
A Hybrid Approach To Hierarchical Density-based Cluster Selection

Claudia Malzer1 and Marcus Baum2

Abstract— HDBSCAN is a density-based clustering algorithm
that constructs a cluster hierarchy tree and then uses a specific
stability measure to extract flat clusters from the tree. We show
how the application of an additional threshold value can result
in a combination of DBSCAN* and HDBSCAN clusters, and
demonstrate potential benefits of this hybrid approach when
clustering data of variable densities. In particular, our approach
is useful in scenarios where we require a low minimum cluster
size but want to avoid an abundance of micro-clusters in
high-density regions. The method can directly be applied to
HDBSCAN’s tree of cluster candidates and does not require any
modifications to the hierarchy itself. It can easily be integrated
as an addition to existing HDBSCAN implementations.

I. INTRODUCTION

Clustering algorithms are used by researchers of various
domains to explore and analyze patterns of similarity in their
data. In density-based clustering, clusters are regarded as data
partitions that have a higher density than their surroundings,
i.e. dense concentrations of objects are separated by areas
of low density. Objects that do not meet a given density
criterion are discarded as noise. Those kind of algorithms can
be useful in many research fields, and are particularly well
suited for spatial data mining [1], such as GPS coordinates
or even radar reflections in traffic scenes.

In this paper, we discuss a problem that can occur in
data sets with highly variable densities, especially when
choosing a low minimum cluster size. In such case, we
either completely miss some potentially relevant clusters,
or receive a large number of small clusters in high-density
regions that we would have intuitively regarded as only
one or few clusters. We show how the application of an
additional threshold value to the cluster hierarchy created
by the algorithm HDBSCAN [2] can provide a solution to
this problem, and call this approach HDBSCAN(ε̂). It can be
viewed as a hybrid between DBSCAN* (see Section III) and
HDBSCAN in the sense that we select DBSCAN* clusters
for a fixed threshold value, and HDBSCAN clusters from all
data partitions not affected by the threshold.

Section II provides a short overview of existing density-
based clustering algorithms with focus on hierarchical so-
lutions. Section III gives a more detailed insight into
HDBSCAN, since our approach is intended as an alternative
– or additional – cluster selection method for the HDBSCAN
hierarchy. In Section IV, we first illustrate the mentioned

1Claudia Malzer is with HAWK Hochschule für angewandte Wis-
senschaft und Kunst; Data Fusion Group at University of Göttingen; and
Max Planck Institute for Dynamics and Self-Organization in Göttingen,
Germany claudia.malzer@hawk.de

2Marcus Baum is with Data Fusion Group, University of Göttingen
marcus.baum@cs.uni-goettingen.de

problem on a real-life example and then formalize the
application of a threshold to HDBSCAN. Results of our
experiments with HDBSCAN(ε̂) are presented and discussed
in Section V. Section VI concludes with a brief summary.

II. RELATED WORK

The classic density-based algorithm DBSCAN [3] defines
density as having a minimum number of objects (specified
by an input parameter minPts) within the neighborhood
of a certain radius. The size of the radius is specified by
the distance threshold parameter ε (epsilon). Objects that
fulfill this density criterion are called core points. In some
cases, objects are no core points themselves but lie within
the epsilon neighborhood of a core point. These are called
border points and are also assigned to clusters. All remaining
points are classified as noise.

DBSCAN’s major weakness is that its epsilon parameter
serves as a global density threshold and it is therefore not
possible to discover clusters of variable densities beyond
epsilon. Many DBSCAN alternatives have been proposed
with the aim of overcoming this problem. To name only
two recent approaches, density peaks clustering by Rodriguez
and Laio [4] and density-ratio based clustering by Zhu et al.
[5] are algorithms designed to handle variable densities. For
example, DBSCAN can be turned into a density-ratio based
clustering approach by adding a third parameter. In density
peaks clustering, a representation called decision graph is
used for manual selection of cluster centers.

However, the focus of our work lies on hierarchical
approaches with automatic cluster selection. The first hier-
archical DBSCAN extension to become widely used was
OPTICS by Ankerst et al. [6]. In contrast to DBSCAN,
it constructs an ordered representation of the data set that
allows to explore all possible density levels. A value for the
minimum cluster size is the only required input parameter.
The authors also provided an automatic cluster selection
method based on a parameter ξ. An alternative to this method
was proposed by Sander et al. [7].

Dockhorn et al. [8] introduced ε-HDBSCAN, where
minPts is gradually decreased for a DBSCAN hierarchy
with fixed epsilon. They also proposed the edge quantile
method, which views the complete hierarchy as a cluster
from which subclusters are cut off wherever the connecting
edge length exceeds the 0.95 quantile of edge lengths [9].

AUTO-HDS [10] is another hierarchical method and quite
similar to the newer but already widely used algorithm
HDBSCAN by Campello et al. [2]. However, it has been
shown that HDBSCAN can outperform both AUTO-HDS
and the combination of OPTICS with Sander et al.’s cluster

ar
X

iv
:1

91
1.

02
28

2v
4 

 [
cs

.D
B

] 
 2

1 
Ja

n 
20

21



extraction method [2] [11]. HDBSCAN was proposed as
an improved extension of DBSCAN and OPTICS for data
exploration in diverse research fields. It has an efficient
Python implementation [12] that conforms to the scikit-
learn [13] library and supports a variety of metrics. The
algorithm requires only a minimum cluster size as user input
and then simplifies a complex single-linkage hierarchy to a
smaller tree of candidate clusters. A flat solution is extracted
automatically based on local cuts. In [14], Campello et al.
introduce the “Framework for Optimal Selection of Clusters”
(FOSC) that formalizes cluster selection through local cuts
as an optimization problem. HDBSCAN’s original selection
approach is an example of a FOSC-compliant method.

The method proposed in this paper – HDBSCAN(ε̂) – is
intended as an alternative cluster selection approach for the
HDBSCAN hierarchy. By implementing it in compliance to
FOSC, it can easily be combined with other FOSC methods,
and setting the threshold to 0 always results in the same
clustering as the original HDBSCAN. We will give a brief
overview of HDBSCAN and FOSC in the following section.

III. THE HDBSCAN ALGORITHM

HDBSCAN is built on top of a slightly modified version of
DBSCAN, called DBSCAN*, which declares border points
as noise [2]. Unlike DBSCAN(*), HDBSCAN does not select
clusters based on a global epsilon threshold, but creates
a hierarchy for all possible epsilon values with respect to
minPts as minimum cluster size.

A. Mutual Reachability Distance

In HDBSCAN, the core distance dcore is defined as the
distance of an object to its minPts-nearest neighbor. The
constructed hierarchy is based on the mutual reachability
distance, which for two objects xp, xq is

max{dcore(xp), dcore(xq), d(xp, xq)}

where d(xp, xq) refers to the “normal” distance according
to the chosen metric, e.g. Euclidean distance. This approach
separates sparse points from others by at least their core
distance and makes the clustering more robust to noise.

The data set can then be represented as a graph with data
objects as vertices, connected by weighted edges with the
mutual reachability distances as weights. Using this graph
to construct a minimum spanning tree and sorting its edges
by mutual reachability distance results in a hierarchical tree
structure (dendrogram). By choosing an epsilon as a global
horizontal cut value and selecting all clusters with at least
minPts points at this density level, we could retrieve the
DBSCAN* clusters for this epsilon from the hierarchy.

B. Condensed Cluster Hierarchy

Since HDBSCAN aims at discovering clusters of variable
densities, it instead proceeds to building a simplified version
of the complex hierarchy tree, the condensed cluster tree.
This approach follows the tree pruning concept of which
many variants exist in literature, such as runt pruning by
Stuetzle [15] or pruning a tree created by a robust single

linkage algorithm by Chaudhuri et al. [16]. A detailed
explanation of the relationships between those approaches
and HDBSCAN is provided by McInnes and Healy [11].

Starting from the root, HDBSCAN regards each cluster
split as a true split only if both child clusters contain at
least minPts objects. If they both contain less than minPts
objects, the cluster is considered as having disappeared at
this density level. If only one of the children has less than
minPts objects, the interpretation is that the parent cluster
has simply lost points but still exists. “Lost” points are
regarded as noise. This simplification process results in a
hierarchy of candidate clusters at different density levels.

C. Stability-based Cluster Selection

Given the condensed cluster tree, one possibility is to
simply select all leaf nodes. These are the clusters with
lowest epsilon values in the hierarchy, and represent clusters
that cannot be split up any further with respect to minPts.
This selection method is one of two provided options in
HDBSCAN’s Python implementation – from now on called
HDBSCAN(leaf) – and results in very fine-grained clusters.

The other option is eom, short for excess of mass. This
method is recommended by Campello et al. [2] as the optimal
global solution to the problem of finding clusters with the
highest stability, which they define as

S(Ci) =
∑
xj∈Ci

(λmax(xj , Ci)− λmin(Ci))

=
∑
xj∈Ci

(
1

εmin(xj , Ci)
− 1

εmax(Ci)
)

(1)

where the density value λ is simply set to 1
ε . This

means that λ values become larger from root towards leaves,
whereas the corresponding ε distance values become smaller.
Subtracting λmin(Ci), which corresponds to the density level
at which cluster Ci first appears, from the value beyond
which object xj ∈ Ci no longer belongs to Ci, results in
a measure of lifetime for xj . The sum of all object lifetimes
within Ci leads to the overall cluster lifetime S(Ci), which
is called stability because the clusters with longest lifetimes
are considered to be the most stable ones.

The authors then formalize an optimization problem for
maximizing the sum of these cluster stabilities as

max
δ2,...,δk

J =

k∑
i=2

δiS(Ci)

subject to

{
δi ∈ {0, 1}, i = 2, ..., k∑
j∈Ih δj = 1,∀h ∈ L

(2)

with L = {h|Chis leaf cluster} as leaves, Ih as the set of
clusters on the paths from leaves to the excluded root, and δi
as boolean indicator whether the respective cluster is selected
or not. The definition ensures that no more than one cluster
can be selected on any branch from leaf towards root.

To solve this problem, HDBSCAN’s selection algorithm
traverses the cluster tree bottom-up. The stability value of
each node is compared to the sum of stability values of its



nested subclusters. In this way, stabilities are propagated and
updated when going up the tree until the cluster with highest
stability is found and selected on each branch.

D. Framework for Optimal Selection of Clusters

The excess of mass (eom) method for cluster extraction
as explained above conforms to the generic “Framework
for Optimal Selection of Clusters” (FOSC) introduced by
Campello et al. [14]. FOSC requires two essential properties:
First, the chosen measure for cluster selection – in this case,
the stability criterion – must be local, i.e. it can be computed
for each cluster independently of other selected clusters.
Second, it must be additive, i.e. it must be meaningful to
add up the computed cluster values (in this case, cluster
stabilities) so that an optimization problem as shown above
can be formulated as maximizing the sum of values. More-
over, it must be ensured that exactly one cluster is selected
on each branch. This formal problem can then be solved
by traversing the hierarchy tree bottom-up starting from the
leaves, deciding for each candidate cluster whether it should
be part of the final solution. FOSC thus provides an efficient
way of finding the globally optimal solution for the extraction
of clusters according to the chosen measure.

IV. HDBSCAN(ε̂): A THRESHOLD FOR CLUSTER SPLITS

In this section, we introduce an approach for selecting
clusters from the HDBSCAN hierarchy based on a distance
threshold ε̂. Our motivation for this approach is given below,
followed by a formal definition.

A. Motivation

HDBSCAN is a powerful clustering algorithm for unsu-
pervised data exploration. However, for some applications,
the single input parameter minPts might not be sufficient
to discover the clusters that best represent the underlying
data structure. In particular, let us consider a large data set
distributed such that there is a high number of very dense
objects in some areas, and only few objects in other areas.
If we were only interested in the highly populated areas,
HDBSCAN would give us good results for a minPts value
large enough to declare sparse regions as noise and dense
regions as clusters. In some cases, however, we do not want
all observations in sparse environments to be marked as
noise: these areas might naturally contain fewer objects, but
small yet dense groups of objects that do exist might be just
as relevant as the ones in regions with lots of data.

Figure 1a demonstrates such a scenario. It shows around
2800 GPS data points on a map extract, representing
recorded pick-up and drop-off locations from a door-to-door
demand-responsive ride pooling system [17]. Our aim was
to assign addresses requested by customers to the closest
areas where ride pooling vehicles were actually able to
stop in the past, i.e. in compliance with traffic rules and
available space. The largest (visual) data cluster can be found
around the train station. Smaller clusters are placed along
the streets, depending on the requested location. Since we
are considering a door-to-door system where customers are

(a) The sample data set (b) HDBSCAN with minPts = 4

(c) OPTICS with minPts = 4,
ξ = 0.05

(d) DBSCAN* with minPts = 4,
ε = 5 meters

Fig. 1. Clustering results for a sample data set of GPS locations.

not bound to collective pick-up or drop-off locations, even
small groups of 4 or 5 points are of interest to us.

Figure 1b presents the clustering result with HDBSCAN’s
default selection method eom, from now on referred to
as HDBSCAN(eom). Using minPts = 4, the algorithm
successfully discovers all the small clusters while declaring
obvious outliers or groups with less than 4 points as noise
(gray points). However, in the high-density area around the
train station, it generates a very large number of micro-
clusters. In our case, this is not what we want: we would
prefer one or only few clusters representing the location. This
would be possible by increasing minPts, but at the cost of
losing small clusters in less dense areas or merging them
into other clusters separated by a relatively large distance.

We clustered the same data set with OPTICS from scikit-
learn and DBSCAN* from HDBSCAN’s Python implemen-
tation. The minPts parameter was set to 4 in both cases.
For OPTICS, we tried ξ values between 0.03 to 0.05, and
for DBSCAN*, we tried ε values between 3 and 10 meters
(haversine distance). In each case, we chose a value that in-
tuitively produces the best results. Figure 1c shows OPTICS
clusters for ξ = 0.05, which are similar to HDBSCAN.
Figure 1d depicts DBSCAN* results for ε = 5 meters, which
seems clearly better suitable for our application. However,
DBSCAN* neglects potentially important clusters with den-
sities beyond the chosen threshold. In particular, this applies
to the two groups of objects on the bottom-left and another
two on the far-right. A larger ε would cover these objects,
but at the same time merge other clusters. Note that this
demonstration is based on only a small sample. Applying
DBSCAN(*) to a larger data set increases its tendency to
single-linkage effects when increasing ε, such as extending
the largest cluster down the streets.



For a scenario like this, a combination between
HDBSCAN and DBSCAN* would be useful. The essential
idea is that instead of performing a cut through the entire
hierarchy, we just prevent clusters below a given threshold
from splitting up any further. We could then still select
regular HDBSCAN clusters from data partitions not affected
by the threshold. All others would be DBSCAN* clusters.

B. Formal Definition

We define the application of a threshold to the HDBSCAN
hierarchy as a selection method in accordance with the
framework FOSC [14] as explained earlier. To formalize our
cluster selection criterion, we introduce the notions of epsilon
stable and epsilon stability.

Definition 1 (Epsilon stable): A cluster Ci with i =
{2, ..., k} is called epsilon stable if εmax(Ci) > ε̂ for a given
ε̂ > 0.

As explained earlier, λmin(Ci) = 1
εmax(Ci)

is the density
level at which cluster Ci appears. Note that this is equal to the
level at which it split off its parent cluster. Hence we call a
cluster epsilon stable if the split from its parents occurred at a
distance above our threshold ε̂ (or below the level λmin(Ci),
respectively) and formally define epsilon stability as follows:

Definition 2 (Epsilon Stability):

ES(Ci) =

{
λmin(Ci) if Ci is epsilon stable
0 otherwise

If we select the cluster with highest epsilon stability on
each path of the HDBSCAN condensed hierarchy tree, we
end up with all the clusters that we do not want to split up any
further w.r.t. ε̂ and minPts. Their parents split up at some
distance εmin > ε̂, which is equal to the εmax value on the
level where their children appear. While those children are
still valid clusters, they are not allowed to split up themselves
because either they are leaf clusters or the level λmax = 1

εmin

at which the split would happen is above the threshold.
Given these definitions, we can formulate the optimization

problem that maximizes the sum of epsilon stabilities in the
same way as previously shown in Section III-C (Problem 2),
with the only difference that we replace S(Ci) with ES(Ci).
The definition ensures that we extract only the maximum
epsilon stable cluster on each path from leaf towards root.

C. Selection Algorithm

The original selection algorithm by Campello et al. [2]
takes into account that the total stability value needs to be
updated at each step. In our case, this is not necessary due
to the definition of epsilon stability. The pseudo code in
Algorithm 1 thus shows a simplified version of the original
code that has been adapted to our problem. First, we mark
all leaves of the HDBSCAN cluster hierarchy as selected.
If a leaf has previously been marked as not being a cluster,
or if it is already epsilon stable (i.e., λmin <= 1

ε̂ for input
parameter ε̂), we continue with the next leaf. Otherwise, we
traverse upwards until we find an ascendant that split off its
parent at a density level λmin <= 1

ε̂ . If we find one before

Algorithm 1: Solution to the Optimization Problem

1. Initialize δ(.) = 1 for all leaves
2. Do bottom-up from all leaves (excluding the root):

2.1. If ES(Ci) > 0 or δCi = 0, continue to next leaf
2.2. Else if ES(Ci) = 0 and ES(CPARENT (i)) > 0,

set δPARENT (i) = 1 and set δ(.) = 0 for all
nodes in CPARENT (i)’s subtree

1.40.05

0.3

0.6

0.03

0.02

0.03

(a) Hierarchy with λmin

values per level

00.05

0

0

0.03

0.02

0.03

(b) Hierarchy with ES values
for λ = 0.2

Fig. 2. The cluster tree in Figure 2a is annotated with the λmin value
per hierarchy level. Figure 2b shows the same tree annotated with epsilon
stability values for a given threshold ε̂ = 5 (or λ = 0.2, respectively). On
each path, the cluster with maximum epsilon stability is highlighted in red.

reaching the root, we select it as a cluster and unselect all
of its descendants.

Since ES(Ci) decreases as we traverse up the tree (unless
for 0 values), this procedure ensures that we are selecting the
maximum epsilon stable cluster on each path. This is equal
to selecting the first cluster on the path that “was born” at a
distance greater than ε̂ and is thus not allowed to split up.

The concept is illustrated in Figure 2, which shows the
cluster tree for a small sample data set. The tree on the left
is annotated with λmin values. On the right, the same tree
is annotated with corresponding epsilon stability values for
ε̂ = 5 meters, or λ = 1

ε̂ = 0.2. According to Definition 2,
each cluster on a level that is not epsilon stable is set to 0.
All others receive their λmin as epsilon stability value.

It can be seen that the density levels with λmin values of
0.6, 0.3 and 1.4 exceed the threshold of 0.2. This indicates
that the parents of clusters on these levels split up at a
distance lower than 5 meters. By starting from the leaves
and selecting the ascendant with maximum epsilon stability
value on each path, we receive the final set of clusters
(highlighted in red). Note that instead of starting from the
leaves, we could optionally also start with the nodes selected
by HDBSCAN(eom). This would combine both methods, i.e.
after selecting the most stable clusters we could still decide
to merge clusters up to the given threshold value.

HDBSCAN(ε̂) can be viewed as FOSC-compliant: the ES
measure is local in the sense that for each cluster, we can
decide whether to set the value to 0 or to λmin independently
of the values of other clusters, and since we can add up the
values for our optimization problem, it is also additive.



(a) DS1 (b) DS2

Fig. 3. A synthetic data set (left) and a real data set (right).

V. EXPERIMENTS AND DISCUSSION

Before applying HDBSCAN(ε̂) to the GPS data set intro-
duced in Section IV-A, we also demonstrate the algorithm
on a synthetic data set and an alternative real data set as
illustrated in Figure 3. Different (random) colors represent
the true labels. Both data sets contain clusters of variable
shapes and densities and serve as examples for cases where
HDBSCAN(eom) alone leads to an abundance of micro-
clusters. For comparison, each data set was also clustered
with OPTICS and DBSCAN*. Since we focus on scenarios
where we require a low minimum cluster size, minPts was
set to 4 for DS1 and 2 for DS2. Epsilon in DBSCAN* and
HDBSCAN(ε̂) was in each case set to a value that results
in the most accurate clustering w.r.t. the ground truth data.
OPTICS’ ξ value was set to 0.05 in both cases. Lower or
higher values did not improve the result.

Figure 4 shows that HDBSCAN(eom) discovers clusters of
variable densities in DS1, but breaks up high-density regions
into micro-clusters. OPTICS results are no improvement over
HDBSCAN(eom). DBSCAN* almost achieves the desired
output, but we could not find an epsilon value that recognizes
the cluster on the bottom-left while keeping the remaining
clusters separated. Figure 4c shows the result for ε = 0.34,
which is just large enough not to merge clusters and at the
same time not declaring any more points as noise.

DS2 is based on radar data from nuscenes [18] (scene-
0553) with reflections from pedestrians and vehicles. In Fig-
ure 3b, the ego vehicle position is marked with a red arrow,
and bounding boxes for moving objects are included. Note
that the manually chosen “true” labels consider the group
of pedestrians (red points) as one cluster, but results that
detect subgroups would also be acceptable. Potential clutter
and stationary objects below a threshold of 0.1 m

s were
removed. By clustering based on a 3D data set where Doppler
velocity and Cartesian x/y coordinates were scaled to values
between 0 and 1, we used a very simple radar clustering
approach. However, the example again demonstrates that for
a low minPts, OPTICS and HDBSCAN(eom) might create
undesired micro-clusters (see Figure 5). For DBSCAN*, an
epsilon lower than 0.13 neglects relevant reflections from
the pedestrian group. For larger values, a perfect result can
be achieved. However, larger epsilons increase the risk of
merging other clusters, e.g. vehicles driving side by side.
In contrast, HDBSCAN(ε̂) does not require an ε̂ larger than
0.1. Overall, the range of possible epsilon values for the
best result are 0.34 - 0.38 (DS1) and 0.13 - 0.35 (DS2)

(a) HDBSCAN(eom) (b) OPTICS with ξ = 0.05

(c) DBSCAN* with ε = 0.34 (d) HDBSCAN(ε̂) with ε̂ = 0.1

Fig. 4. Clustering results for DS1. Colorless points are noise.

(a) HDBSCAN(eom) (b) OPTICS with ξ = 0.05

(c) DBSCAN* with ε = 0.13 (d) HDBSCAN(ε̂) with ε̂ = 0.1

Fig. 5. Clustering results for DS2. Colorless points are noise.

for DBSCAN* and 0.1 - 0.38 (DS1) and 0.04 - 0.35 (DS2)
for HDBSCAN(ε̂). This indicates that HDBSCAN(ε̂) is less
sensitive to the choice of its epsilon parameter.

Results are represented by the Adjusted Rand Index (ARI)
as seen in Table I. Note that the ARI, a commonly used
cluster validation measure, does not consider noise. Hence,
DBSCAN* and HDBSCAN(ε̂) both achieve a perfect ARI
score of 1 for DS1, although DBSCAN* marks the bottom-
left cluster as noise. For DS2, we recorded DBSCAN*’s
perfect score for ε = 0.13 instead of the result for ε = ε̂.

Finally, we applied HDBSCAN(ε̂) to the sample of GPS
data introduced in Section IV-A. Figure 6 shows the result
for ε̂ = 5 meters. Compared to DBSCAN* in Figure 1d with
the same epsilon value, and HDBSCAN(eom) in Figure 1b,
we notice that we indeed receive a combination of both.
We no longer lose clusters of variable densities beyond the
given epsilon, but avoid the high number of micro-clusters in
the original clustering, which was an undesired side-effect of
having to choose a low minPts value. Note that for the given



TABLE I
CLUSTERING RESULTS FOR DATA SET DS1 AND DS2 IN TERMS OF

ADJUSTED RAND INDEX (ARI) AND PERCENTAGE OF DATA POINTS NOT

MARKED AS NOISE (%C). HDB. IS SHORT FOR HDBSCAN.

Data
Set

HDB. (eom) OPTICS DBSCAN* HDB. (ε̂)
ARI %c ARI %c ARI %c ARI %c

DS1 0.28 0.75 0.11 0.78 1 0.98 1 1
DS2 0.80 0.92 0.09 0.90 1 1 1 1

Fig. 6. HDBSCAN(ε̂) with minPts = 4, ε̂ = 5 meters

parameter setting, running HDBSCAN(ε̂) based on eom or
leaf would not make any difference: ε̂ neutralizes the effect
of HDBSCAN’s stability calculation. For a lower threshold,
e.g. ε̂ = 3, some minor differences can be noticed.

In general, the most suitable ε̂ value is certainly not always
easy to choose. For GPS data, it is quite intuitive to decide
on a distance threshold, but in higher-dimensional data, this
becomes more difficult. Another limitation of our method is
that cutting the hierarchy at a fixed threshold can neglect
meaningful subclusters. Hence, it inherits DBSCAN(*)’s
shortcomings wherever it uses a fixed value to select clusters.
It could also be argued that the threshold could already be
applied when building the hierarchy and does not require the
definition of an optimization problem or FOSC-compatibility.
However, the application at selection stage has the major
advantage that we do not need to modify HDBSCAN’s
original hierarchy and then re-build it every time we apply
a different threshold. Instead, we can work with the original
tree (or even a cache) and then efficiently explore our data
set with different selection methods and thresholds. It has
been shown that FOSC cluster extraction does not increase
the overall complexity of HDBSCAN, which is O(n2) [14].

VI. SUMMARY AND CONCLUSION

We introduced the cluster selection method HDBSCAN(ε̂)
that applies a distance threshold to HDBSCAN’s hierar-
chy and therefore acts like a hybrid between DBSCAN*
and HDBSCAN: for data partitions affected by the given
threshold ε̂, we extract DBSCAN* results, for all others
HDBSCAN clusters. The method is designed to be compati-
ble to the framework FOSC and can be combined with other
FOSC-compliant methods. It can easily be integrated into ex-
isting HDBSCAN implementations and is already available
as part of the scikit-learn compatible Python module [12].

We belief that this extension will prove to be valuable
particularly in clustering spatial data, but it could also be
applied to different kind of data. Future work might include
combinations with further selection methods such as semi-
supervised approaches.

REFERENCES

[1] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based clus-
tering,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 1, no. 3, pp. 231–240, 2011.

[2] Campello, Ricardo J. G. B. and Moulavi, Davoud and Sander, Joerg,
“Density-based clustering based on hierarchical density estimates,”
in Advances in Knowledge Discovery and Data Mining. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 160–172.

[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters a density-based algorithm for dis-
covering clusters in large spatial databases with noise,” in Proceedings
of the Second International Conference on Knowledge Discovery and
Data Mining, ser. KDD’96. AAAI Press, 1996, pp. 226–231.

[4] A. Rodriguez and A. Laio, “Clustering by fast search and find of
density peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, 2014.

[5] Y. Zhu, K. M. Ting, and M. J. Carman, “Density-ratio based clustering
for discovering clusters with varying densities,” Pattern Recognition,
vol. 60, pp. 983 – 997, 2016.

[6] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” in Proceedings
of the 1999 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’99. New York, NY, USA: Association for
Computing Machinery, 1999, p. 49–60.

[7] J. Sander, X. Qin, Z. Lu, N. Niu, and A. Kovarsky, “Automatic
extraction of clusters from hierarchical clustering representations,”
in Proceedings of the 7th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, ser. PAKDD ’03. Berlin,
Heidelberg: Springer-Verlag, 2003, pp. 75–87.

[8] A. Dockhorn, C. Braune, and R. Kruse, “An alternating optimization
approach based on hierarchical adaptations of DBSCAN,” in 2015
IEEE Symposium Series on Computational Intelligence, Dec 2015,
pp. 749–755.

[9] A. Dockhorn, C. Braune, and R. Kruse, “Variable density based clus-
tering,” 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1–8, 2016.

[10] G. Gupta, A. Liu, and J. Ghosh, “Automated hierarchical density shav-
ing: A robust automated clustering and visualization framework for
large biological data sets,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 7, no. 2, pp. 223–237, April 2010.

[11] L. McInnes and J. Healy, “Accelerated hierarchical density based
clustering,” in 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), Nov 2017, pp. 33–42.

[12] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density
based clustering,” The Journal of Open Source Software, vol. 2, no. 11,
mar 2017.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[14] R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander, “A
framework for semi-supervised and unsupervised optimal extraction
of clusters from hierarchies,” Data Mining and Knowledge Discovery,
vol. 27, no. 3, pp. 344–371, Nov 2013.

[15] W. Stuetzle, “Estimating the cluster tree of a density by analyzing the
minimal spanning tree of a sample,” Journal of Classification, vol. 20,
no. 1, pp. 025–047, May 2003.

[16] K. Chaudhuri, S. Dasgupta, S. Kpotufe, and U. von Luxburg, “Con-
sistent procedures for cluster tree estimation and pruning,” IEEE
Transactions on Information Theory, vol. 60, no. 12, pp. 7900–7912,
2014.

[17] N. Avermann and J. Schlüter, “Determinants of customer satisfaction
with a true door-to-door DRT service in rural Germany,” in Research in
Transportation Business & Management, vol. 32, 2019, paper 100420.

[18] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027,
2019.

http://arxiv.org/abs/1903.11027

	I INTRODUCTION
	II Related Work
	III The HDBSCAN Algorithm
	III-A Mutual Reachability Distance
	III-B Condensed Cluster Hierarchy
	III-C Stability-based Cluster Selection
	III-D Framework for Optimal Selection of Clusters

	IV HDBSCAN(): A Threshold for Cluster Splits
	IV-A Motivation
	IV-B Formal Definition
	IV-C Selection Algorithm

	V Experiments and Discussion
	VI Summary and Conclusion
	References

