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Abstract— Compressive sensing originates in the field of
signal processing and has recently become a topic of energy-
efficient data gathering in wireless sensor networks. In this
paper, we introduce a distributed compressive sensing ap-
proach, which utilizes spatial correlation among sensor nodes to
group them into coalitions. The coalition formation method is
represented by a block diagonal measurement matrix whose
each diagonal entity corresponds to one of the coalitions.
Then, a spatial-temporal correlation-based compressive sensing
approach is used inside each coalition to schedule sensor nodes
and encode their readings. Distributed data encoding over
coalitions increases robustness and scalability of the approach.
Simulation results verify that the proposed solution outperforms
other compressive sensing approaches significantly in terms of
data accuracy and energy efficiency.

I. INTRODUCTION

Energy efficiency is a continuing concern within wireless

sensor networks. Every sensor network is operational as long

as they have enough energy resources. Therefore, to ensure

the longevity of a network , energy efficient techniques are

essential [1]. Compressive sensing is one of the new energy

effecient compression based data gathering techniques which

is introduced in recent years.

Compressive sensing is a concept originated from the field

of signal processing. The promise of compressive sensing is

that it can reconstruct sparse or compressible signals from

a small number of measurements without having a priori

knowledge about the signal structure. This technique utilizes

information rate instead of sampling rate to sample and

recover the signal [2].

Recent compressive sensing solutions proposed in wireless

sensor networks have proven advantages in minimizing the

number of measurements, but they are still not compet-

itive with the existing data compression techniques [3].

Since transmission cost is the dominant energy consumption

parameter, compressive sensing methods should consider

minimizing the consumption by each measurement in terms

of transmission cost. In some proposed solutions, each sensor

node produces its measurements, aggregates these with the

measurements of other nodes and transfers them to the

base station. Since sensor nodes may be far from each

other, the transmission cost is high enough to negate the

advantages of compressive sensing-based data gathering [4].

Utilizing distributed compressive sensing could represent

an important step towards improving existing compressive
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sensing methods in terms of energy consumption, bandwidth

use and data quality [5].

This paper proposes a distributed compressive sensing

solution that focuses on spatial-temporal correlation to min-

imize the number of active sensor nodes and their measure-

ment rates. This approach leverages the sparsity distribution

of signals in order to group spatially correlated sensor nodes

into coalitions. A coalition formation method is represented

by a block diagonal measurement matrix whose each diago-

nal entity corresponds to one of the coalitions. Upon forming

coalitions, proposed spatial-temporal correlation based com-

pressive sensing approach is used inside each coalition to

collect sensor nodes’ readings.

The remainder of this paper is organized as follows:

Section II presents the related works while section III repre-

sents network architecture. Section IV introduces an overall

overview of the proposed solution. Section V and VI explain

collation formation algorithm and data gathering procedure

inside coalitions, respectively. Data reconstruction procedure

is mentioned in Section VII while Section VIII analyzes the

performance of the proposed scheme. Finally, conclusions

are drawn in Section IX.

II. RELATED WORKS

Luo et al [6] present a compressive data gathering (CDG)

method, which combines data compression and routing for

data collection in large-scale wireless sensor networks. The

result of this combination is a balanced distribution of energy

consumption over the network, which improves network

lifetime. Furthermore, it shows a significant reduction in

communication cost.

A further study [7] introduces a joint sparse signal re-

covery method which assumes sensor nodes have been dis-

tributed into different clusters, and uses a joint sparse signal

recovery mechanism to recover the compressed data. The

proposed solution reduces energy consumption in terms of

data compression and transmission rate. However, it does not

ensure that application-defined data accuracy requirements

are met.

A hybrid network coding and compressive sensing-

based solution in [8] represents a clustered spatial-temporal

correlation-based compressive sensing method. Each sensor

node utilizes a well-defined Gaussian code matrix to encode

its reading and forwards it to the base station through the

cluster head. Proper selection of the measurement matrix and

network coding coefficients is utilized at the base station to

implement a low-complexity data reconstruction algorithm

that reconstructs data more accurately.
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Another publication [9] proposes a novel compressive

sensing-based data gathering solution for massive lossy data

transmission scenarios. The proposed compressive sensing

solution models environmental data dynamicity using an

environmental matrix (EM) and then employs the spatial-

temporal correlation observed in this matrix to reconstruct

the encoded data.

III. NETWORK MODEL

Our heterogeneous network consists of N static sensor

nodes regularly placed inside a region and utilizes multi-hop

communication to forward the readings to the base station.

Each sensor node is assigned an integer ID, i, which is in

the range from 1 to N .

There are three types of sensor nodes in the network:

normal nodes, coalition coordinator and base station. The

normal sensor nodes have limited computational and storage

capacity. Moreover, these sensor nodes are equipped with

limited battery power, as replacing their batteries is difficult

and expensive. There are a few powerful but also resource-

restricted nodes, the coalition coordinators, which have more

memory and computation capabilities. The base station is

a powerful node with significant computational and storage

resources.

IV. PROPOSED APPROACH OVERVIEW

In order to achieve an energy efficient and quality aware

compressive sensing method, we introduce a distributed

compressive sensing approach that utilizes spatial correlation

among sensor nodes to group them into coalitions. Upon

forming coalitions, the proposed spatial-temporal correlation-

based compressive sensing approach is implemented inside

each coalition in order to schedule sensor nodes and encode

their readings. Temporal correlation among sensor node read-

ings allows our approach to adjust the number of measure-

ments with regard to the temporally changing sparsity level.

The proposed coalition formation method is represented by a

block diagonal measurement matrix in which each diagonal

entity corresponds to one of the coalitions. The base station

employs a two-step joint sparsity-based recovery algorithm

to reconstruct the original signal.

V. COALITION FORMATION

The compressive sensing-based coalition formation intro-

duced here is inspired by the fact that the subject signals

are distributed in the environment and distribution of their

signal elements is different for the sensor nodes based on

their locations. Therefore, the sensor nodes observe the same

signal with different resolution. On the other hand, the sparse

representation of the signal can be shown in a sparsity base

function. We utilize the base function distribution over the

network to define a cover parameter. This cover metric shows

the degree of the base function covered by the sensor nodes.

This parameter helps sensor nodes inside each coalition

produce informative measurements, which results in accurate

data recovery by the base station.

To make a concrete and accurate coalition, we define a

utility function U based on cover, transmission and sensor

node correlations. This function is used to evaluate the effi-

ciency of the coalitions produced. To do so, U makes a trade-

off between reconstruction accuracy (correlation between

sensor nodes and base function distribution pattern) and data

transmission cost (distance between sensor nodes).

The following sections explain the prerequisites for the

coalition formation algorithm and conclude by presenting the

coalition formation procedure.

A. Measurement Matrix

Since we divide the network into different coalitions, the

data is gathered through these different coalitions. Therefore,

whole data may be divided into discrete blocks, in which

each block is acquired via a local measurement operator.

Assuming that we have divided the network into NC coali-

tions and our signal X has being partitioned into NC blocks

X1, X2, ..., XNC
∈ RN . Each block j which shows coalition

j is assigned with a local measurement matrix Φj : RN →
RNj collects the measurements. Each measurement sub-

matrix Φj represents the measurement pattern inside each

coalition j.

Each of our measurement matrix Φj is assigned one

coalition matrix C which permutes the entities of original

signal assigned for the specific coalition j. In order to assign

each coalition j, through its measurement matrix Φj , with

the permutated signal coefficients xCj , we multiply C by X
which produces CX = XC = [xC1 , x

C
2 , ..., x

C
NC

] and finally

we have:

Y = ΦCX (1)

where:

Φ =

⎛
⎜⎜⎜⎜⎜⎝

Φ1

Φ2 0
.

0 .
ΦNC

⎞
⎟⎟⎟⎟⎟⎠

(2)

The resulting matrix ΦC represents the distribution of

sensor nodes inside each coalition and C is a coalition

matrix.

Based on equation 2 and sparse representation of the signal

X = Ψ̃a, we obtain:

Y = ΦCX = Φ(CΨ̃)a = ΦΨa (3)

where Ψ = CΨ̃ is a permutated version of Ψ̃. As we

have seen, our coalition matrix permutates the base functions.

Through this permutation, each row in Ψ is a permutated row

of Ψ̃ as follows:

ψT
i =

N∑
j=1

P (i, j)ψ̃T
j (4)
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where ψT
i and ψ̃T

j are the row vectors of Ψ and Ψ̃,

respectively. if P (i, j) = 1, then the ith row of Ψ is replaced

with jth row of Ψ̃.

After permutation with coalition matrix, we have a proper

pattern for each Φj to measure data from sensor node inside

each coalition j.
The coalition formation mechanism proposed here leads to

a block diagonal measurement matrix with the appropriate

coalition matrix C, relative to the location of the sensor

nodes. This provides a distributed data measurement pattern.

B. Utility Function

The proposed coalition matrix C can be assigned to any

coalition formation method. During the coalition formation

procedure, we aim to make the best trade-off between energy

savings and reconstruction accuracy. To do so, we introduce

a utility function to evaluate the efficiency of the coalition

formation process. This utility function is defined based on

the energy, correlation and cover degree parameters. The

following sections explain these parameters in more detail

and conclude by introducing the utility function.
1) Energy: We define the energy parameter for coalition

formation scenarios based on transmission and measurement

costs. Energy consumption is described as:

Ei = Ecomm + Epro + Emeas (5)

where Ecomm, Epro, Emeas are communication, process-

ing and measurement energy parameters, respectively. In this

section, we focus on data transmission and measurement

cost. We normalize these costs and replace energy require-

ments for processing and measurement with measurement

cost. The transmission cost relates directly to the distance,

while the measurement cost is influenced by the number of

measurements. We replace the energy parameter with the

normalized parameters of distance between two nodes inside

the coalition and the number of measurements is represented

as:

ECo(i, j) =
Dist(i, j)

Distmax
+

Mi

Mmax
(6)

where ECoi is the energy cost in terms of normalized

distance between node i,j Dist(i, j) and the normalized

number of measurements taken by node i, Mi.
2) Correlation Degree: Since sensor nodes are located

close to each other and they sense the same signal with

different resolutions, we were able to find different levels of

spatial correlation among them. Existing compressive tech-

niques usually ignore this correlation and transfer redundant

compressed data, which costs energy. Our approach tries

to remove the redundancy among compressed data, thus

leveraging this spatial correlation. To do so, in the coalition

formation phase we force the algorithm to consider this

correlation along with other parameters. When we have cor-

related sensors in the same coalitions, we remove redundancy

in the compressed data using the algorithm described in the

next section. The correlation metric among sensor nodes is

defined as Corr.

Corr(i, j) =
Cov(yi, yj)

σ(yi)σ(yj)
(7)

According to this formula, we define a binary variable CR
which indicates whether two sensor nodes are sufficiently

correlated. For this purpose, we utilize a user-defined corre-

lation threshold TH1.

CR(i, j) =

{
1 ifCorr(i, j) > TH1;
0 ifCorr(i, j) ≤ TH1.

3) Cover Degree: Measured signals can be represented

by a sparsity function distribution over the networks. These

functions can also be grouped into one or more coalitions.

The performance of our coalition mechanism in terms of

recovered data accuracy greatly depends on the nature of

the sparsity base functions. To evaluate this performance,

we define a sparsity base cover degree (SCD) metric which

measures the degree of the overlap between each coalition

with the base functions Ψ. Essentially, the SCD shows the

energy overlap between base functions and coalitions.

We define the SCD metric between each base function i
and coalition Colj as follows:

SCD(j, i) =
∑

m∈Colj

ψ2(i,m) (8)

where m is a sensor node located in coalition j. This

metric SCD(j, i) indicates that measurements collected from

coalition j contain information about the measurements of

other coalitions that cover the same base function i. Taking

into account this coverage degree among different coalitions,

we use a joint sparse signal recovery approach to recover

the original signal. However, there are situations in which

Ψ is covered only by one coalition. This means that for

a K-sparse signal, the sparsity bases are contained in one

coalition. Since this coalition is not known beforehand,

we need to gather data from all coalitions, which is not

energy efficient. Meanwhile, for accurate data recovery we

must have O(K logN) measurements, meaning that we

need O(KNC logN ) measurements from all coalitions. On

the other hand, the redundant measurements from other

coalitions that do not overlap with the base, do not contribute

to improving data accuracy. If Ψ has even overlap among

different coalitions, our data recovery accuracy is increased.

To quantify the cover level of Ψ over coalitions, we define

the maximum SCD as follows:

SCDmax(Ψ) = SCDmax(CΨ) = maxj,u
∑
w

Ψj2(w, u),

SCD(Ψ) ∈ [0, 1]
(9)

SCDmax shows the maximum cover level of each coali-

tion with the sparsity base, while Ψj is the base sub-matrix

assigned to coalition j.
Forming coalitions such that the sparsity function can be

recovered with several coalitions increases the quality of

the recovered data. On the other hand, we must minimize

444



the number of correlated coalitions and the number of

measurements to minimize energy consumption. To find this

balance, we must define a utility function as described in

the next section. We discuss the number of coalitions and

measurements and how SCDmax makes a trade-off between

energy and quality in terms of the minimum number of

measurements and data recovery accuracy.

4) Utility Function Formulation: In this section, we cal-

culate a utility function U to evaluate the candidate coalition

structures.

In the coalition formation phase, we aim to build NC

coalitions to achieve minimum energy consumption while

meeting data quality requirements. Minimizing transmission

and measurement cost, which is the main energy consump-

tion parameter here, depends on SCDmax, Miand Distij .

The proposed utility function should evaluate adding a new

sensor node to any coalition in terms of the trade-off between

energy and quality. To do so, we define the utility function

U for each combination of (ni, Colr) as follows:

U(ni, Colr) = CR(ni)× (ECo(ni, Colr)

+αSCDmax(ni, Colr)), α > 0
(10)

where CR(ni) defines the correlation level of sensor

node i with other sensor nodes in Colr . Regarding the

SCDmax(ni, Colr) parameter, adding a sensor node to

different coalitions may change the value of SCDmax.

C. Coalition Formation Algorithm

In the model introduced in this paper, the network consists

of N sensor nodes SN = {n1, n2, ..., nN} and L = {lni,nj}
is the set of all possible connections between sensor nodes.

Two sensor nodes are considered to be connected if they are

placed in communication range of each other. We assume

that Ψ is known and all sparsity bases are normalized to 1 so

that SCD ∈ [0, 1]. This algorithm aims to minimize energy

consumption, provided that the data quality requirement is

met. Adding a new sensor node to the coalition is a selection

procedure that evaluates which coalition is the best candidate

for adding a sensor node. To make a good selection we run

an optimization algorithm on U .

Before describing the optimization algorithm, the SCD
parameter must be redefined. During coalition formation,

when we add a new sensor node to the coalition, SCD
evaluates the effect of adding this node by assigning a

weight for the link between existing node in the coalition

and the new sensor node. Our coalition formation method,

in order to examine the effect of adding a sensor node to each

coalition, defines the SCD factor as SCDmax(lni,nj
, Colr)

by considering the link, lni,nj
∈ L and a given coalition

Colr. This link does not connect two nodes in the same

coalition, which means ni ∈ Colr and nj � Cr.

Now we redefine the utility function U for each combina-

tion of (lni,nj
, Colr):

U(ni, Colr) = CR(ni, nj)× (ECo(lni,nj )

+αSCDmax(lni,nj , Colr)), α > 0
(11)

SCDmax(lni,nj , Colr) here represents the maximum

cover level when a new node is added to coalition Colr
using the link lni,nj

.

Now we can formalize our optimization algorithm. The

main goal in the optimization procedure is to minimize the

energy consumption and data recovery error by adding new

sensor nodes to the coalitions. When selecting an appropriate

coalition for a new sensor node, the optimization algorithm

examines the utility of adding the new sensor node to each

coalition. For each coalition, this utility is defined based on

the link connecting the new sensor node to an existing node

in the coalition. Running the optimization algorithm finds

the coalitions that minimize the utility function in terms of

link cost. We formulate this optimization as follows:

U(ni, lmin, Colrmin
) =

argminU(ni, Colr) = argmin[CR(ni, nj)×
(ECo(lni,nj

) + αSCDmax(lni,nj
, Colr))]

subject to ni ∈ SN, nj ∈ Colr, CR(ni, nj) ∈ {0, 1}
(12)

Now let us describe the algorithm according to the opti-

mization equations. To find a set of sensor nodes for each

coalition, this algorithm uses equation 12 to find a set of

links such that the total U of the links is minimized. In

the initialization step, we assume a set of candidate nodes

and candidate links to be added to the coalitions defined

by a set of SN and L. The algorithm then assigns each

coalition coordinator node CC to one of the NC coalitions.

In addition, it defines SNColr and LColr as a set of sensor

nodes and connections of coalition r, respectively. Along

with the initialization step, the algorithm runs an iterative

procedure where in each iteration it allocates one sensor

node to one of the coalitions. To do so, it first finds the

utility function for all possible connections defined in L. It

then runs the optimization function defined in 12 and finds

the minimum utility. However, it finds the utility for sensor

nodes which satisfy the minimum correlation requirements.

The output of this optimization is a connection link with

minimum utility lmin. This link connecting (ni, nj), adds

sensor node ni to the coalition of which node nj is a member.

Upon adding a new sensor node, the SCD parameter of

the all links connected to the coalitions changes so that the

link utility of the sensor nodes may change. It then removes

this link and sensor node ni from the list of candidate links

and nodes. This procedure continues until all sensor nodes

are assigned to the coalitions. Algotithm 1 represents this

algorithm.

VI. COMPRESSIVE SENSING BASED DATA

GATHERING

After Grouping sensor nodes inside coalitions, sensor

nodes transfer their readings to the base station. We now

construct a block diagonal measurement matrix using the

spatial-temporal correlation among sensor nodes.

Let SNColj = {1, 2, ..., Nj} denote the set of sensor

nodes for the jth coalition where Pj of these sensor nodes
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Algorithm 1 Coalition formation

1: SN = n1, n2, .., nN

2: Define L = lij as a set of all possible links

3: Define NC coalitions with one coalition coordinator

4: Define set of nodes Ncolk and links for each coalitions

Lcolk

5: for (P = 1;P ≤ (N −NC);P ++) do
6: for (Q = 1;Q ≤ |L|;Q++) do
7: Find Lposs = liji ∈ Ncolk , j ∈ SN
8: end for
9: Cacluate U(Iij , Colk)

10: Add nj to Colkmin

11: Add lmin to LColmin

12: (nj , lmin, Colkmin)
13: Remove nj from SN
14: Remove lmin from L
15: end for

are randomly scheduled to be active. In contrast to existing

compressive sensing methods, we define a new structure for

the measurement matrix that is compatible with our coalition

formation method. We use a temporal block diagonal mea-

surement matrix, Φt, to gather data. During each sampling

instance, we gather spatial observations of all sensor nodes

at time t and produce a discrete spatial signal Xt at this

time. The temporal observation of all active sensor nodes

together is a spatial-temporal signal [Xtr
1 , X

tr
2 , ..., X

tr
ST ],

where ST is a parameter representing the number of samples

in each sampling round T . Each sampling period consists

of T sampling instances equal to the Shannon-Nyquist rate.

To reduce this number of sampling times, the base station

adjusts the number of sampling times according to the signal

sparsity level and defines a number of sampling points ST
for each sampling period.

For each sampling period t, we consider Φt as a measure-

ment matrix; Φt is Pj × SNColj . The measurement vector

YColj is consists of STj sub-vectors of STj sampling times

such that Y Colj = [Y tr
1 , Y tr

2 , ..., Y tr
STj

] where each Yi is a

Pj × 1 vector.

As indicated above, for the distributed compressive sens-

ing techniques, inside each coalition we utilize a block

diagram measurement matrix that compactly represents sev-

eral temporal measurement sub-matrices. Combining these

spatial-temporal measurements together yields:

Y j = YColj = ΦjXj (13)

Y J =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1
Y2
.
.
.

YSTj

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎛
⎜⎜⎜⎜⎜⎝

Φ1

Φ2 0
.

0 .
ΦSTj

⎞
⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎣

X1

X2

.

.

.
XSTj

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

where for each 1 ≤ t ≤ ST , Φt has Pj rows and SNColj

columns.

At the end of each sampling round, every sensor node

transfers its measurement vector Yj to its neighbor node.

The neighbor node receives the data and forwards it to

the coalition coordinator. Introducing this temporal block

diagonal measurement inside each coalition provides energy-

balanced data aggregation within the coalitions

VII. SIGNAL RECOVERY PROCEDURE

Upon collecting sensor node readings, base station em-

ploys a belief propagation based signal recovery algprithm

to reconstruct the original data. This recovery procedure is

already introduced in our previous work [17]. We will not

explain the reconstruction procedure in this paper again. For

more details you can refer to [17].

VIII. PERFORMANCE EVALUATION

A. Assumption

We use a real dataset collected at the campus of Uni-

versity of Surrey, UK for the REDUCE projects [10][11].

We compare the proposed spatial-temporal compressive

sensing approach with the existing data compression tech-

niques. The approaches used in the comparison are Bayesian

compressive sensing (BCS) [12], clustered spatial-temporal

Bayesian compressive sensing (STBCS) [13], temporal belief

propagation-based compressive sensing (TBCS) [14], OMP-

based compressive sensing [15] and spatial Bayesian com-

pressive sensing (SBCS) [16].

Our simulation is implemented on Matlab environment

and we have utilized the toolbox provided for Bayesian

Compressive sensing in [17].

B. Data Accuracy

In order to measure the data accuracy, we compare the

accurate reconstruction percentage for the different data com-

pression values. As shown in figure 1, our approach provides

accurate data reconstruction with a minimum number of

measurements. The main reason for this performance is the

value of information gained using the coalition formation

method. Our approach tries to group sensor nodes based on

their sparsity similarity, which leads to transmitting more

information with a lower number of measurements. However,

increasing the compression ratio decreases the gap between

our approach and other methods. On the other hand, our

approach adjusts the number of measurements based on

the signal sparsity level, which removes redundant data

transmission.

C. Energy Consumption

In this section we compare energy consumption param-

eters among the different methods. As shown in figure 2,

our approach provides the best energy resource consumption

performance among the approaches compared. STBCS and

SBCS are the second and third best approaches, which

provide performance somewhat more comparable to our

method than do the other methods. The main common feature
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Fig. 1. Reconstruction accuracy percentage for different CRs

Fig. 2. Energy consumption

of these three approaches is grouping sensor nodes and

localizing sensor node measurements. The means of group-

ing sensor nodes and gathering measurements from each

group are the main difference among these methods. Since

our approach utilizes sparsity similarity to group the sensor

nodes, the number of active nodes is minimized. Moreover,

it adjusts the number of measurements to the sparsity level,

which removes the redundancy in data gathering.

D. Energy accuracy trade-off

We study the trade-off between network energy consump-

tion and data accuracy. To do so, we investigate energy

consumption in terms of normalized network lifetime, while

for accuracy we consider the error between the reconstructed

data and real data. Our approach provides approximately

40% network lifetime at a minimum error level, while with

less accurate data it provides higher percentages of lifetime.

Adapting both the number of measurements and the number

of active sensor nodes to the signal sparsity level is the

main contribution of our approach to prolong network life-

time. In addition, spatial-temporal correlation-based coalition

formation provides sufficient similarity among sensor node

measurements, which leads to less error in recovered data.

IX. CONCLUSION

This paper has proposed a spatial-temporal compressive

sensing technique that improves data gathering performance

in terms of data accuracy and energy consumption. We

introduced coalition-based compressive sensing that uses the

spatial correlation among sensor nodes to localize compres-

sive sensing data gathering. Upon forming a coalition, the

proposed approach is used within each coalition to schedule

the sensor nodes. Simulation results shows that our approach

enhances network performance by minimizing the energy

consumption and increasing the data accuracy.

Fig. 3. Normalized network lifetime versus reconstruction error trade-Off
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