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Abstract

We consider estimating the parameters of a Gaussian mixture density with a given number of
components best representing a given set of weighted samples. We adopt a density interpretation
of the samples by viewing them as a discrete Dirac mixture density over a continuous domain with
weighted components. Hence, Gaussian mixture fitting is viewed as density re-approximation. In order
to speed up computation, an expectation—maximization method is proposed that properly considers
not only the sample locations, but also the corresponding weights. It is shown that methods from
literature do not treat the weights correctly, resulting in wrong estimates. This is demonstrated with
simple counterexamples. The proposed method works in any number of dimensions with the same
computational load as standard Gaussian mixture estimators for unweighted samples.

1. Introduction

Gaussian mixture (GM) estimation is ubiquitous in signal processing and machine learning.
Given a set of samples, the parameters of a GM are determined in such a way as to best fit the
samples in a maximum likelihood way. Solutions for equally weighted samples are readily available,
expectation—maximization (EM) based methods being the most prevalent because of low computational
requirements and ease of implementation.

So it comes as a surprise that GM estimation for weighted samples is hard to find in literature. It
might be even more surprising that the standard reference [I] gives incorrect results, see Fig.

2. Context

Applications for sample-to-density function approximation include clustering of unlabled data
[2, B], multi-target tracking [4, 5], group tracking [6], multilateration [7) [§], and arbitrary density
representation in nonlinear filters [9, [10].

A popular basic solution to this is the k-means algorithm. It does not find a complete density
representation, only the means of the individual clusters. The k-means algorithm uses hard sample-to-
mean associations, therefore yields merely approximate solutions but can be computationally optimized
using k-d trees [11), 12]. Moreover, the global optimum can be found deterministically [I3], therefore it
can be used to provide an initial guess for more elaborate algorithms.

A sample-to-density approximation that is optimal in a maximum likelihood sense can be searched
with numerical optimization techniques such as the Newton algorithm that has quadratic convergence
but high computational demand per iteration, quasi-Newton methods, the method of scoring, or the
conjugate gradient method with slower convergence but less computational effort per iteration [14].

2.1. State-of-the-art

The EM algorithm has been used for decades [15], [16] to solve statistical problems. It converges
rather slowly, especially if the GM components are poorly separated, but it provides a valid parameter
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Figure 1: Two-dimensional GM parameter estimation using EM from [I] (blue line), and EM according
to our proposed method (red line). Compare the ground truth (black line). Equidistant samples (grey
dots) were weighted with the GM density function and given to the EM algorithms.

set in every iteration step, i.e., nonnegative and normalized component weights and positive semidefinite
covariance matrices, without the need of any artificial safeguards. The EM algorithm features good
global convergence to some local optimum, is very easy to implement, has low computational cost
per iteration when using optimized libraries for standard statistical tasks, and needs little storage
[14]. There are extensions of the EM to automatically determine the optimal number of Gaussian

components [17, [I8, [19].

2.2. Contribution

The contribution of this paper is a fast, simple, and practical EM method for the correct treatment
of weighted samples in Gaussian mixture estimation.

3. Problem Formulation

For an observed set of L weighted samples

Y = {{a1,s8:},{a2,8},..., {ar,s.}}

with sample locations s; as vectors in the D-dimensional Euclidean space R”, and scalar weights a;,
we want to find a GM density function with M Gaussian components
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with nonnegative component weights w,, > 0 that are normalized, Z%Zl Wy, = 1, component means
IR RP, and component covariances C,, € RP*P . The GM should explain the observed samples as
good as possible. We thus estimate GM parameters ©

© = {{wru Cif, o {wrr i Curf

from the weighted samples Y, ideally in a maximum likelihood sense
®

This can be done via numerical optimization or, more efficiently, using the EM algorithm. For the
EM algorithm, we additionally consider a hidden variable H. It contains the association probabilities

ni.m between samples {a;, s;} and GM components {wm,ﬁm, Cm} .

4. Key Idea

We believe that the following two things should give the same contribution to the result: First, one
sample with double weight, and second, two single-weight samples that are arranged with infinitesimally
small or zero distance. Therefore, we propose to determine the hidden association parameters H only
based on sample locations. In other words we use the observed sample weights only in the maximization
step and not in the expectation step.

For the maximization step, we propose to estimate GM component weights, means, and covariances
as a weighted average, where weighting is the product of observed sample weights and sample-to-GM
component associations.

5. Implementation of Proposed Method

Associations H between Samples and GM components are unknown but necessary for an EM
algorithm in order to independently calculate moments of individual mixtures. Marginalization over
all possible associations

fve(Y|©) :/fH,Y|®(HvY|®)dH ;

is infeasible, hence the separation into expectation and maximization steps according to the EM
algorithm.

5.1. Expectation Step

Besides the given observed data Y, we assume an estimate O™ of the parameter vector containing
the GM parameters {w%),ﬁg), C%)} , m € {1,..., M}, with iteration index (r), to obtain a new
estimate of the hidden data H(+1

(r+1) _ me@i_&(Q’ C%))
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with matrix elements [IA{(’"H)} o= ni(::{l). Due to the normalization such that the row sum is equal to
i,m ’

one, H+D describes a “probability of association” for each sample ¢ to each component m of the GM.



5.2. Maximization Step

Using said estimate of the hidden data H*D and also the observed data Y, i.e., sample locations
s; and sample weights «;, we obtain a new estimate of the parameter vector e+l
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5.8. Split Sample Linearity

The obtained parameter estimate (:)(7"“)7 after performing one expectation and maximization step
for some given prior parameter estimate ©("), is identical whether we have a set of weighted samples

Y = {{a1. 51} {o2,5},... . {ar, s }}

or “split samples” with, e.g., two samples and two weights at each sample location, i.e.,

¥ ={ (ot} o s} follh s {ofl )
. {ag), sL} {a%), SL}} , (5)

(r+1)

with a; = agl) —|—ozl(-2) Vi e {l,...,L}. Thisis because association probabilities 7;, =~ in the expectation

step do not depend on sample weights «;, and for the maximization step due to its linearity it does
not matter whether there are two samples with weights al(l), agg) at the same location s;, or only one
sample that contains their combined weight «;.

Note that the same holds for any other linear combination of more than two weights and samples
at each same sample location, moreover not all but only a few sample locations may exhibit “split
samples”. We see this invariance against “split samples” as a logical sanity check the method should

pass in order to be consistent.

6. Implementation in [I]

For comparison, we quote the implementation from [I, 20] and highlight the differences to what we
propose.

6.1. Ezpectation Step in [1f
For estimating the associations 7757;;1) between samples s; and GM components {w(mr), HS;)’ Cq(fl)},
(r)

the covariances Cy,” of the individual Gaussian components are scaled in [I] based on the sample
weights a;

(1) _ me(s - ,u(’” /a@)
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We however propose to use the GM covariances Cy,’ without any sample-specific adaptions ([1).
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Figure 2: A simple scalar example with two GM components. Equidistant samples were weighted with
the ground truth probability density function, and the GM parameters (component weights, means,
and variances) were estimated with our proposed method (red lines) and the method from [I] (blue
lines). Ideally, the estimations should converge to the ground truth (black dashed lines) after some
iterations.



6.2. Mazimization Step in [1]
In [I], sample weights «; are not considered when calculating the Gaussian mixture component

weights wgﬂ)
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is identical to our proposed method . For component covariance estimation C%H), the difference

between [I] and our proposed method is that sample weights «; are not considered for normalization
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6.3. Split Sample Linearity in [1f

For the EM method according to [I], the result of each iteration is different when we “split” some
samples in different ways, e.g., in two parts . Therefore, a double sample weight is not equivalent
with two samples at the same location. The evaluation section will demonstrate that not only the
individual iteration results, but also the final result differs from our proposed method, and from the
ground truth.

7. Evaluation and Comparison with [1]

As the simplest example, we define a one-dimensional GM with two components. A large number
of equidistant samples is placed in the relevant region, and the GM density function at each sample
location is used as the respective sample weight. Furthermore, some random initial guess of the GM
parameters is given. Two algorithms are compared in solving this density estimation problem. First,
our proposed method as defined in Sec. |5, and second, the method as proposed in [I] and replicated
here in Sec. [6]

One setup is defined where the two Gaussian components are rather “separated”, this can be solved
with about 15 iteration steps, see Fig. 2| (a, b, ¢). A second setup has Gaussian components that are
closer together and exhibit some “overlap” of probability mass. Both EM algorithms need much more
iteration steps to converge here, see Fig. 2 (d, e, f).

For the “separated” Gaussian components we find that all algorithms provide a very good estimation
of the GM component means after about three iterations. The weighting factor estimates need more
iterations to converge and are slightly off with the algorithm from [I]. Standard deviations from [I] are
not reliable at all. Only our proposed method provides accurate results here. In the “overlapping” setup,
the GM component weight, mean, and variance estimates converge to solutions that are significantly
off the ground truth when using the method from [I]. Our proposed method needs more iterations to
converge but finds the accurate solution in the end.

8. Conclusions

Considering weighted samples opens new applications for GM estimation, e.g., in the field of
Bayesian estimation, see [10]. The correct treatment of weighted samples in GM estimation was
derived. It was shown that current approaches have a serious flaw that leads to wrong estimates. The
proper modifications can simply be added to existing GM estimation code to extend its applicability
to weighted samples. The proposed method is also a plugin replacement for standard GM estimators
as it is backwards compatible for unweighted samples.
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