic aperture focusing

technique approach.

II. PROBLEM FORMULATION

The problem addressed in this paper is an image recon-

struction problem. As uncertainties in the overall system and

measurement process cause this problem to be ill-posed [9],

the solution for the inverse problem is intractable for the

considered system setup. In order to render this nonlinear

inversion problem tractable, the first-order Born approxima-

tion is employed, i.e., the incidence field at each scatterer

is assumed to be the only source, neglecting the scattered

fields from other scatterers. Furthermore, the refraction of

the emitted pulse is ignored.

Each reflection acquired by a receiver is the integral of

reflectivity (acoustic impedance, electrical permittivity) over

a hypersurface, see Fig. 1.

By intersecting data sets of different receivers, the source

can be located if just one reflector is present. The naı̈ve

solution would be to calculate the intersection of all ellip-

soids. Both analytic and numerical approaches are very time-

intensive. Additionally, in the presence of spatial noise or

noise in the data preprocessing the intersections are not exact
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Fig. 1. Measurement and data interpretation: On the left an arbitrarily placed emitter e emits a pulse that is reflected by a scatterer and recorded by an
arbitrarily placed receiver r. The measurement of the receiver is plotted in the middle as an amplitude-over-time plot (A-scan). The value of interest is
the time-of-arrival as shown by the flag. From only one measurement the exact position of the scatterer can not be derived, only a region containing the
scatterer. Assuming a constant speed of propagation of the emitted pulse, this region becomes elliptical with emitter e and receiver r as focal points, as
each position on this ellipse has the same summed distance to emitter and receiver (e.g., the solid and the dashed line). In 3D this elliptical region becomes
a rotation symmetric ellipsoid, more precisely a prolate spheroid.

and statistical or heuristic measures have to be applied to

compensate for deviations from the ideal intersection areas.

Since under the Born approximation each measurement

restricts the position of the source on a hypersurface in

3D, only a few points on the surface are true scatterer

positions. All others may be considered as false-positives and

represent themselves as ghosts in the resulting reconstructed

reflectivity image. The fusion of several measurements may

therefore be interpreted as a data association problem. The

complexity class of the corresponding optimal Bayesian

solution is NP-hard and while further research in this area is

still in progress, the data association problem is not explicitly

addressed in this paper.

In addition, real objects do not consist of ideal point

scatterers. Regarding non-isotropic scattering, damping, and

the characteristics of the finite-sized transducers, reflections

from the object are not present in all acquired measurements.

This forbids solutions that fuse the measurements in a multi-

plicative manner, which would cause blindness for directive

scatterers.

In order to avoid intersection calculations and regard

realistic scattering behavior, the underlying space is sampled

to create localized reflectivity estimates. The key idea is to

keep track of all true- and false-positive reflections in the

sampled volume and to estimate a probability density that

denotes for each point the probability of being the source of

a reflection. These local estimates enable the consideration

of system-specific properties of the measurement process,

e.g., regarding sensor characteristics with respect to the

location of the estimator. After processing all measurements,

these distributed samples are fused to an approximation of

the global PDF, which is then used to create an image of

reflectivity.

Here the question arises, how those local samples are

represented and how the nonlinear measurements (hypersur-

faces) are applied to update the PDF. Since the complete

data set of the 3D sensor system is usually too large to be

processed altogether, it is of interest to obtain a recursive

update formulation. Additionally, due to the numerous error

parameters interfering with each other, the overall measure-

ment error is modeled as normal probability density, as

stated by the central limit theorem. The Kalman Filter as

an optimal recursive filter under the condition of normal

distributions for the system model and noise is a good choice

for representing the local samples. In order to handle the

nonlinearity of the measurement data, the Extended Kalman

Filter (EKF) is applied, which linearizes the model equations

using a first order Taylor series approximation [10].

III. REFLECTIVITY PROBABILITY DENSITY

This section outlines the basic model setup derived to

approximate the PDF of a 3D reflectivity distribution from

the measurements of a distributed sensor network. At first,

the approximation of the exact PDF is introduced, followed

by the model equations of the EKF. Then an efficient

measurement to filter assignment is presented and the update

of the PDF is explained, concluded with the creation of an

image based on the PDF.

A. PDF approximation

The exact PDF is approximated by distributed Extended

Kalman Filters that cover the ROI (Fig. 2). Each of them

is a local estimator of reflectivity. The state vector of the

filter is composed of the 3D position of the reflector and can

be extended by any other parameter that may be extracted

robustly from the raw input data, e.g., a frequency analysis by

means of a short-time Fourier transform of the current echo.

These parameters are an additional aid for the improvement

of the reflectivity estimate of the object under study.

B. Extended Kalman Filter

In the following scenario, we assume a discrete-time

dynamic system with linear system model, but nonlinear



Fig. 2. Example for Kalman Filter placement and affected filters for
one measurement. The large dashed circle represents the sensing aperture
with one selected emitter e and receiver r. One measurement (time-of-
arrival) covers an elliptical region and the measurement noise determines
the thickness of this region. The ROI is covered with Kalman Filters whose
initial covariances are plotted as spheres with the standard deviation as
radius. As shown, the current measurement does only affect a subset of all
filters, which is exploited for an efficient measurement update.

measurement model for the local estimates,

xk = Ak−1xk−1 + wk−1,

zk = hk(xk, vk),

wk ∼ N (0,Qk), (1)

vk ∼ N (0,Rk),

E{vkwT
j } = 0 (∀ k 6= j).

Here, xk is a n×1 state vector at time step k, containing

at least the [x, y, z]T position of a local reflection. Ak−1 is

the time-variant linear n×n system matrix, which relates the

state vector at time step k − 1 to time step k, disturbed by

the system noise wk drawn from a zero mean multivariate

normal distribution with covariance Qk of size n×n. zk is

a dz×1 measurement vector, which is a scalar if only the

time-of-arrival (TOA) is taken into consideration. hk(xk, vk)
is the time-variant, nonlinear measurement function, which

returns a dz×1 estimate of the next measurement, given xk

and the zero mean Gaussian white measurement noise vk

with covariance Rk of size dz×dz .

The time update equations of the Kalman Filter are given

as [11]

x
−

k
= Ak−1x

+

k−1, (2)

P−

k = Ak−1P
+
k−1Ak−1

T + Qk.

Based on the system model Ak−1, the state x
−

k
as well as

the estimate covariance P−

k is predicted for the current time

step k.

The measurement update equations as defined by the

Extended Kalman Filter are [10],

Sk = HkP
−

k Hk
T + Rk,

Kk = P−

k Hk
TSk

−1, (3)

x
+
k

= x
−

k
+ Kk(zk − hk(x−

k
, 0)),

P+
k = (I − KkHk)P−

k .

The measurement prediction covariance Sk is the expected

value of the innovation, calculated by means of the predicted

covariance P−

k and the linearization Hk of the measurement

function hk. The dz×n Jacobian matrix Hk is dependent on

the predicted state x
−

k
,

Hk =
∂hk

∂xk

(x−

k
, 0). (4)

Kk is the n×dz Kalman gain, which is used to update the

state estimate to x
+

k
and its covariance P+

k .

C. Measurement to filter assignment

Each measurement of an emitter-receiver-combination

is an amplitude-over-time signal (A-scan). For reflectivity

imaging, parameters such as TOA, amplitude, frequency or

phase information of each echo need to be extracted in a

preprocessing step.

As demonstrated in Fig. 1, each preprocessed echo does

only affect a specific volume (ellipsoidal shell) from where

the possible scatterer(s) caused the reflection. The size of this

volume increases with higher uncertainty of the preprocess-

ing step. Therefore, a filter is only affected if it is close to this

volume. This is exploited to achieve an efficient processing

of the Kalman Filter updates as only a subset of all filters

need to be updated for each measurement.

This is achieved by using one part of the Kalman Filter

equations. The quadratic form of the innovation covariance

Sk (equation (3)) may be regarded as a squared norm,

weighted according to the filter covariance matrix P−

k (Ma-

halanobis distance). This statistical distance is used to define

a set Sk of Kalman Filters at the positions xk that are

updated by the current measurement zk,

ỹk = zk − hk(x−

k
, 0),

Sk(γ) =
{

xk : ỹT
k S−1

k ỹk ≤ γ
}

. (5)

Sk(γ) is χ2 distributed with dz degrees of freedom. γ is

selected beforehand and kept constant during the application.

An example for this gating procedure is shown in Fig. 2,

where the possible origin of one measured reflection for

the marked emitter and receiver is shown as elliptic region.

The central ellipse represents the current measurement, the

bounding ellipses represent the error interval defined by, e.g.,

measurement noise or the imprecise knowledge of the speed

of propagation of the emitted pulse.

D. Independent Kalman Filters

Before processing the acquired data for reconstruction,

Kalman Filters are placed throughout the ROI at a desired



resolution. This initializes the state vector of each Kalman

Filter.

As each TOA measurement is the integral of reflectivity

along an ellipsoidal shell, multiple positions and thereby

multiple Kalman Filters are affected by the same data.

Nevertheless, in this paper the Kalman Filters are assumed

to be independent of each other to avoid the large increase

in complexity.

1) Update of the Kalman Filters: The nonlinear measure-

ment function hk (equation (1)) returns the summed travel

time of the emitted pulse at the propagation speed v between

x
−

k
to the emitter e and x

−

k
to the receiver r,

hk(x−

k
, 0) =

‖x−

k
− e‖ + ‖x−

k
− r‖

v
. (6)

The Jacobian matrix Hk of this function as defined in

equation (4) equals the normal vector of an ellipsoid through

the position x
−

k
with the focal points e and r.

The update of the distributed Kalman Filters with a new

measurement zk is performed as follows: First, the gating

procedure is applied to determine those Kalman Filters that

have to be updated (Fig 3(a)). The value of γ (equation (5))

is set accordingly so that it represents a reasonable amount

of space, from where the measurement zk could have orig-

inated. Then Hk and hk are determined for each Kalman

Filter state x
−

k
. The update with zk causes the filter state

to be shifted along the local normal (defined by Hk) on the

ellipsoid that is defined by zk and the emitter and receiver

position (Fig. 3(b)). The update of the covariance matrices

results in smaller eigenvalues along the local normal vector.

During the processing of different spatial emitter-receiver-

combinations, the eigenvalues of the covariance matrices

are reduced along different normal vectors (Fig. 3(d)). For

example all eigenvalues will become smaller at true scatterer

positions if the object under study is surrounded by sensors.

E. Image formation

After processing all measurements with the distributed

Kalman Filters, an image has to be created, that shows high

values at positions with a high probability of reflectivity. If

a Kalman Filter has been placed at or is close to a true

scatterer position, multiple measurements will have been

used to update the covariance matrix, resulting in a denser

probability mass around the filter position. Integrating this

density over a predefined voxel grid with a desired resolution

results in high image values at those positions where Kalman

Filters with small eigenvalues in their covariance matrices are

located.

One voxel of the final image is the sum of the integrals of

all Kalman Filters over the volume of the regarded voxel. For

speed-up purposes, only those Kalman Filters are regarded

for a specific voxel that lie closer than four times the standard

deviation corresponding to the covariance matrices.

IV. APPLICATION: ULTRASOUND COMPUTER

TOMOGRAPH

The derived method is applied to reconstruct reflectivity

images of a 3D ultrasound computer tomograph (USCT) [4],

Fig. 4. Experimental ultrasound computer tomograph with cylindrical
aperture and approx. 2000 transducers that are grouped into 48 transducer
array systems (white blocks). The application is shown at the bottom, the
woman lies in prone position on a bed while the breast is hanging in the
measurement tank filled with water.

that has been built at the Institute for Data Processing and

Electronics at Forschungszentrum Karlsruhe. This system has

been developed for early breast cancer diagnosis and enables

3D imaging of a non-deformed breast with non-ionizing

radiation. Fig. 4 shows the measurement setup.

The sensing aperture is cylindrical with a height of 15 cm

and a diameter of 18 cm. It is equipped with 384 emitters

and 1536 receivers grouped in 48 transducer array systems.

The transducers have a size of (1.4 mm)2, a center frequency

of 2.4 MHz and an opening angle of ±15 degree at -6 dB.

A complete measurement results in a data set of approx.

600.000 A-scans (3 GB), which can be additionally increased

by rotating the cylindrical aperture, thereby acquiring more

information from different angles.

In this paper, a constant speed of sound is assumed. In

future work, varying speed of sound can be introduced by

including the speed of sound map of the ROI, which can be

determined with the same data set [12].

A. Data preprocessing

The TOA of each recorded echo is detected by means of

a pulse detection method based on the wavelet transform

[13]. Each TOA is used as a measurement for updating the

distributed Kalman Filters. The ability of the pulse detection

to separate two interfering echoes has been evaluated as

900 ns (center frequency of 2.4 MHz), which is used as

basic magnitude of the measurement noise.

B. Kalman Filter setup

For the following evaluation, the Kalman Filter equation

are adapted as follows:



(a) Filter selection (gating) (b) Update of selected filters

(c) Filter selection (gating) (d) Update of selected filters

Fig. 3. Example of processing two TOA measurements for 100 distributed Kalman Filters. Their covariances are plotted as ellipsoids (initially spheres)
centered at the positions of each filter. The point scatterer is shown as blue dot at the position (x,y) = (0.0, 0.0). (a) shows the subset of filters (red) for
the first measurement as determined by the gating procedure. The selected filters are updated, which shifts their positions towards the measurement and
adapts their covariance matrices accordingly ((b)). The update procedure is shown for a second measurement ((c) and (d)), which causes the covariance of
the filter closest to the scatterer to shrink the most.



Fig. 5. Left: Ten vertically spanned nylon threads with a diameter of
0.2 mm, each spaced 2 mm apart for evaluating the horizontal resolution
of the USCT. Right: Tissue mimicking triple biopsy breast phantom for
evaluating the breast imaging capability of the USCT.

The system model Ak is set to identity as no prediction

on the position of the state vector may be performed. The

application of system noise is also neglected. The system

noise would increase the eigenvalues of the covariance

matrices and thereby unsharpen the image. The analysis of

a useful application of system noise is part of future work.

The measurement noise is constant during the training

process and has to be set depending on the amount of

data and the initial values of the covariance matrices of the

Kalman Filters.

The placement of the filters and their initialization is

application-dependent. The choice of the number of Kalman

Filters and their distribution is an empirical process so far

and is based on the desired resolution in the final image or

its desired quality with respect to structural information.

C. Evaluation

The proposed method is evaluated by means of two ex-

periments. Image reconstructions with the PDF are compared

to the currently applied image reconstruction, which is based

on synthetic aperture focusing technique (SAFT) [14].

The first experiment consists of ten vertically spanned

nylon threads (Fig. 5 left). This experiment was used for

experimental resolution assessment in the horizontal plane.

The reconstructed images of the nylon threads are compared

by evaluating the contrast of each image. A second and more

complex experiment with a clinical breast phantom (Fig. 5

right) is done to demonstrate the proposed method for breast

imaging.

To reconstruct an image with SAFT, each recorded A-scan

A(i,j) from an emitter and a receiver at the positions ei and

rj is backprojected to the image position x of the image I

using

I(x) =

m
∑

i=1

n
∑

j=1

A(i,j)

(

‖ei − x‖ + ‖rj − x‖

v

)

, (7)

where v is the speed of propagation of the emitted pulse,

here assumed to be constant. The A-scans used for the image

reconstruction with SAFT are created by convolving the TOA

data from the preprocessing step with a Gaussian window of

a temporal length of 1 µs. This compensates for the error

induced by the preprocessing step and further errors caused

by the imprecise knowledge of the speed of sound and the

positioning of the transducers, respectively.

As measure for the contrast, the signal difference to noise

ratio (SDNR) is evaluated, which is calculated by comparing

the mean amplitude of the reconstructed object µobject to the

background artifacts. These are evaluated as the mean µBG

and standard deviation σBG,

SDNR =
µobject − µBG

σBG

. (8)

For evaluating the contrast of the nylon thread reconstruc-

tions, the background has to be segmented from the object.

This is performed separately for each nylon thread by taking

those pixel into account that have higher values than half of

the local maximum.

1) Thread experiment: The ten nylon threads have a

diameter of 0.2 mm, each spaced 2 mm apart and are

vertically spanned through the center of the USCT. Only

the physically neighboring transducers closest to the slice

image were used resulting in 16 sending and 64 receiving

elements. This is sufficient for reconstructing the threads

but also causes image artifacts due to the sparseness of the

sensing aperture. This gives a good basis for comparing

the two image reconstruction approaches via the contrast

function. The ideal image reconstruction of these threads

would result in ten distinct dots as shown at the top of Fig. 6.

The reconstruction of the nylon threads with the SAFT

approach (407 × 407 pixel) is shown on the left of Fig. 6.

The ten threads are clearly visible, nevertheless, there are

many artifacts in the proximity of the threads. The computed

SDNR resulted in a value of 5.1.

The image reconstruction with 87×87 distributed Kalman

Filters is shown on the right of Fig. 6. The threads are also

imaged as distinctive points, but the reconstruction artifacts

are significantly reduced. The evaluated contrast value of

10.5 is twice times higher than the value of the SDNR of

the SAFT image reconstruction.

2) Breast phantom experiment: The clinical breast phan-

tom is a triple modality test object for biopsy and can be

imaged with X-ray, MRI, and ultrasound [15]. This breast

phantom has several inclusions mimicking cysts and cancer

structures. The average attenuation is 0.5 dB/MHz/cm. For

comparison, a slice region was chosen that shows two cysts

that have a strong directive scattering behavior and one

cancerous structure that scatters more isotropic.

For this experiment the ground truth for ultrasonic re-

flectivity is unknown. In order to get an idea of the inner

structure of the breast phantom, an MRI image of the

same breast phantom has been acquired. The according slice

region is shown at the top of Fig. 7. A high resolution

reconstruction with SAFT (805×605 pixel) is shown on the

left of Fig. 7. The boundaries of the cysts are not completely

visible and the cancerous structure dominates the image, as

most of the backprojections fell in this region. The image

reconstruction with 73 × 55 Kalman Filters of the same

region is shown on the right of Fig. 7. The boundaries of

the cysts are more distinct and the cancerous structure does
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Fig. 6. The slice image reconstruction (407 × 407 pixel) of the ten vertically spanned nylon threads with SAFT shows ten clearly distinguishable
points, see the ideal image at the top. Nevertheless, along the normal of the line connecting the ten threads, lots of artifacts are visible, which is due to
the sparseness of our sensor aperture. The image reconstruction with 87 × 87 distributed Kalman Filters also clearly shows ten points. There are also
reconstruction artifacts but less visible and more homogeneous. The SDNR value of this reconstruction is twice times higher compared to the SAFT image
reconstruction.

not dominate the image. The high amount of reflections from

this region causes the covariance matrices to shrink resulting

in a slightly visible grid. Compared to the boundaries of the

cysts, which are formed by covariance matrices deformed

along the tangent of the boundary, the value calculated from

a single covariance matrix is not as high as the sum of largely

overlapping Kalman Filters along the boundaries.

V. CONCLUSION AND FUTURE WORK

A new approach was presented for the reconstruction

of the 3D reflectivity distribution of a region of interest

measured by an arbitrarily distributed sensor network. The

imaging system regarded here is based on the synthetic aper-

ture approach, which is widely applied in seismic, sonar, and

radar imaging. The presented approach models the region of

interest as a PDF representing spatial reflectivity occurrences.

The data is processed in a recursive manner to update the

distributed Extended Kalman Filters used to approximate the

PDF. This allows to process the nonlinear measurements as

well as fusing information of objects under study that are

only partly available in the acquired measurements.

Experiments with a 3D ultrasound computer tomograph

showed that the proposed method results in a higher image

quality with less image artifacts and higher structural in-

formation. The run-time for reconstructing images with the

distributed Kalman Filters is in the same order of magnitude

as the SAFT approach. The results also showed that the

amount of Kalman Filters does not have to be as high as

the number of voxel used with the SAFT approach.

The image quality may be additionally improved by re-

garding system-specific parameters such as sensor charac-

teristics, uncertainties in transducer positioning, and speed

of propagation determination as well as object properties.

With the proposed method, a basic framework is available

for future work. More precisely, the following issues will

be analyzed:

• The estimation of measurement noise during Kalman

Filter training with a second estimation of the reflectiv-

ity may help reduce the artifacts further and also sharpen

the image.

• The application of system noise to those Kalman Filters

that were not affected by processing the TOA data of

one A-scan could also decrease false-positives.

• The utilization of the information of non-occurring

echoes at specific times could eventually be used to

diminish directly artifacts in the image.

This work demonstrated a statistical approach for 3D im-

age reconstruction, which is easily extendable with system-

specific parameters and is able to consider uncertainties in

system parameters and input data.
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Fig. 7. The slice image reconstruction (805 × 605 pixel) of the breast phantom with SAFT shows two cyst mimicking structure that have a directive
scattering behavior as well as another circular structure (”cancer”) that has scatters more isotropic. For comparison, see the MRI image of the whole slice at
the top with the marked region chosen for evaluation. The boundaries of the cysts are not completely visible and the strong scattering region dominates the
image as a bright region. The image reconstruction with 73× 55 distributed Kalman Filters shows the boundaries of the cysts more clearly. The cancerous
region is displayed completely different compared to the SAFT image. The high amount of reflections from this area caused the covariance matrices to
shrink, which is slightly visible as dot grid. Due to the reduced data set taken for this reconstruction, the skin of the breast is not visible in the ultrasound
images, as the skin reflects the ultrasonic pulses to regions that are far below the regarded slice image.
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