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Abstract— This paper explores the use of an entropy-based
technique for point cloud reconstruction with the goal of
calibrating a lidar to a sensor capable of providing egomotion
information. We extend recent work in this area to the problem
of recovering the Sim(3) transformation between a 2D lidar
and a rigidly attached monocular camera, where the scale of
the camera trajectory is not known a priori. We demonstrate
the robustness of our approach on realistic simulations in
multiple environments, as well as on data collected from a
hand-held sensor rig. Given a non-degenerate trajectory and
a sufficient number of lidar measurements, our calibration
procedure achieves millimetre-scale and sub-degree accuracy.
Moreover, our method relaxes the need for specific scene
geometry, fiducial markers, or overlapping sensor fields of view,
which had previously limited similar techniques.

I. INTRODUCTION

Multisensor payloads have become the norm in many
mobile robotic systems. In particular, lidars are frequently
used on multisensor platforms that must estimate distances
accurately. While visual sensors such as stereo cameras can
recover this information using multiple view geometry, they
do not have the accuracy of typical lidars for depth estimation
[1]. Inexpensive RGB-D cameras are also commonly used
for building dense, coloured 3D maps, but they have limited
range and are generally too sensitive to lighting conditions
to be used outdoors. In fact, modern 3D lidars are commonly
employed to generate ground truth depth maps against which
to evaluate the performance of visual estimation techniques
[2]. The range and lighting-invariance of a lidar makes it
suitable for both indoor and outdoor operation; lidars have
proven to be an unparalleled sensor choice for unmanned
ground vehicles such as self-driving cars [3], [4].

Robotic platforms will often include both cameras and
lidars as complementary sensors. Cameras provide dense vi-
sual information, but in the form of 2D images which compli-
cates the recovery of 3D information. Moreover, in the case
of monocular motion estimation, a scale ambiguity exists:
metric scale cannot be recovered from monocular images
alone. In contrast, lidars provide precise range information,
ideal for creating depth maps and naturally complementing
camera data in scene reconstruction [5].

In general, successfully combining information from mul-
tiple sensors requires knowledge of the coordinate trans-
formations between them—an inaccurate transform leads to
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(a) Point cloud before calibration.
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(b) Point cloud after calibration using our method.

Fig. 1: Visualization of a point cloud collected in the environment
pictured in Figure 6, using initial values and mean values from
Table III. Note the smooth wall segments on the right side of
Figure 1b.

systematic error in the fused sensor data. Manually measur-
ing the translational and rotational offset between sensors
is inaccurate and may be impractical since the origins of
the sensor coordinate systems are often embedded within the
sensors themselves. Instead, we would like to use data-driven
techniques to estimate the sensor-to-sensor transformations.
Conventional approaches to this problem often require a spe-
cific calibration procedure with a target (e.g., a checkerboard
in the case of cameras), although techniques have been devel-
oped recently for automatic calibration “in the wild”. Despite
these advances, current methods show a lack of generality
in that they are often developed for specific sensor suites,
require specialized scene structure, or place restrictions on
the sensors’ fields of view (FOVs). These limitations are
especially problematic for long-term robotic deployments,
during which the extrinsic calibration parameters may slowly
drift or suddenly change; a calibration procedure applicable
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to an unknown environment and sensor configuration would
then be necessary.

In this work, we seek to address these limitations by
developing a generalized technique for the extrinsic cal-
ibration of a 2D lidar to a sensor capable of providing
egomotion information. Our method builds directly upon
previous work [6], [7] by representing the lidar point cloud as
a Gaussian Mixture Model (GMM) and minimizing its Rényi
Quadratic Entropy (RQE) in order to recover the coordinate
transformation between the two sensors. In contrast to [6],
[7], which are concerned with estimating SE(3) rigid body
transformations between sensor pairs, we estimate Sim(3)
similarity transformations. This allows us to use a monocular
camera as the egomotion sensor, despite the scale ambiguity
in its trajectory reconstruction. The scale factor is estimated
as part of the calibration process.

The remainder of the paper is organized as follows: Sec-
tion II situates our paper with respect to existing literature.
Sections III and IV lay out the mathematical underpinnings
of our approach as well as practical considerations in its
implementation. In Section V, we show through simulations
that we can recover the Sim(3) transformation between a
lidar and a noisy egomotion sensor. Experiments presented
in Section VI demonstrate that our technique can also recover
the absolute scale of a trajectory estimated from a monocular
image stream. We show that our technique performs reliably
even in environments with complex structures. Finally, we
conclude by motivating the development of a spatiotemporal
calibration technique based on entropy minimization.

II. RELATED WORK

Extrinsic sensor calibration is an active area of research
and a variety of approaches have been developed. The classic
approach for extrinsic calibration involves a laboratory proce-
dure making use of a known calibration object. For cameras
and 2D lidars, a common choice is to identify lines on a
planar calibration target [8]–[10]. More complex patterned
planes have also been used in some work [11], [12].

As a step towards removing the need for specific cali-
bration objects, several methods instead attempt to identify
appropriate calibration geometry (‘features’) in the environ-
ment. For example, surface normals can be extracted from
lidar data and processed for comparison with camera images
[13], [14]. Picking out linear features, typically lines formed
at the intersection of planar surfaces, is a practical option in
indoor environments [15], [16]. Note, however, that all the
methods mentioned thus far require the camera and lidar to
simultaneously observe the same features, which requires an
overlapping FOV between the two sensors.

Some recent techniques relax the overlapping FOV re-
quirement, by allowing each sensor to observe the same
features at different times [17]–[19]. These approaches also
require accurate temporal alignment of the sensor data.
While spatiotemporal calibration techniques are few, the
case of non-overlapping lidar and stereo cameras has been
addressed by identifying and matching planar surfaces [20].
The method of [20] represents a significant step towards

generalized spatiotemporal calibration, but requires specific
features and metrically accurate trajectory estimates.

In contrast to previous work, our technique (an extension
of [21] and [7]) requires neither overlapping FOVs, nor ob-
servations of specific features in the environment. We assume
only a non-degenerate sensor trajectory [22] and a scene
with a certain level of structure, as discussed in Section VII.
Metric accuracy is not necessary, as we explicitly optimize
for scale.

III. THEORY
A. Problem Formulation

For our particular application, we assume that the cam-
era’s intrinsic parameters have been calibrated and that a
monocular motion estimation system (e.g. ORB-SLAM [23])
provides a reasonable sensor trajectory, accurate up to a
scale factor. We stress that this method is not restricted
to monocular cameras; any sensor capable of providing
egomotion estimates (i.e., the base sensor) could be used
in place of the camera.

The base sensor provides a set of K 6DOF poses, Y:

Y = {y1,y2, ...,yK}, yk = [xk yk zk φk θk ψk]
T
, (1)

where φ, θ and ψ are roll, pitch and yaw Euler angles,
respectively. Each pose yk has an associated timestamp tk
and pose covariance matrix Qk. The lidar provides a set of
K ×N , 2D observations, Z, where:

Z = {z1, z2, ..., zK}, zk = {z(1)k , z
(2)
k , ..., z

(N)
k }, (2)

z
(n)
k =

[
x
(n)
k y

(n)
k

]T
, (3)

and each point z
(n)
k has associated timestamp tk. We assume

that the camera and lidar measurements are temporally
aligned and explore the consequences of this assumption
in Section V-E. For convenience, we adopt a homogeneous
representation and express each point in lidar frame F−→Lk

as

p
(n)
Lk

=
[
x
(n)
k y

(n)
k 0 1

]T
. (4)

Likewise, we express each camera pose as a homogeneous
transformation from camera frame F−→Ck

to a fixed global
frame F−→G, where matrix TG,Ck

is the homogeneous repre-
sentation of pose yk.

Our goal is to estimate the set of (constant) transform
parameters from the lidar frame F−→L to the camera frame
F−→C

Ξ = [xL yL zL φL θL ψL s]
T
, (5)

which we use to form the rigid body transformation matrix
TC,L from F−→L to F−→C . The scale factor, s, is applied in
the transformation from the camera frame to global frame.
This defines our inverse sensor model, with which we can
estimate the position of a lidar point in the global frame:

p̂
(n)
G,k = h−1(p

(n)
Lk
| yk,Ξ) = TG,Ck

TCk,Lk
p
(n)
Lk
. (6)

Omitting the homogeneous component so that x̂
(n)
G,k ← p̂

(n)
G,k,

we use the Jacobian of this model and the camera pose



covariances to obtain a covariance estimate of points in the
world frame:

Σ
(n)
k = J

(n)
k QkJ

(n)
k

T
, J

(n)
k =

∂h−1(x
(n)
Lk
|yk,Ξ)

∂yk
. (7)

Finally, we obtain a set of 3D points x̂
(n)
G,k ∈ X̂ expressed in

the global frame, each with an associated 3 × 3 covariance
matrix Σ

(n)
k and timestamp t(n)k .

B. Point Cloud Rényi Quadratic Entropy

As in [7], we minimize the Rényi Quadratic Entropy
(RQE) [24] in order to maximize the compactness or ‘crisp-
ness’ of the estimated point cloud X̂. The intuition behind
maximizing point cloud compactness follows from the as-
sumption that the surfaces in the environment are structured
2D manifolds as opposed to diffuse, random elements. This
assumption holds particularly well in many urban and natural
scenes.

The RQE of the continuous random variable X with
probability distribution p(x) is defined as:

H[X] = − log

∫
p(x)2dx. (8)

We represent our point cloud X̂ as a Gaussian mixture model
(GMM), where p(x) is the probability of a lidar measurement
being sampled at position x given centroids {x̂1, ..., x̂M} ∈
X̂:

p(x) =
1

M

M∑
i=1

N (x− x̂i,Σi + σ2I), (9)

where the covariance includes pose uncertainty Σi calcu-
lated using Equation (7), and measurement uncertainty in
the isotropic kernel σ2I. Note that M may be less than
K × N due to missing lidar measurements (e.g., out of
range readings). An analytic representation of the RQE of
the GMM can be derived as

H[X̂] =− log

∫ (
1

M

M∑
i=1

N (x− x̂i,Σi + σ2I)

)2

dx (10)

=− log

(
1

M2

M∑
i=1

M∑
j=1

∫
N (x− x̂i,Σi + σ2I) (11)

N (x− x̂j ,Σj + σ2I)dx

)
=− log

(
1

M2

M∑
i=1

M∑
j=1

N (x̂i − x̂j ,Σi + Σj + 2σ2I)

)
.

(12)

Therefore, to calculate the entropy of a GMM, we must
compute all pairwise entropy contributions.

IV. ALGORITHM

Using Equation (12), we wish to solve for the optimal
set of calibration parameters Ξ∗ which minimizes the total
point cloud entropy. For optimization, the cost function can
be simplified greatly. First, we can trivially remove the
monotonic logarithm function and constant 1/M2 factor.

Next, we note that for each pair of points (x̂i, x̂j) ∈ X̂,
we are calculating their pairwise entropy contribution twice,
as seen in the indices of the sums in Equation (12). We can
therefore solve the equivalent problem [7]:

Ξ∗ = argmin
Ξ

−
M∑
i=1

M∑
j=i

N (x̂i−x̂j ,Σi+Σj+2σ2I), (13)

noting that the coordinates of each point x̂i, x̂j are functions
of the calibrations parameters and the camera poses.

Moreover, a large majority of point pairs contribute neg-
ligible entropy. We can avoid unnecessary computation by
setting a conservative upper bound on the pairwise distance:

N (x̂i − x̂j ,Σi + Σj + 2σ2I) ≈ 0 if

||x̂i − x̂j || ≥ 2k
(
max (λ1(Σi), λ1(Σj)) + σ2

)
(14)

where λ1(Σ) is the largest eigenvalue of matrix Σ. The
tuning parameter k allows a trade-off between computation
time and cost function accuracy, in comparison to the full
O(M2) computation.

Presently, we search for the optimal calibration parameters
using a sequence of gradient-free optimizers, first performing
a coarse global optimization using the control random search
algorithm [25], followed by a fine local optimization using
the Nelder-Mead algorithm [26].

V. SIMULATIONS

A. Experimental Setup

In order to validate our approach, we simulated a 2D
lidar rigidly attached to a base sensor, with the base sensor
following a known trajectory. To mimic realistic egomotion
measurements, uncorrelated zero-mean Gaussian noise with
standard deviations of 50 mm and 1◦ (translation and ro-
tation, respectively) was added to each pose of the base
sensor. Zero-mean Gaussian noise with a 50 mm standard
deviation was also added to each lidar range measurement.
The simulated lidar operated at 40 Hz, with a field of view of
240◦ and angular resolution of 0.25◦ degrees per beam. The
simulated datasets were 50 seconds in duration and contained
up to 1.9 million lidar points.

The base sensor trajectories generated for the environ-
ments shown in Figure 2 involve sinusoidal motions with
unique frequencies and amplitudes for each translational
and rotational parameter. A geometrically plausible initial
trajectory was determined for each environment, and new
trajectories were then produced by randomly varying the
frequency and amplitude of each sinusoidal component.

B. Simulation Environments

We created five distinct simulation environments, designed
to be of increasing difficulty for the algorithm (Figure 2):

1) Simple Room consists only of orthogonal planar
surfaces where the sensors move inside an enclosed
rectangular ‘room’ (Figure 2a);

2) Underground Parking Lot adds several pillars (cylin-
ders) to the Simple Room environment (Figure 2b);



TABLE I: Average absolute error over ten unique trajectories, for the five simulation environments.

Average absolute error – µ (σ)

Environment x [mm] y [mm] z [mm] φ [deg] θ [deg] ψ [deg] Scale [×10−3]

Simple Room 2.8 (2.5) 3.1 (2.5) 5.2 (3.5) 0.22 (0.12) 0.051 (0.043) 0.24 (0.15) 0.33 (0.30)
Underground Parking Lot 4.5 (4.4) 4.8 (4.1) 5.2 (4.5) 0.37 (0.22) 0.11 (0.11) 0.37 (0.17) 1.2 (0.9)

Plane City 4.1 (2.1) 5.2 (4.2) 4.0 (3.9) 0.38 (0.23) 0.18 (0.06) 0.35 (0.23) 0.69 (0.55)
Quadratic Forest 4.6 (2.6) 3.9 (1.6) 2.9 (3.3) 0.32 (0.20) 0.074 (0.54) 0.35 (0.27) 0.73 (0.32)

Triangle Array 3.0 (1.9) 2.9 (1.6) 4.6 (3.5) 0.64 (0.60) 0.10 (0.07) 0.61 (0.58) 0.47 (0.26)

(a) Simple Room (b) Underground Parking Lot (c) Plane City

(d) Quadratic Forest (e) Triangle Array

Fig. 2: Simulation environments used to validate our method, with a sample sensor trajectory (blue) and a cut away view
of a portion of the lidar point cloud (red).

3) Plane City contains planes of varying size, some
occluding certain parts of the scene (Figure 2c);

4) Quadratic Forest is an open environment with spheres
mounted on top of cylinders, and where the only planar
surface is the ground (Figure 2d); and

5) Triangle Array is an open environment filled with
non-intersecting triangles of various sizes (Figure 2e).

C. Cost Function Validation
Entropy minimization is an intuitive way to quantify

point cloud crispness and therefore extrinsic calibration
accuracy, but the measured entropy is dependent on the
sensor trajectory and the environment, so it is difficult to
derive convergence guarantees for this approach. Instead,
we provide experimental validation. While it is difficult to
visualize this high dimensional optimization problem, we can
gain some insight by varying each parameter individually
while holding the other parameters constant. In Figure 3,
we see that even with noise, the cost function is minimized
very close to the calibration parameters’ true values. This
test was performed with the aforementioned noise values
in the Simple Room environment. Nevertheless, outside of
the region near the true calibration values we have observed
that the cost function may not be particularly smooth; we
expect the existence of several local minima, increasing the
difficulty of the global optimization task.

D. Global Optimization
Table I summarizes calibration accuracy for each parame-

ter in each simulation environment by presenting the average

absolute error over 10 randomly generated trajectories. Our
method achieves millimetre translational and sub-degree ro-
tational accuracy.

In practice, we found that the base sensor trajectory deter-
mined algorithm convergence far more than the environment
itself. Some individual runs for the more challenging envi-
ronments, in particular Quadratic Forest and Triangle Array,
produced better results than a typical run in the Simple Room
environment. In general, the algorithm converges reliably
if the lidar repeatedly scans surfaces from several different
viewpoints.

Occasionally, the randomly generated trajectories were
identified as degenerate and discarded. We found, in par-
ticular, that the roll φ and yaw ψ parameters were unob-
servable for several trajectories. We recognize that this is
a consequence of our trajectory generation approach, which
we intend to improve upon in future work. We posit that the
estimation of pitch θ is a better representation of achievable
accuracy of the angular parameter calibration.

E. Temporal Calibration

Using simulation data, we examined the possibility of
adapting our approach for temporal calibration of the sensor
data streams, which is often necessary to achieve higher-
accuracy results. To this end, we added a 20 ms delay to the
lidar scans with respect to the associated camera poses. This
represents a worst case scenario based on a state-of-the-art
spatiotemporal calibration algorithm [20].

Rather than performing spatial and temporal calibration
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Fig. 3: Effect of variation of individual parameters on cost function, with other parameters held fixed at their true values.
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Sim(3) transform parameters are held constant at their
true values as shown in Table II.
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seed values shown in Table II.

Fig. 4: Sample result of the temporal pre-calibration ap-
proach, based on a trajectory generated in the Simple Room
environment.

jointly, we followed [7] and instead attempted to per-
form temporal calibration prior to spatial calibration, again
through entropy minimization (instead of using, e.g., the
TICSync library [27]). We locked the Sim(3) transform
parameters at nominal values and varied the time delay td
between the camera and lidar data streams, performing a
simple linear interpolation between camera poses. Once the
optimal value of td was found, we then held that value
constant as we carried out a global optimization over the
Sim(3) parameters. A sample result using the true spatial
calibration parameters is shown in Figure 4a, demonstrating
that for a noisy trajectory in the Simple Room environment,
it is possible to recover the temporal offset exactly.

In realistic scenarios, however, the spatial transform will
not be known exactly initially. In Table II, we show the
average time offset error after temporal calibration, when
the spatial transform parameters are perturbed from their
true values. The parameters were seeded ±30 mm and
approximately ±5◦ away from ground truth; this represents
an initial guess accuracy that should be easily attainable in
practice. Figure 4b shows how, given a poor initial guess,
the estimated time delay between sensors can be inaccurate.

The results presented in Table II indicate how much more
difficult point cloud reconstruction becomes when a temporal
offset is unaccounted for. Pre-calibrating the time offset is
shown to substantially improve the accuracy of the Sim(3)
parameter estimates, but the errors remain significantly larger
than those in Table I, especially for the angular values.
Given the result illustrated by Figure 4a, we hypothesize
that simultaneously estimating the temporal and spatial offset
between sensors through entropy minimization could prove
to be more reliable than a pre-calibration approach.

VI. EXPERIMENTS

A. Experimental Setup

Hardware experiments were conducted with a hand-
held sensor rig consisting of a Hokuyo UTM-30LX laser
rangefinder and a PointGrey Flea3 monocular camera. The
sensors were rigidly fixed to two separate mounts displayed
in Figure 5a and Figure 5b. Data were collected via USB



TABLE II: Average absolute error on 10 temporally delayed
data sets in the Simple Room environment, with and without
temporal pre-calibration.

Average absolute error – µ(σ)

Parameter Initial True N.T.C.1 T.C.2

td [ms] - 20.0 - 5.6
x [mm] -230 -200 10.7 (7.8) 3.81 (1.89)
y [mm] 80.0 50.0 7.1 (6.5) 3.0 (2.2)
z [mm] 330 300 18.2 (10.2) 4.9 (3.5)
φ [deg] 9.74 14.3 0.67 (0.59) 0.39 (0.42)
θ [deg] 91.7 97.4 0.15 (0.13) 0.10 (0.06)
ψ [deg] 63.0 57.3 0.79 (0.55) 0.47 (0.40)

Scale 1.2 1.0 2.0 (1.2)×10−3 0.81 (0.52)×10−3

1 Not Temporally Calibrated
2 Temporally Calibrated, with average temporal delay (td) value over

10 runs of 14.4 ms (true value was 20 ms).

(a) Configuration 1: with overlapping sensor FOV.

(b) Configuration 2: non-overlapping sensor FOV.

Fig. 5: Hardware configurations used in experiments.

on a laptop configured with ROS [28]. All laser data was
collected at 40 Hz and 0.25 degree angular resolution, while
the camera data was collected at 200 fps with a resolution
of 640 × 512 pixels per frame. We estimated the temporal
offset of the lidar relative to the ROS clock using a built-
in procedure, then paired the camera and lidar messages
according to their timestamps to obtain an approximately
synchronized 30 Hz data stream. Given the synchronized
data, we estimated the trajectory of the camera (up to an
unknown scale factor) using ORB-SLAM2 [23].1

Several data sets were collected in the office space at
MIT’s Stata Center, shown in Figure 6. The sensor rig was
excited manually, taking care not to capture images or laser
measurements of the operator’s body.

B. Global Optimization

Calibration results are shown in Table III. A data set was
collected for each of the sensor configurations shown in
Figure 5. Individual data sets contain 2-4 minutes of lidar and
camera measurements. To keep the optimization tractable,
we split the data sets into segments containing at most 1.9

1https://github.com/raulmur/ORB_SLAM2

Fig. 6: Cluttered office space in the MIT’s Stata Center used
for data collection.

million lidar points, as in the simulations. For each data set,
we initialized the scale parameter by roughly estimating a
bounding box around the trajectory during data collection,
then comparing with the ORB-SLAM2 trajectory. The scale
factor is set based on the choice of keyframes used during
ORB-SLAM2 initialization, and hence varies per data set.

The Sim(3) transform parameters recovered in our experi-
ments are consistent between runs, with very few outliers. We
note, however, that the data sets in Table III and IV feature
smooth, slow motion in order to minimize the effect of
inaccurate temporal calibration, which we found to be critical
to obtaining reliable results. Furthermore, the current opti-
mization procedure is computationally expensive for larger
data sets, forcing us to significantly reduce the k parameter
in Equation 14, and consequently decreasing the accuracy of
the cost function [7]. We are actively exploring alternative
optimization procedures that would make the computation
more tractable, which we believe would lead to more precise
results.

VII. CONCLUSION AND FUTURE WORK
The automatic approach presented in this paper represents

a generalized method for 2D lidar extrinsic calibration. While
we focus on 2D lidar to monocular camera calibration, the
technique could just as effectively be used to calibrate a
2D, or even 3D lidar to another motion estimation system.
GNSS platforms, visual-inertial systems, stereo cameras, and
3D lidars are just a few examples of systems that could
make use of the proposed approach—we intend to explore
these combinations in future work. The distinct value of this
calibration procedure is that it can be performed in virtually
any environment, with no limitations on sensor configuration.

We have found in practice that the mis-estimation of the
temporal offset between the sensor data streams can severely
degrade the quality of the Sim(3) transform parameter es-
timates. Our temporal pre-calibration approach has limited
accuracy, but the results presented in this work motivate
the use of RQE minimization in general spatiotemporal
calibration.

Finally, we intend to improve the computational tractabil-
ity of our algorithm to enable online calibration. In particular,
we intend to exploit modern GPGPU processing to paral-
lelize the pairwise entropy computations in the cost function,
allowing for faster and potentially more accurate calibration.

https://github.com/raulmur/ORB_SLAM2


TABLE III: Calibration results for the overlapping case, for one data set segmented into four trial runs.

Calibration results

x [mm] y [mm] z [mm] φ [deg] θ [deg] ψ [deg] Scale [×10−3]

Initial Guess 160.0 0.0 -50.0 0.400 -90.00 0.00 -90.00
Trial I -178.2 -3.8 -45.8 90.58 -0.10 -90.74 0.506
Trial II 182.5 -2.8 -50.9 -90.22 0.14 -90.12 0.509
Trial III 173.6 -2.9 -47.8 89.84 -0.27 -90.04 0.506
Trial IV 187.0 -4.9 -54.2 -89.49 -0.02 -90.27 0.511

µ (σ) 180.3 (5.0) -3.6 (0.8) -49.7 (3.2) -90.03 (0.41) 0.06 (0.15) -90.29 (0.27) 0.508 (0.002)

TABLE IV: Calibration results for the non-overlapping case, for one data set segmented into three trial runs.

Calibration results

x [mm] y [mm] z [mm] φ [deg] θ [deg] ψ [deg] Scale [×10−3]

Initial Guess 50.0 0.0 -250.0 180.00 0.00 -90.00 0.500

Trial I 45.2 0.5 -202.1 180.13 -1.11 -88.89 0.2149
Trial II 42.2 -1.2 -202.8 180.73 -1.29 -88.93 0.2159
Trial III 44.0 0.2 -204.2 180.43 -1.78 -88.89 0.2156

µ (σ) 43.8 (1.2) -0.2 (0.8) 203.0 (0.85) 180.43 (0.24) -1.39 (0.28) -88.90 (0.02) 0.2156 (0.0005)
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