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Abstract— Multitarget tracking problems arise in many real-
world applications. The performance of the utilized algorithm
strongly depends both on how the data association problem is
handled and on the suitability of the motion models employed.
Especially the motion models can be hard to validate. Previously,
we have proposed to use multitarget tracking to improve optical
belt sorters. In this paper, we evaluate both the suitability of
our model and the tracking and then of our entire system
incorporating the image processing component via the use of
highly realistic numerical simulations. We first assess the model
using noise-free measurements generated by the simulation and
then evaluate the entire system by using synthetically generated
image data.

I. INTRODUCTION

Bulk materials are ubiquitous in many industrial
branches. A significant share of all energy produced world-
wide—estimates are up to 10% [1]—is spent on processing
and handling of bulk materials. Efficiently sorting bulk
materials early in the supply chain can help to reduce energy
consumption and costs. Furthermore, the scope of goods that
can be handled like classical bulk materials expands as reliable
sorting for new goods such as pharmaceutical and chemical
substances becomes feasible as sorting technology advances.
Sensor-based sorters based on, e.g., imaging technology
are more versatile compared with traditional sorters such
as trommel screens, magnet separators, and flotation cells.
Even in cases in which classical separators are applicable,
sensor-based sorters are sometimes integrated as an additional
processing step as they are compact and can allow dry instead
of wet sorting [2]. Moreover, sensor-based sorters can sort
based on a combination of properties that would require more
than one of the classical sorters. While multiple sensors can be
combined in sensor-based sorters, sophisticated calibrations
are necessary [3] in current optical belt sorters.
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Fig. 1: Sketch of an optical belt sorter with the necessary
modifications for the predictive tracking approach.

A major challenge in sensor-based sorting is the separation
process as it is (unlike in many classical sorters) a distinct
processing step following the classification. In this work, we
put our focus on commonly used optical belt sorters. For
these sorters, the bulk material travels over a belt or a slide
before it enters a flight phase. In the flight phase, the particles
pass an array of compressed-air nozzles aligned orthogonal to
the transport direction. Bursts of air from these nozzles alter
the flight path of specific particles, causing them to land in a
different container than the particles that fly unobstructed.

In today’s industrial machinery, it is common to utilize
the observation used for classification purposes also for
the localization of the particles. Due to delays between
observation and separation, it is necessary to predict the
particles’ future positions. To be able to improve these
predictions, we have proposed to use an area scan camera
instead of a line scan camera as illustrated in Fig. 1. Based on
this extension, we have introduced a concept called predictive
tracking [4], [5], in which we keep track of each particle’s
motions to be able to accurately predict its future movements.
Using image processing, the acquired image data is turned
into position measurements. As there are typically multiple
particles in the field of view concurrently, we need to use
multitarget tracking algorithms. Using a simple yet efficient
approach, we obtained promising results.

Our previous evaluation based on real image data presented
in [4] relied on artificially introducing a prediction phase
by discarding a part of each image. By comparing the



predictions based on part of the image data with the best
possible estimates using all image data available, we gave an
assessment of the accuracy of the predictions generated by our
model in comparison with a prediction straight in the transport
direction. The latter is the implicit assumption used by current
belt sorters without predictive tracking. In this paper, we
evaluate the predictive tracking approach using simulations
that provide a ground truth to evaluate against. First, we
evaluate the motion models by using them with true instead
of estimated parameters, which is regarded in more detail
in [6]. Second, we evaluate the tracking approach without any
imprecision introduced by the image processing and third,
when incorporating the image processing component.

In the remainder of this paper, we first describe the
advantages of the predictive tracking approach and lay out a
simple algorithm. Then, we give a brief description of the
simulation methodology. Afterward, we present our evaluation
based on the numerical simulations and provide a conclusion.

II. PREDICTIVE TRACKING

In this section, we first outline which new possibilities
arise from using the predictive tracking approach. Afterward,
we give details on our current algorithmic implementation.

A. Advantages of the Predictive Tracking Approach

The initial motivation for predictive tracking is the ob-
servation that particles of some bulk materials do not move
straight in the transport direction of the belt, as is implicitly
assumed by optical belt sorters that only localize each particle
at one point in time. Previously, strategies mainly focused on
adjusting the hardware of the sorter in ways that adapt the
particles’ motions to the old, implicit model. One strategy is
to use a longer belt to allow the bulk material to settle on
the belt and fully adapt to the velocity of the belt. However,
increasing the length of the belt always induces additional
costs. The adaptation process can further be supported by
using a fluted belt, which comes at the cost of making the
belt harder to clean. Furthermore, there are bulk materials
for which both strategies do not suffice and for which the
precision of the predictions of the old, implicit model does
not enable reliable sorting using current optical belt sorters.

Besides the advantage regarding the separation process,
there is a multitude of possibilities to improve the classifi-
cation that performing tracking gives rise to. For one, more
useful data for classification purposes can be obtained directly
by using multiple observations of each particle. Multiple
perspectives from each particle can be obtained—either by
simply observing it travel along the belt or, e.g., by using
vibrations to induce rotations. Using multiple observations
is particularly useful for finding damages or other features
that might be at an unknown point on the surface of a
particle. Furthermore, the lighting can be changed as particles
travel along the belt to collect additional features to derive
classification decisions with higher reliability.

Moreover, incorporating data stemming from additional
imaging sensors is facilitated. The pattern of estimated or
predicted particle positions can be matched across sensors to

fuse the visual information about the individual particles.
Furthermore, the pattern could also be used to derive a
temporal calibration of the sensors.

One additional concept to improve the classification that
we have obtained promising preliminary results for is using
motion-based classification. For example, different classes of
particles vary in regard to their motions orthogonal to the
transport direction and in regard to how fast the particles
adapt to the velocity of the belt. Additionally, if a slide is
used in the feeding process, the velocities of the particles
at the moment they are applied to the belt differ strongly.
Incorporating the slide in the tracking process would allow us
to obtain even more information about each particle’s motion
behavior to further improve the classification.

B. Current Algorithmic Implementation

To use standard algorithms for multitarget tracking under
unknown associations, the image data has to be reduced
to a set of position measurements using image processing
techniques [7]. The first step in the image processing chain is
determining the constant background to use as a reference by
averaging over multiple frames. Then, connected component
analysis is used to detect the particles. Each particle’s
centroid is then determined in pixel coordinates. Additional
information, such as about the shape or extent of the object
can also be obtained using image processing and can be used
to support the tracking1.

By transforming a particle’s centroid as obtained by the
image processing into world coordinates and using this as a
measurement of the particle’s actual centroid, the estimate
of the particle’s position and velocity is updated. For this, a
global association likelihood approach [8, Ch. 10.3] is pursued
in which we choose the most likely association between
the currently known particles and the measurements. When
dealing with Gaussian distributions, the maximization of the
product of the likelihoods can also be seen as a minimization
of the sum of the Mahalanobis distances. In accordance
to set distances such as the OSPA metric [9], individual
associations beyond a certain Mahalanobis distance are not
seen as valid associations but are rather viewed as the lack
of a measurement of one target and another measurement of
a potentially new target.

To reliably determine the appearance and disappearance
of targets, we generate likelihoods using knowledge about
the scenario at hand. As shown in Fig. 2, particles are
more likely to appear in the part that is (in regard to the
transport direction) at the beginning of the region observed.
On the other hand, particles whose predictions lie behind the
end of the observable region are considered likely to have
disappeared.

We incorporate this knowledge into the matrix used to
perform the association that is illustrated in Fig. 3. The
likelihood that a measurement stems from a certain track

1E.g., if we predict that two particles with a certain surface area will collide,
a detection of one larger particle at the prediction position of the collision
indicates that the image processing has deemed the colliding particles to be
one single particle.
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Fig. 2: Likelihood that a measurements stems from a new
track or that a track is not observed anymore.
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Fig. 3: Matrix used for deriving the association.

(based on its current prediction) constitutes the main part
of the matrix. Additional rows are added and each is filled
with the likelihood that the measurement stems from a yet
unknown track. Moreover, extra columns are added and filled
with the respective likelihood that the corresponding track is
not observed again.

To find the association maximizing the product of the
likelihoods, the logarithm is taken and the sign is inverted
to transform the problem into an easier one of minimizing
the sum. Based on this, standard linear assignment problem
solvers can be used. In our application, it is crucial to use fast
solvers such as LAPJV [10] or the auction algorithm [11].
The latter can be massively parallelized and is thus also
suitable for implementations on GPUs [12]. Furthermore, fast
gating methods [13, Ch. 4] can help reduce the computational
burden in our application featuring real time constraints.

Once the most likely association is found, we use a standard
Kalman filter with a constant velocity model to update
the estimated state of each track and generate a prediction
for the next time step. Both appearing and disappearing
targets are common in our scenario. Missed detections also
frequently occur, e.g., due to colliding targets. On real image
data, reflections of the lighting can also pose a challenge.
Furthermore, clutter measurements occur due to dirt on the
belt. To deal with all of this adequately, we have implemented
a track score approach [14, Ch. 6] which allows us to keep
track of particles even if a measurement is missed and helps

Fig. 4: Visualization of the simulated belt sorter.

to filter out measurements caused by dirt2.
Due to delays in the system, a prediction as to when

and where a particle will pass the separation mechanism
has to be generated at a certain time before the particle
reaches the separation mechanism. During that time, no new
measurements can be taken into account anymore. In this
phase, we currently merely perform prediction steps of the
utilized Kalman filter, using the constant velocity model
also used in the tracking phase. As we use the information
acquired via the tracking for the purpose of generating a
precise prediction for a future time step, we refer to our
approach as predictive tracking. For simplicity, the prediction
phase of the predictive tracking can be thought of as an area
that does not need to be observed as measurements in this
area cannot be used anymore. However, since merely the
time of arrival at the separation mechanism is of importance,
the actual physical extent of the prediction phase could be
adapted for each individual particle according to the current
estimate of the particle’s velocity.

III. SIMULATION APPROACH

Our simulation is based on a small, experimental optical
belt sorter that was specifically crafted for evaluating bulk
material sorting processes. The belt sorter was designed
using SolidWorks, a 3D-CAD tool, and was manufactured
accordingly. The three-dimensional model used in the creation
of the belt sorter was used as the basis for our simulation.
All important parts of the optical belt sorter except for the
separation mechanism were modeled, including not only the
belt but also the vibrating feeder and the slide that are used
to apply bulk material to the belt. The model of the sorter is
shown in Fig. 4.

To simulate the particles’ movements, we determined
the relevant physical properties of the belt and particles
experimentally [15]. Based on the three-dimensional model
of the sorter, the particles’ properties, and the specifications
of vibrating feeder, we used the Discrete Element Method
(DEM) to simulate the particles’ movements. The DEM not
only allows us to accurately model the interaction between the
particles and the belt, but also particle–particle interactions as

2Unless the dirt always looks and moves like a particle, in which case it
cannot be distinguished from an actual particle of the bulk material.
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Fig. 5: One frame of the synthetic image data that was
generated for the evaluation (some vertical blank space was
cropped) with an illustration of the phases. The particles’
colors describe their velocity from slow (green) to fast (red).

well as particle–wall interactions. Details of applying DEM-
simulations to optical belt sorters are provided in [5], [6].
The separation process is not modeled yet, but Computational
Fluid Dynamics will be employed in future work as done
similarly recently in [16]. For our current evaluation, the
separation process is not necessary as we directly evaluate
the precision of the prediction, which is made possible by
the availability of the ground truth.

IV. EVALUATION

In our evaluation, we put the emphasis on an important
endpoint of the system, namely the accuracy of the prediction
regarding precisely when and where each particle passes the
separation mechanism. Performing the separation immediately
after the belt is advantageous for designing compact belt
sorters. Therefore, we generated predictions for the position
and time at which each particle passes the edge of the belt.
The belt has a total length of 40 cm. We designated the
last 10 cm of the belt to be the prediction phase, which is
a reasonable distance between the last observation and the
separation for optical belt sorters. The belt was simulated
to run at 1.5m/s. In our evaluation, we regarded wooden
spheres that were also used in the base case of the evaluation
performed in [6]. Predictions were generated for over 1000
particles.

The entire evaluation was performed offline. First, the com-
putationally very expensive DEM-simulation was performed.
The centroids of the particles and additional information
such as the actual velocities of the particles were saved.
Furthermore, synthetic images of the scenario were generated
as shown in Fig. 5. To determine the true position and time of
the intersection, we interpolated the ground truth positions of
each particle in all phases. For the predictions evaluated, only
information available during the tracking phase was used to
predict the intersection of the path with the edge of the belt.

We have subdivided the evaluation into two parts that are
explained in the first two subsections of this section. In the
first part, we validate the models and the tracking under
optimal conditions by using noise-free information obtained
by the simulation. The second part is an evaluation based on
the synthetic image data that allows us to evaluate the entire
approach including the image processing component. In the
third subsection, we present the results of our evaluation.

A. Evaluation Based on the Ground Truth Data

To test our model under optimal conditions, we first used
all noise-free ground truth information obtained during the
tracking phase for the prediction. We chose the last point
of the ground truth track before the start of the prediction
phase (meaning the last known position of the particle before
it enters the prediction phase ranging from a belt position of
30 cm to 40 cm) and then created a prediction based on the
velocity of the particle at that precise moment, as given by
the DEM-simulation. To account for the fact that even with
perfect localization, the actual speed would not be known,
we also regarded predictions generated by using the tracking
on the noise-free position measurements. In this case, the
filter steps become trivial due to the absence of measurement
uncertainty.

For comparison, we evaluated a third approach based on
the ground truth data in which we performed a prediction
resembling the old, implicit model. For this, we also used the
position of the particle at the last time step before it enters
the prediction phase as the starting point. Based on this, we
determined the intersection with the edge of the belt when
assuming a movement straight in the transport direction.

We also evaluated the temporal offset for all approaches
except for the old, implicit model. For the implicit model, it is
hard to generate a temporal offset—strictly assuming that all
particles move at the velocity of the belt would not be in line
with implementations in real systems. In these, experimental
fine-tuning is used to generate predictions that are usually
more accurate than those obtained by simply assuming that
each particle moves at the velocity of the belt.

B. Evaluation Based on the Synthetic Image Data

As the part of our evaluation that is closest to the actual
application, we performed an evaluation based on the synthetic
image data generated using the simulation. The images
generated for the tracking mainly capture the belt and have
a resolution of 1064 px× 708 px at about 0.44mm/px with
a format shown in Fig. 5. The entire belt is in the field of
view of the camera. Such a wide field of view is desirable
when using the tracking to improve the classification, e.g., for
motion-based classification, but poses a challenge to the image
processing and results in a higher measurement uncertainty.
While the ground truth data was generated at 1000Hz, we
only used 200 frames per second of the image data. This
frame rate makes sense for multiple reasons. First, cameras
with this frame rate are readily available. Second, due to the
run time of the image processing and the tracking, higher
frame rates cannot easily be used in real time systems.

We did not use a perfect calibration between the image and
world coordinates to emulate the imperfect calibration in real
applications. We based our calibration on detecting the corners
of the belt and then deriving a transformation that maps the
belt in pixel coordinates to the belt in the world coordinates
of the simulation. Due to limitations of the software used for
rendering, no further challenges common in image acquisition
such as lens distortion were considered. However, due to
lens distortion correction employed for properly calibrated



Sim Tracking Straight

-1

-0.5

0

0.5

1
S

p
at

ia
l 

d
ev

ia
ti

o
n
 i

n
 m

m

(a) Spatial deviation when the 1000Hz
ground truth data was used for the predic-
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(b) Spatial deviation when the image
data with 200 frames per second was
used for the predictions.
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(c) Temporal deviation when the
ground truth data was used for the
predictions.
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(d) Temporal deviation when the
image data was used for the
predictions.

Fig. 6: Spatial and temporal deviation for all evaluated approaches to generate predictions. Evaluations based on the ground
truth data and the image data are depicted in separate plots. “Sim” indicates that the velocity obtained by the DEM-simulation
was used, whereas “Tracking” indicates that the tracking was used to derive a velocity. The prediction straight in the transport
direction as used in the old, implicit model was denoted as “Straight”. A positive temporal offset indicates that the particle
has arrived earlier than predicted, whereas a negative temporal offset indicates that it arrived later.

cameras, we believe that this effect is not essential to our
evaluation.

Performing tracking based on actual image data instead
of merely adding an artificial stochastic noise is important
for a multitude of reasons. First, errors introduced by image
acquisition are more of a discretization type of error whose
characteristics are not purely stochastic. Thus, generating the
position measurements using image processing on synthetic
images yields noise characteristics that are more similar to
those in real applications. Second, artifacts affecting the
multitarget tracking problem that are characteristic to using
image processing have to be taken into account, e.g., that
colliding particles may be detected as one, resulting in an
incorrect number of measurements and an incorrect centroid.

First, the tracking approach as described in Sec. II-B was
performed on the results of the image processing. Necessary
parameters of the filter such as the observable region were set
beforehand but no specific adjustments were made to optimize
the performance for this scenario. Then, the tracks obtained
as the result of the tracking were matched to ground truth
tracks by finding the track that minimizes a distance function.
As the distance function, we calculated the euclidean norm
of the euclidean distances between all estimated positions
of the tracking and all corresponding ground truth positions
at the respective time steps. As only tracks that are deemed
valid while entering the prediction phase trigger a separation
event in the real machinery, we only regarded these tracks in
our evaluation.

We also evaluated the old, implicit model on the measure-
ments derived from the image data. In this case, we used the
results of the tracking to determine the last instant a particle
is observed at before entering the prediction phase. Based on
the corresponding measurement, we predicted the particles
to move straight in the transport direction and compared the
results with the true intersection. As before, the temporal

offset of this approach was omitted in the analysis.

C. Evaluation Results

The evaluation results are visualized as box plots in Fig. 6.
Outliers were omitted as over a thousand data points result
in too many outliers to properly visualize. We first regard the
spatial offset orthogonal to the transport direction and then
the temporal deviation.

As shown in Fig. 6a, using the noise-free information
obtained at least 10 cm before the end of the belt to predict
the positions of the particles at the edge of the belt (and thus
at the separation mechanism) yields results with very high
precision. When using the velocity obtained by the simulation,
the vast majority of all predictions are accurate up to less
than 0.2mm of precision. Very similar results were obtained
when using only noise-free position measurements to predict
each particle’s motions via tracking. This was an expected
result as the particles of the bulk material do not change their
velocity very fast and thus, the velocity can be approximated
well when all positions of the particle are perfectly known.
However, as seen on the right of Fig. 6a, the assumption that
the particles move straight in the transport direction is not
valid in general as the old, implicit model performs far worse
on the ground truth data.

The results of the evaluation based the synthetic image
data are given in Fig. 6b and show that the tracking approach
achieves a performance comparable with the performance
that the old, implicit model achieves using noise-free position
measurements. Further analysis showed that the bias observed
is a result of the inaccurate calibration used. With the vast
majority of particles deviating less than 1.5mm from the
ground truth, a reliable separation is ensured for commonly
used separation mechanisms. The predictions based on the
old, implicit model are worse, but not far inferior to those of
the predictive tracking approach using the image data. For



perfectly round particles, the error of the image processing
can dominate, lessening the importance of the improved
motion model. In line with observations in [4], we expect the
models to be more important for irregularly shaped particles
of biological origin such as peppercorns. However, accurate
simulations for these kinds of bulk materials are significantly
harder and are subject to future work.

The temporal errors of the approaches based on the
noise-free information are shown in Fig. 6c. A conspicuous
difference to the spatial deviations are the biases in the
temporal deviations. The particles are still on the belt and
accelerate further in the prediction phase in this scenario,
which is not accounted for by the constant velocity model.
This induces a need for more sophisticated models that take
such effects into account. In Fig. 6d, it can be seen that the
temporal deviation when using the tracking approach based
on the image data is higher, including a higher bias. The
reasons are twofold. First, the spatial calibration error along
the transport direction induces an error in the predicted time
of arrival at the separation mechanism. Second, the higher
uncertainties in the tracking based on the image data make
this approach slower to adapt to the changes in velocity.

V. CONCLUSION

Our evaluation of the predictive tracking approach based
on a DEM-simulation shows that using tracking to generate
predictions for accurately targeting particles in optical belt
sorters is a valid and useful concept. If the particles can be
localized very accurately, the derived predictions are highly
precise, a result that is in line with observations in [6]. While
the tracking performs well using noise-free information, the
obtained results based on the output of the image processing
are limited by the accuracy of the determined centroids passed
on to the tracking. Nonetheless, we showed in our evaluation
that even when using a perspective that was not chosen to
optimize tracking results, useful position measurements can
be derived using suitable image processing algorithms.

However, evidently, the accuracy of the measurements
obtained using the image processing has a large impact on
the performance of the tracking system and thus, optimization
of the tracking performance for industrial applications should
always include tailoring the parameters of the camera and the
image processing to the problem at hand. E.g., while using a
large field of view that covers the entire belt can be useful
for classification purposes and for combining the knowledge
of multiple sensors along the belt, the lower precision of the
derived measurements may induce worse prediction results.

One very useful insight is that while a constant velocity
model works very well to reduce spatial inaccuracies, im-
proving the model may lead to lower temporal errors. One
possibility to improve the tracking performance would be to
also observe the particles during the prediction phase to be
able to tell whether the particles tend to further accelerate or
decelerate during the prediction phase. This information could
be used to adjust the predictions of particles that have yet to
enter the prediction phase. The change in the velocities could
also be determined for each class of particle individually to

improve the predictions even further using the classification
decision.

Future work may entail generating image data that is
more realistic and closer to the image data obtained on real
machinery to improve the emulation of the challenges in
the actual image processing task. For example, this could
be achieved by generating hybrid images by overlaying real
image data with simulated particles in a realistic manner. In
the long term, we plan to develop a simulation that integrates
the tracking, the sorting decisions based on the tracking, and
the actual separation. Using this simulation, the set-up of
the tracking and the design of the entire belt sorter could be
iteratively improved.
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[15] D. Höhner, S. Wirtz, and V. Scherer, “Experimental and Numerical
Investigation on the Influence of Particle Shape and Shape Approx-
imation on Hopper Discharge Using the Discrete Element Method,”
Powder Technology, 2013.

[16] R. S. Fitzpatrick, H. J. Glass, and R. D. Pascoe, “CFD–DEM
Modelling of Particle Ejection by a Sensor-Based Automated Sorter,”
Minerals Engineering, vol. 79, pp. 176 – 184, 2015.


