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Marcus Baum1, Ioana Gheţa2, Andrey Belkin2, Jürgen Beyerer2,3, Uwe D. Hanebeck1
1 Karlsruhe Institute of Technology (KIT), Institute for Anthropomatics, Intelligent Sensor-Actuator-Systems Laboratory

2 Karlsruhe Institute of Technology (KIT), Institute for Anthropomatics, Visions and Fusion Laboratory
3 Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB

Karlsruhe, Germany
Email:{marcus.baum, ioana.gheta, andrey.belkin}@kit.edu, juergen.beyerer@iosb.fraunhofer.de, uwe.hanebeck@ieee.org

Abstract—This contribution introduces a three pillar informa-
tion storage and management system for modeling the environ-
ment of autonomous systems. The main characteristics is the
separation of prior knowledge, environment model and sensor
information. In the center of the system is the environment model,
which provides the autonomous system with information about
the current state of the environment. It consists of instances
with attributes and relations as virtual substitutes of entities
(persons and objects) of the real world. Important features are
the representation of uncertain information by means of Degree-
of-Belief (DoB) distributions, the information exchange between
the three pillars as well as creation, deletion and update of
instances, attributes and relations in the environment model. In
this work, a Bayesian method for fusing new observations to the
environment model is introduced. For this purpose, a Bayesian
data association method is derived. The main question answered
here is the observation-to-instance mapping and the decision
mechanisms for creating a new instance or updating already
existing instances in the environment model.

I. INTRODUCTION

Autonomous systems acquire information in order to be able
to interact with their environment. For intelligent autonomous
systems, such as humanoid robots helping with domestic
applications, the mere storage and retrieval of information
is not enough. Since such an autonomous system has to
cope with uncertain and incomplete information about its
environment, elaborate information management mechanisms
are additionally required.

a) Contributions: First, we propose an intelligent, uni-
versal information management system: the three pillar in-
formation system. The name of the system is given due
to its main characteristic, which is the separation between
three components: prior knowledge, environment model, and
sensory information. These can be compared to the long and
short term memories and the real world. The environment
model is the central component of the system and it can
be compared with a Lego landscape, where the Lego bricks
compose virtual substitutes (instances) of real objects and
persons (entities). In the virtual environment, the entities of
the real-world object types and persons are represented by
instances of classes.

A further contribution is that we introduce a mathemati-
cal formalization of the environment model within Bayesian
probability theory. This formalization builds the theoretical

basis for performing inference in the environment model. All
information regarding instances or entities is based on their
attributes and relations, which are specified through their un-
certainties in form of Degree-of-Belief (DoB) distributions. In
this way, information management (creation, deletion, update
of instances and their attributes and relations) and exchange
in the three pillar information system can be performed within
the Bayesian framework.

The third major contribution is to derive formulas for
the Bayesian information update in the environment model.
Therein, one of the main challenges that appears is data
association. It is unknown which instance the new acquired
information (new observation regarding the attributes or re-
lations of an entity) regards, or whether it is the result of
observing a new entity. Such problems and their implications
for the mechanisms of information management are in the
focus in this paper. For this purpose, we employ techniques
from multi-target tracking, where similar data associations
problems appear.

b) Related Work: Modeling the environment of au-
tonomous systems involves modeling information. Common
methods for doing so are based on semantic nets, predicate
logic or formal languages [1]. Nowadays, the methods involve
ontologies, object oriented and probabilistic approaches, and
combinations of two of them [2]–[6]. Moreover, the proposed
approaches in literature for modeling the environment of
autonomous systems are mostly domain-specific and not ex-
tendable to other applications. [7] proposes an object-oriented
world modeling approach with the purpose of creating virtual
environments for simulation or system engineering in the
financial domain. [6] proposes a dynamic, object-oriented
approach for modeling the relevant environment of cooperative
vehicles, incorporating attribute uncertainties. Neither of these
contributions deals with data association problems.

Data association is one of the main topics in multi-target
tracking [8]. A simple method for data association is the so-
called Nearest Neighbor Filter [9] that assigns each observa-
tion to the most probable target. The exact Bayesian solution of
the data association problem is in general intractable. Hence,
approximations like one of the most popular data association
techniques called Joint Probabilistic Data Association Filter
(JPDAF) [10] have to be employed. The JPDAF can be seen



as an approximation of the exact Bayesian solution of the data
association problem. JPDAF performs a weighted update of all
target states according to an association probability. JPDAF
ignores correlations between the target states and removes re-
sulting multimodalities in the target state by means of analytic
moment matching. JPDAF has also been extended to cope
with existence probabilities of tracks [11]. A general Bayesian
formulation of multi-target tracking with track existence has
been given in [12], [13].

c) Overview: The remainder of this paper is structured
as follows: Section II describes the three pillar information
system with its characteristics. The information management
and data association based on the Bayesian framework are
described in Sections III and IV. Section V finally describes
an application for the proposed system.

II. THE THREE PILLAR INFORMATION SYSTEM

Figure 1 shows the structure of the three pillar informa-
tion system. The first component represents prior knowledge
and incorporates two types of information: instance-related
knowledge (e.g., instances of persons or objects, maps) and
concepts in form of ontologies (information about classes with
attributes, relations, and rules). This information is context-
specific and can be loaded/unloaded as needed, preventing
overfitting.

The second and main component is the environment model.
It contains dynamic progressive mapping of instances and their
attributes and multiple semantic networks for relations. Its
main functionality is to act as an information hub for sensors
and inference processes [5], [14], [15].

The third component represents the real world with entities
of object types and persons with their attributes and relations.
Once observed, these are mapped to instances with attributes
and relations in the environment model, see Section III. Their
equivalents on the side of prior knowledge are instances of
concepts.

A. Probabilistic Model for Information

Each information piece (attribute or relation) is character-
ized by its uncertainty in form of a DoB distribution. The
different ways of expressing uncertainty and the advantages
of employing DoB distributions are presented in detail in [5].

An instance i at time step k is therefore modeled as a DoB
distribution

p(eik, a
i
k) ,

where eik ∈ {0, 1} specifies whether the instance exists (eik =
1), and

aik :=
[
tik ai,1k . . . ai,na

k

]T
is a vector that is composed of the discrete type tik of the
instance i, and na (discrete or continuous) descriptive at-
tributes ai,1k , . . . , ai,na

k . The attributes of different instances are
assumed to be independent (common assumption of JPDAF).
Moreover, the type and other descriptive attributes of an
instance are assumed to be independent of each other.

Relations are modeled as binary variables and are treated
similar to attributes. For a better understanding and reduced
complexity, they are not explicitly considered within this
contribution.

B. Information Exchange between the Three Components

Figure 1 shows the main information flows, which mainly
deliver and receive information from the environment model.

a) Information Exchange between the Environment
Model and Prior Knowledge: Prior knowledge is necessary in
the environment model for specification and supplementation
of attributes and relations by using ontology information. An
important aspect is the specification of the attribute type of
an instance, which is equivalent to classification. The rules
of ontologies are used for performing validity, relevance, and
consistency checks [5]. Instance-related knowledge is mainly
used to complement the instances of already observed entities.
This increases the efficiency, since the instances in prior
knowledge have most attributes already specified.

In the opposite direction, the information flow is equivalent
to the process of learning new concepts or just new attributes
and relations of already known concepts. It also means long
term saving of meaningful instances, e.g., persons that often
interact with the autonomous system.

b) Information Exchange between the Environment
Model and the World: The information flow from the real
world into the environment model is equivalent to the infor-
mation acquisition process. It consists of initialization, update
and deletion of instances (based on the existence attribute),
attributes and relations, see Section IV. Therein, the main
challenge is data association, i.e., mapping observations to
instances, see Section III.

In the opposite direction, the information exchange process
is performed with the purpose of filling the gaps (only possible
when prior knowledge is incorporated) or (re)confirmation of
information (e.g., for lowering the uncertainty).

C. Building-up the Environment Model

In the case that new information about an instance is
acquired that does not have an equivalent in the environment
model, a new instance is created. The decision is based on the
computation of the posterior probability that a new entity is
detected at time step k and the detected entity exists, which
has to exceed an instantiation threshhold

p(eik = 1) > γi . (1)

A similar calculus is performed for instantiating attributes or
relations, see Section IV-C.

An instance is deleted from the environment model, if the
maximum of the DoB distribution for the attribute existence
drops below the deletion threshold

p(eik = 1) < γe , (2)

with γe < γi. The relation between γe and γi is necessary for
ensuring a hysteresis, i.e., a created instance should not be
immediately deleted, see Figure 2.
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Fig. 1: Three pillar information system.
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Fig. 2: Hysteresis for the instantiation and the deletion of
instances.

If no new information regarding an instance is provided
from one time step to the other, a propagation mechanisms
alters the DoB distributions according to the maximum entropy
principle, i.e., the uncertainty of the information increases, see
Section IV-A. If new information is provided, Bayesian fusion
of new acquired and old information already stored in the en-
vironment model is performed additionally, see Section IV-B.

III. DATA ASSOCIATION: OBSERVATION MODEL

In order to fuse an observation into the environment model,
an observation model that relates the observation to an instance
is required. This observation model has to incorporate the
uncertainty of the existence of instances and the observation-
to-instance assignment. Actually, similar problems occur in
multi-target tracking [12], [13], where for instance several
airplanes are to be tracked by means of radar measurements.
There, it is unknown from which target a received measure-
ment stems so that a method for data association is required.
Hence, the considered problem here can also be seen as a
special multi-target tracking problem. Essentially, the data
association mechanism employed in this paper can be seen
as a special case of [12], [13].

In the following, we are going to formulate an observation
model for the environment model. We assume that at each time

step k, a single observation is received with regard to a single
(unknown) instance. Note that in classical data association for
multi-target target tracking one usually deals with a variable
number of observations per time step.

The connection between an observation and the instance
it regards, is modeled with an association variable dk ∈
{0, 1 . . . , Nk}. The probability that the observation at time
step k regards the instance dk is given by

p(dk|ek) , (3)

with ek :=
[
e1k, . . . , e

Nk

k

]T
and Nk as the number of instances

in the environment model. An observation that regards a new
instance, is represented with dk = 0.

existence

detection/

instance association

p(eik = 1)

p(eik = 0)

eik = 0

eik = 1 dk = i

dk 6= i

pE

1− pF

pF

1− pE

Fig. 3: Schematic dependencies between the existence and
observation of entities.

Figure 3 shows the four conditional DoBs regarding the
observation and existence of a particular entity i defined [16]:

• The conditional probability p(dk = i|eik = 1) = pE
describes the probability for a hit, i.e., that the entity i
exists at the time step k and is observed.

• The conditional probability p(dk 6= i|eik = 1) = 1 − pE
describes the probability for a miss, i.e., that the entity i
exists at the time step k, but it is not observed.

• The conditional probability p(dk = i|eik = 0) = pF
describes the probability for a false alarm, i.e., that



an entity i does not exist at the time step k, but an
observation is made.

• The conditional probability p(dk 6= i|eik = 0) = 1 − pF
describes the probability for a correct rejection, i.e., that
the entity i does not exist at the time step k and it is not
observed.

Next, we need the following instance observation model
that gives the probability of an observation, if we know that
it regards instance i:

p(yi
k
|ai,1k , . . . ai,na

k , tik, e
i
k, dk = i) :=

p(yi,1
k
|ai,m1

k ) · . . . · p(yi,r
k
|ai,mr

k ) · p(Mk|tik) .

Above, yi
k
:=
[
yi,1
k
, . . . , yi,r

k
,Mk

]T
is the observation vector,

with yi,1
k
, . . . , yi,r

k
as individual observations of particular at-

tributes. The index set of measured attributes isMk =
⋃

sms.
The observation model for an attribute is given by

p(yi,s
k
|ai,ms

k ) , (4)

where ms denotes the attribute observed by yi,s
k

. The set
of observed attributes depends on the particular type of the
instance, e.g., for a cup it is likely to measure color and
position. Therefore, the conditional DoB p(Mk|tik) models
the DoB of observing the attributes Mk, when the type of
the instance is given. The DoB p(Mk|tik) may stem from
expert knowledge. It allows also for modeling deterministic
information.

The observation model for new, unknown instances is given
by the conditional DoB

p(yi
k
|ai,1k , . . . ai,na

k , tik, e
i
k = 1, dk = i) .

A natuaral choice for this observation model would be

p(yi
k
|ai,1k , . . . ai,na

k , tik, e
i
k = 1, dk = i) := 1 .

However, other definitions may also be justified. For example,
a new instance could be more probable to appear on a table
than on the floor.

In order to illustrate the observation model for instances, a
simple example including entities of type cup is introduced in
the following. An instance of type cup may have as attributes
color, position, and size. Figure 4 depicts such an instance
and a possible observation of a cup entity. A particular sensor
for the position of a cup may supply position measurements
corrupted by additive Gaussian noise. Hence, a measurement
equation for the attribute position could be

yi,5
k

= ai,5k + vk ,

where vk denotes additive Gaussian noise. As a consequence,
the observation model (4) for the attribute position turns out
to be

p(yi,5
k
|ai,5k ) = N (ai,5k − y

i,5
k
,Cv

k) .

Instance i=3

ti,1k ' Type cup

ai,1k ' Color red
...

ai,5k ' Position (5,20)
...

ai,na

k ' Size 5 cm

⇒

Observation yi
k

yi,1
k
' Color dark red

yi,5
k
' Position (7,18)

Mk { 1,5 }

Fig. 4: Example of an instance and an observation.

The attribute observation probability p(Mk|tik = cup) may
be defined as zero except for

p({1, 5}|tik = cup) = 0.4 ,

p({1}|tik = cup) = 0.3 ,

p({5}|tik = cup) = 0.3 .

These probabilities say, for example: if the type of the instance
is cup, the DoB of observing its position and size is 0.4.

IV. BAYESIAN UPDATE OF THE ENVIRONMENT MODEL

This section shows how a Bayesian update of the en-
vironment model is performed. The goal is to recursively
compute the existence probabilities and the DoB distribution
of descriptive attributes for all instances i

p(eik = 1|ŷ
1:k

) and p(aik|eik = 1, ŷ
1:k

) . (5)

For this purpose, we employ the common prediction/filtering
scheme of Bayesian state estimation.

At each time step k, one observation ŷ
k

is received. The data
association itself is performed in the filtering step by means of
marginalizing over all valid association hypothesis. Note that
the complete joint DoB of all instances is not computed. The
derivations of the formulas can be seen as a special case of
the methods discussed [12], [13].

A. Prediction Step

The Prediction Step propagates the state of the environment
model at time step k−1 to the next time step k, which results
in the predicted existence

p(eik = 1|ŷ
1:k−1

) ,

and the predicted attributes

p(aik|eik = 1, ŷ
1:k−1

) ,

for all instances i.
The propagation is defined such that the existence probabil-

ity decreases over time and the entropy of the DoB distribution
of attributes and relations increases. The predicted existence
probability is achieved by using an exponential decreasing
function, which results in the Markov model

p(eik = 1|eik−1 = 1) = βi ,

p(eik = 1|eik−1 = 0) = 0 ,



where 0 < βi ≤ 1 is a constant. Hence, we assume that
a disappeared instance does not re-appear. Based on this
model for existance of an instance, the predicted existence
probabilities can be computed according to

p(eik = 1|ŷ
1:k−1

) = βi · p(eik−1 = 1|ŷ
1:k−1

) , (6)

The predicted attribute probabilities result from the
Chapman-Kolmogorov equation

p(aik|eik = 1, ŷ
1:k−1

) =∫
p(aik|aik−1) · p(aik−1|eik = 1, ŷ

1:k−1
)daik−1 (7)

with the dynamic model p(aik+1|aik) for descriptive at-
tributes. If the DoB p(aik−1|eik = 1, ŷ

1:k−1
) is Gaussian and

p(aik|aik−1) results from a linear system equation with Gaus-
sian additive noise, the predicted DoB p(aik|eik = 1, ŷ

1:k−1
) is

also Gaussian and is computed according to the well-known
Kalman filter prediction step [17]. An example for such a
dynamic model is a motion model which specifies the temporal
evolution of the position of an instance.

B. Filter Step

The Filter Step takes the predicted state for time step k and
the next observation ŷ

k
in order to compute (5) according to

Bayes’ rule [18]. As already mentioned, the filter step actually
performs the data association. In the following, we derive the
detailed formulas for the filter step.

The updated probabilities for attributes can be written
according to the Law Of Total Probability as a mixture

p(aik|eik = 1, ŷ
1:k

) =∑
dk

p(aik|eik = 1, ŷ
1:k
, dk) · p(dk|eik = 1, ŷ

1:k
) , (8)

where the first term is the posterior distribution for a given
association

p(aik|eik = 1, ŷ
1:k
, dk) ∝

p(ŷdk

k
|eik = 1, aik) · p(aik|eik = 1, dk, ŷ1:k−1

)

and can be computed with the measurement model for in-
stances (4) and the predicted attribute probabilities (7). In case
of a continuous attribute represented with a Gaussian DoB and
a linear measurement model, the Kalman filter equation [17]
can be employed to computed this posterior DoB. The second
term in (8) can be seen as a weighting factor, which specifies
the probability that the measurement stems from instance dk.

The updated probability for the existence can be written as

p(eik = 1|ŷ
1:k

) =
∑
dk

p(eik = 1, dk|ŷ1:k) . (9)

In order to compute p(eik = 1, dk|ŷ1:k) in (9) and p(dk|eik =
1, ŷ

1:k
) in (8), we need the joint DoB of the updated existence

and association variable

p(ek, dk|ŷ1:k) ∝ p(ŷk|ek, dk, ŷ1:k−1
) · p(ek, dk|ŷ1:k−1

)

1
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Fig. 5: Example of the life-cycle of an instance. The red
dashed line describes the propagation resulting from the aging
mechanism, if no new observation is available. The continuous
line describes the course of the DoBs when the existence of
the entity is reconfirmed at the time steps k = 6 and v = 10.5.

where

p(ŷ
k
|ek, dk, ŷ1:k−1

) =∫
p(ŷdk

k
|eik, aik, dk, ŷ1:k−1

) · p(aik|eik, dk, ŷ1:k−1
)daik

and

p(ek, dk|ŷ1:k−1
) = p(dk|ek) · p(ek|ŷ1:k−1

) ,

is the product of the association prior (3) and the predicted
existence DoB (6).

Note that the DoB (8) is a mixture DoB in the case of
continuous distributions. In this case some kind of complexity
reduction has to be performed. If the DoB (8) is a Gaussian
mixture, it can be collapsed into one Gaussian distribution by
means of analytic moment matching similar to JPDAF [10].

Furthermore, with our approach it is not necessary to per-
form gating, because only one measurement at each time step
is received. The only reason to introduce a gating procedure
is to reduce the complexity of continuous distributions.

C. Dealing with an Unknown Number of Instances

Since the number of instances Nk in the environment model
may vary, a mechanism that decides how many instances are
to be tracked is needed.

If the probability that the observation ŷ
k

stems from a new
instance exceeds a threshold γe, i.e.,

p(dk = 0|e0k = 1, ŷ
1:k

) > γe ,

the observation cannot be assigned to one of the existing
instances [

e1k a1k
]
, . . . ,

[
eNk

k aNk

k

]
.

As a consequence, a new possible instance[
eNk+1
k aNk+1

k

]
is initialized with a proper prior DoB for the existence, and
attributes. If in fact this new instance exists, its existence has
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Fig. 6: Environment model for a humanoid robot.

to be confirmed with the help of subsequent measurements:
If the DoB of the existence exceeds a given threshold, the
existence is confirmed (see Equation (1)). On the other hand,
an instance i is deleted from the environment model when its
existence is improbable, i.e., the probability of its existence
drops below a threshold (see Equation (2)). Since, we assume
that a disappeared instance cannot reappear, we can stop
propagating its existence.

Figure 5 shows a typical example of the life-cycle of an
instance according to the maximum of the DoB distribution
for the attribute existence.

V. APPLICATION

One of the applications of the three pillar information
system is for the DFG Collaborative Research Center (Sonder-
forschungsbereich) SFB 588 “Humanoid Robots—Learning
and Cooperating Multimodal Robots”1. The purpose of the
project is to build a humanoid robot [19], [20] helping with
domestic applications. The developed test environment is a
kitchen, where the robot accomplishes tasks such as set the
table or helping with cooking. The robot also can operate
kitchen appliances like dish washer or fridge, see Figure 6.
Details of development and implementation as well as a
practical example are given in [14], [15].

VI. CONCLUSIONS AND FUTURE WORK

In this work, a three pillar information storage and man-
agement system for modeling the environment of autonomous
systems was introduced. The main characteristics of this sys-
tem is the separation of prior knowledge, environment model
and sensory information. Furthermore, since an autonomous
system typically acts in an uncertain environment, an im-
portant feature is the representation of uncertain information
by means of Degree-of-Belief (DoB) distributions. In this
contribution we have focused on fusing new observations
with the environment model. We introduced a method for
dealing with unknown observation-to-instance mappings and
a decision mechanism for creating new instances or updating
already existing ones in the environment model. For this
purpose, we have employed techniques from Bayesian data
association in the field of target tracking.

1http://www.sfb588.uni-karlsruhe.de

Future work includes a detailed evaluation of the introduced
data association mechanism for the three pillar information
storage and management system in a real-world scenario.
Furthermore, future work will be concerned with solving the
classification problem, i.e., mapping of instances from the
environment model to concepts from prior knowledge. The
challenges involve the integration of semantic knowledge, e.g.,
about attributes and the search for appropriate methods for
comparing DoB distributions.
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J. van Laere, Eds. Skövde Studies in Informatics, Nov. 2008, pp. 9–12.

[6] Z. Papp, C. Brown, and C. Bartels, “World Modeling for Cooperative
Intelligent Vehicles,” in IEEE Intelligent Vehicles Symposium, 2008, pp.
1050–1055.

[7] S. Isoda, “Object-Oriented World-Modeling Revisited,” Journal of Sys-
tems and Software, vol. 59, no. 2, pp. 153–162, 2001.

[8] D. Hall and J. Linas, Handbook of Multisensor Data Fusion. CRC
Press, May 2001.

[9] X. Rong Li and Y. Bar-Shalom, “Tracking in clutter with nearest
neighbor filters: analysis and performance,” Aerospace and Electronic
Systems, IEEE Transactions on, vol. 32, no. 3, pp. 995 –1010, july 1996.

[10] Y. Bar-Shalom, F. Daum, and J. Huang, “The Probabilistic Data Asso-
ciation Filters,” Control Systems Magazine, IEEE, vol. 29, no. 6, pp. 82
–100, Dec. 2009.

[11] D. Musicki and R. Evans, “Joint Integrated Probabilistic Data Associa-
tion - JIPDA,” vol. 2, 2002, pp. 1120 – 1125 vol.2.

[12] J. Vermaak, S. Maskell, and M. Briers, “A Unifying Framework for
Multi-Target Tracking and Existence,” vol. 1, July 2005.

[13] P. Horridge and S. Maskell, “Searching for, Initiating and Tracking
Multiple Targets using Existence Probabilities,” July 2009, pp. 611 –
617.

[14] A. Belkin, “Object-Oriented World Modeling for Autonomous Systems,”
Karlsruhe Institute of Technology KIT, Tech. Rep., 2010.
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