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Abstract— Ideally, robots should move in ways that maximize
the knowledge gained about the state of both their internal
system and the external operating environment. Trajectory
design is a challenging problem that has been investigated from
a variety of perspectives, ranging from information-theoretic
analyses to leaning-based approaches. Recently, observability-
based metrics have been proposed to find trajectories that
enable rapid and accurate state and parameter estimation. The
viability and efficacy of these methods is not yet well understood
in the literature. In this paper, we compare two state-of-the-art
methods for observability-aware trajectory optimization and
seek to add important theoretical clarifications and valuable
discussion about their overall effectiveness. For evaluation, we
examine the representative task of sensor-to-sensor extrinsic
self-calibration using a realistic physics simulator. We also study
the sensitivity of these algorithms to changes in the information
content of the exteroceptive sensor measurements.

I. INTRODUCTION

Robots generally use a combination of exteroceptive and
interoceptive sensing to collect task-relevant information
about the external environmental and their internal state.
If the data collected are insufficient, a robot may perform
unreliably or, in the worst case, become a safety hazard. For
example, many self-calibration algorithms will return faulty
results if the data do not meet certain excitation conditions
[1]. As a result, we require methods to maximize the amount
of relevant information (about the states and parameters of
interest) that is provided by the data collected.

A variety of methods have been developed to increase
the information content of (i.e., the knowledge provided
by) a robot trajectory. Factors that influence the informa-
tion obtained include the environment, system dynamics,
process and measurement noise, and the expressiveness of
the trajectory parameterization, among others. Recently, the
notion of using nonlinear observability as a criterion for
trajectory optimization has been proposed in the literature.
Typically, nonlinear observability is treated as a binary
test that determines if the measurements and inputs of an
ideal (noise-free) system are sufficient to recover a unique
solution for the states and parameters. Krener and Ide [2]
were the first to suggest the ‘degree of observability’ as
a metric for trajectory optimization. Their method relies
on costly simulation and numerical integration, however.
Recent approaches by Preiss et al. [3] and Frey et al. [4]
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Fig. 1. Highly-observable trajectories can improve estimation accuracy
during active self-calibration. As an example, we may wish to estimate the
transformation TIC ∈ SE(3) from the egomotion sensor (camera) frame
F−→C to the inertial sensor frame F−→I while simultaneously tracking the pose
of the robot platform.

avoid these computational difficulties, to some extent, by
developing alternative observability-based metrics. Preiss et
al. [3] introduce a novel method to maximize a function
related to the empirical local observability Gramian [2]; Frey
et al. [4] take a different approach in the stochastic setting by
introducing an interval filtering model and metric (described
in Section V-B). Importantly, optimization metrics based on
nonlinear observability naturally account for the nonlinear
form of the system and measurement models, potentially
leading to better results than competing techniques.

To the best of the authors’ knowledge, there is no existing
comprehensive analysis of the performance of techniques of
the type introduced by Preiss et al. [3] and Frey et al. [4].
Bohm et al. [5] determine the performance of the method in
[3] for a real robot, but do not review the work in [4]. In
this paper, we compare the methods of Preiss et al. [3] and
Frey et al. [4] on the representative task of self-calibration
of the rigid-body transform between an inertial measurement
unit (IMU) and a stereo camera (or other sensor that is able
to provide egomotion estimates). This paper contributes the
following:

• a comprehensive review of important works related to
observability-aware trajectory optimization;

• a comparison of two state-of-the-art observability-aware
trajectory optimization algorithms, made under con-
trolled conditions in a realistic physics simulation envi-
ronment;

• a sensitivity analysis of the algorithms to variations in
the ‘quality’ of exteroceptive measurements; and

• a discussion of the viability of the use of observability
to inform trajectory optimization.
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The paper is structured as follows. We provide a survey
of related literature in Section II. In Section III, we review
our mathematical notation and present the generic trajectory
optimization problem. Section IV describes in detail the
concept of observability as it relates to this work, while
Section V considers the methodologies of Preiss et al. [3] and
of Frey et al. [4]. Finally, we present and discuss our results
in Section VI and offer some conclusions in Section VII.

II. RELATED WORK

The problem of trajectory optimization has received sub-
stantial attention in the literature and a wide variety of op-
timization techniques exist. One the most common methods
for trajectory optimization in robotics is to maximize a norm
of the Fisher information matrix (FIM) [6]–[9]. The aim of
such approaches is to find a trajectory that increases the
amount of information available from exteroceptive sensor
measurements about the relevant system states and parame-
ters. However, this knowledge also depends on the system
dynamics and the nonlinear form of the measurement model
equations, which are important additional considerations not
fully addressed by FIM-type metrics.

In contrast to the optimization of metrics related to the
FIM, the optimization of an observability criterion [2]–[4]
accounts for nonlinear system dynamics and measurements.
One of the first observability-related metrics introduced in
the literature was the integration-based metric defined by
Krener and Ide in [2]. This metric is based on the empirical
local observability Gramian, which quantifies the change
in the measured outputs when the initial system states are
perturbed while the inputs are held constant. A drawback
of the approach in [2] and similar techniques is that each
evaluation of the objective function requires the integration of
two [2] or more [10] ordinary differential equations (ODEs),
which is computationally very challenging.

Powel and Morgansen [11] apply stochastic differential
equations, instead of ODEs, to account for process noise
(i.e., model uncertainty) when determining observability. In
[11], the empirical local observability Gramian framework
is extended to the setting of stochastic observability: there
is still a rank condition, but it is now defined in terms of
the expectation over a distribution. The authors describe how
noise on the control inputs can potentially improve nonlinear
observability—in some cases, noise may excite a system in
ways that the control inputs cannot. However, the method
in [11] is restricted to stochastic systems with closed-form
solutions; in the absence of a closed-form solution, compu-
tationally intensive and numerically unstable simulations are
usually required [3].

Without a computationally tractable and reliable method to
maximize some measure of the observability of a trajectory,
the majority of existing work has relied on other tech-
niques: maximizing information gain, minimizing posterior
uncertainty, or other ad hoc criteria. For example, Maye
et al. [12] evaluate the information gained from sensor
measurements during trajectory execution by comparing the
mutual information of the current trajectory segment with

previously-stored trajectory segments. Additionally, the al-
gorithm in [12] filters out trajectory segments for which the
state is unobservable, based on the conditioning of the FIM.
Schneider et al. develop a similar approach in [6], utilizing
differential entropy to quantify the information content of
each trajectory segment. Usayiwevu et al. [13] minimize the
posterior covariance of the extrinsic transform parameters for
a lidar-IMU self-calibration task through informative path
planning. The environment is first explored and mapped
while following a pre-defined trajectory. This initial trajec-
tory is then extended using sampling-based motion planning
[14] to minimize the parameter uncertainty.

III. PROBLEM FORMULATION

In this section, we introduce the notation used throughout
the paper, describe our representative calibration task, and
review the general trajectory optimization problem.

A. Notation

Lowercase Latin and Greek letters (e.g., a and α) denote
scalar variables, while uppercase letters are are reserved for
sets. Boldface lower and uppercase letters (e.g., x and Θ) de-
note vectors and matrices, respectively. A three-dimensional
reference frame is designated by F−→. The translation vector
from point a (often a reference frame origin) to a point
b, expressed in F−→a, is denoted by pab. When there is no
risk of ambiguity, we denote a vector quantity, such as
linear velocity or acceleration, or angular velocity, defined
in a specific reference frame, with a single subscript. For
example, the angular velocity of frame F−→a, expressed in
F−→a, is denoted as ωa. The bold lowercase symbol qab is
the unit quaternion that defines the orientation of F−→b with
respect to F−→a. We use the notation R(qab) for the operator
that converts the unit quaternion qab to the respective SO(3)
rotation matrix. The notation N (µ,Σ) denotes a multivariate
Gaussian distribution with a mean vector µ and covariance
matrix Σ.

B. Sensor-to-Sensor Extrinsic Self-Calibration

The task we examine in Section VI is extrinsic self-
calibration between an inertial measurement unit (IMU) and
a stereo camera (or a similar sensor that is able to estimate
egomotion). Three reference frames are involved: the world
frame, F−→W , a frame anchored to the Earth, the IMU frame,
F−→I , aligned with the centre of the sensor, and the camera
frame, F−→C , fixed at the middle of the stereo camera. This
configuration is depicted in Fig. 1. The state vector is

x(t) =
[
pWI(t)

T qWI(t)
T vW (t)T bg(t)T ba(t)T

]T
,

(1)
where pWI(t) is the vehicle position, qWI(t) is the unit
quaternion that defines the vehicle attitude, vW (t) is the
vehicle velocity, and bg(t) and ba(t) are the inertial sen-
sor gyroscope and accelerometer biases, respectively. The
extrinsic calibration parameters are

Θ =
[
pT

IC qT
IC

]T
, (2)



where pIC is the position of the camera relative to the
IMU and qIC is the unit quaternion that defines the camera
orientation relative to the IMU frame. The state evolves in
time according to

ṗWI(t) = vW (t), q̇WI(t) =
1

2
Ω
(
ωI(t)

)
qWI(t), (3)

v̇W (t) = aW (t), (4)

ḃg(t) = ngw(t), ḃa(t) = naw(t), (5)
ṗIC = 03×1, q̇IC = 04×1, (6)

where Ω(·) is the quaternion kinematic matrix [1], ωI is
the angular velocity of the IMU expressed in the IMU
frame, and aW is the acceleration of the IMU expressed in
the world frame. The gyroscope and accelerometer biases
are assumed to be uncorrelated white Gaussian random
walk processes defined by vectors ngw ∼ N (0,Σgw) and
naw ∼ N (0,Σaw), respectively. The measured IMU angular
velocity and acceleration (kinematic inputs) are

ωm(t) = ωI(t) + bg(t) + ng(t), (7)

am(t) = RT (qWI(t))
(
aW (t)− g

)
+ ba(t) + na(t), (8)

respectively, where g is the gravity vector. The vectors ng ∼
N (0,Σg) and na ∼ N (0,Σa) are uncorrelated gyroscope
and accelerometer white Gaussian noise terms, respectively.
The stereo camera (or other exteroceptive sensor) is able to
measure its position and orientation,

h1(t) = pWI(t) + R
(
qWI(t)

)
pIC , (9)

and
h2(t) = qWI(t)⊗ qIC , (10)

relative to the world frame, where ⊗ denotes quaternion
multiplication. We note that these are indirect measurements
that can be derived from camera observations of a sufficient
number of landmarks in the environment. For brevity, we
omit discussion of the imaging process (which depends on
the camera geometry) and the associated image noise.

C. Trajectory Optimization

For completeness, we define the the full trajectory opti-
mization problem in the context of maximum a posterior es-
timation as described by Maye et al. [15]. For the system de-
fined in Section III-B, a discretized trajectory Ξ(X,Θ, U, Z)
is given by the states X = {xk | k = 0, . . . ,K}, the cali-
bration parameters Θ, the inputs U = {uk | k = 1, . . . ,K},
and the measurements Z = {zk | k = 1, . . . ,K}. We seek
to determine the posterior distribution p(X,Θ |U,Z). This
joint posterior can be factored as

p(X,Θ |U,Z) ∝
K∏

k=1

p(xk |xk−1,uk)

K∏
k=1

p(zk |xk,Θ).

(11)
Conventionally, the full joint posterior is assumed to be a
normal distribution with mean µ and covariance Σ. The
maximum a posteriori estimate of the mean vector is

µX,Θ = argmax
X,Θ

p(X,Θ |U,Z). (12)

The trajectory optimization problem is to find an optimized
trajectory that maximizes some metric that depends on one or
more components of the vector µX,Θ (such as the calibration
parameters) or the covariance matrix ΣX,Θ.

IV. OBSERVABILITY

In this section, we present the theoretical foundations
necessary to understand the use of observability as a trajec-
tory optimization metric. The section begins with a review
of nonlinear observability, followed by a discussion of the
relationship between the observability matrix and trajectory
optimization from two perspectives. First, the observability-
trajectory relationship is discussed through the lens of ob-
servability analyses in the presence of noisy measurements
and controls. Second, observability and the system trajectory
are related by a limit on the knowledge that the trajectory
and associated measurements provide about states or param-
eters being estimated. Martinelli [16, pg. 68] defines weak
observability as follows.

Definition IV.1 (Weak Observability). An input-output sys-
tem is weakly observable at x(t0) if there exists an open
set B of x(t) such that, by knowing that x(t0) ∈ B, there
exists at least one choice of inputs u(t) such that x(t0) can
be obtained from the knowledge of the output h(t) and the
inputs u(t) on the time interval I.

The analysis that determines the weak observability of a
system begins with a Taylor series expansion of the control
input and measurement functions, starting at the time t0 [16],

h(t) =

∞∑
i=0

dih(t)

dti

∣∣∣∣∣
t=t0

(t− t0)i

i!
(13)

and

u(t) =

∞∑
i=0

diu(t)

dti

∣∣∣∣∣
t=t0

(t− t0)i

i!
. (14)

Importantly, this formulation implies that knowledge of the
measurements and control inputs over an interval is equiv-
alent to knowledge of all of the measurement and input
derivatives at x(t0). Using the Taylor expansion, the system
of equations related to the unknown state x(t0) = x0 is

h(t0)

ḣ(t0)

ḧ(t0)
...

 =


L0(x0,u(t0))
L1(x0,u(t0))
L2(x0,u(t0))

...

 , (15)

where ith Lie derivative Li is defined as

Li(x,u) =
∂ Li−1 (x,u)

∂ x
f(x,u), (16)

and where we drop the time dependence for clarity. The ith
Lie derivative is the gradient of the previous Lie derivative
with respect to the state, in the direction of the vector
field determined by the system dynamics f(x,u). We take
L0 = h(x0) to be the measurement function itself. Note that
this approach inherently accounts for nonlinearities in both
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Fig. 2. System optimization pipeline. An initial trajectory is optimized based on a chosen observability metric. The optimized trajectory is then executed
by the controller in a realistic physics simulation environment to determine overall performance. We use a quadrotor drone in our simulations.

the dynamics and the measurement models. The Jacobian of
(15) is the well-known nonlinear observability matrix O0

introduced by Hermann and Krener in [17],

O0 ,


∇h(t0)

∇ḣ(t0)

∇ḧ(t0)
...

 =


∇L0(x0,u(t0))
∇L1(x0,u(t0))
∇L2(x0,u(t0))

...

 . (17)

Determining (17) is often computationally intractable be-
cause the matrix contains an infinite number of Lie deriva-
tives (rows). In practice, a finite order of Lie derivative can
be selected to make the computation feasible.

To recover the initial state x0, the matrix (17) must
invertible. However, real-world controls and measurements
contain noise. Noise impacts the conditioning of (17), or
the degree of observability. Since measurement noise, in
particular, reduces the degree of observability, this noise
reduces the ability to determine x(t0). The only inputs
available to the system to mitigate the effects of noise are
the set of controls.

From Martinelli [16, pg. 71], a knowledge bound for
nonlinear observability is presented as follows.

Theorem IV.1 (Lie Derivative Knowledge Bound). The
knowledge of x(t0) = x0 gathered from u(t) and h(t) is
enclosed in the values of all the Lie derivatives of the system
at x0. In other words, knowledge of the values of all of the
Lie derivatives of the system at x(t0) is an upper bound on
the knowledge of x0.

By incorporating nonlinear observability in a trajectory
optimization framework [3] [4], the solution of the trajectory
optimization problem maximizes the knowledge about x0 (or
some subset of the state vector).

V. METHODOLOGY

The differential-geometric approach to nonlinear observ-
ability inherently accounts for nonlinear system dynamics.
Both Preiss et al. [3] and Frey et al. [4] leverage higher-
order approximations of the measurement model ‘Jacobian’
through the use of Lie derivatives,

∇h0(t) =

∞∑
i=0

∇Li(x(t),u(t))

∣∣∣∣∣
t=t0

(t− t0)i

i!
(18)

where a subscript is added (e.g, h0(t)) to clarify the point
at which the Lie derivatives are evaluated. In the subsections

below, we describe and contrast the approaches in [3] and
[4]. An overview of our full optimization pipeline is shown
in Fig. 2. We note that, despite measurement uncertainty
being known to influence observability [18] and calibration
accuracy [19] for robotic systems, neither [3] and [4] account
for measurement uncertainty.

A. Deterministic Method

As discussed in Section II, Preiss et al. [3] develop a
deterministic trajectory optimization metric based upon an
earlier, integration-based technique [2]. A matrix, known
as the expanded empirical local observability Gramian (or
E2LOG) matrix, Ãn,H , is first computed for the time window
[t̄n, t̄n+1 = t̄n + H] where t̄n is the interval start time and
H is a positive multiple of the exteroceptive sensor mea-
surement period ∆t. The metric integrates the measurement
model Jacobian defined by (18),

Ãn,H =

∫ H

0

∇hn(t)T∇hn(t) dt. (19)

The matrix can be written equivalently as,

Ãn,H = OT
nW1On, (20)

where

W1 =

 Hi+j+1

(i+j+1)i!j!I . . .
...

. . .

 . (21)

The matrix On is defined by (17) and computed at time t̄n.
In the weighting matrix, W1, i and j are the orders of the
Lie derivative contained in the observability matrices on the
left and the right in (20), respectively. The complete metric is
determined by summing over N intervals along a trajectory,
each of length H and with its own unique start time t̄n,

AΞ =

N∑
n=0

Ãn,H , (22)

resulting in the E2LOG matrix, AΞ, for the trajectory. The
actual metric is one of: the smallest singular value of AΞ,
its trace, or the condition number of the matrix.

B. Stochastic Method

Frey et al. [4] devise an alternative trajectory optimization
approach that explicitly considers the stochastic nature of
robotic systems. The method of [4] is based on information
filtering, that is, a variant of Bayesian filtering in information



form. The starting point is the discrete-time system error state
model,

ek+1 = F̃kek + G̃kwk, (23)
z̃k = Hkek + nk, (24)

where ek is the error state vector, z̃k is the measurement
vector, wk is the process noise vector, and nk is the
measurement noise vector. The matrix Fk is the motion
model Jacobian, the matrix Hk is the measurement model
Jacobian, and the matrix Gc is the (continuous-time) process
noise Jacobian. Finally, F̃k = I + ∆tFk is the error state
transition matrix and G̃k =

√
∆tGc is the matrix that maps

the process noise from continuous time to discrete time.
As shown previously, the measurement Jacobian can be

written using (18). However, the Lie derivative formulation
of (18) does not account for process noise. Frey et al. solve
this problem by incorporating the process model uncertainty
before the Lie derivative approximation is applied,

e+
n = En

[
en

wn

]
, (25)

En =
[

1
√
HΦK

0 Gk

]
, (26)

where ΦK
0 ≈ FKFK−1 . . .F0. The matrix En injects

process noise ‘immediately’ at the start of the time window
[t̄n, t̄n+1 = t̄n + H] (as opposed to incrementally at each
time step within the window). Throughout the window,
exteroceptive measurements are received at times tk, where
tk is determined relative to the interval start time t̄n. With
use of (18), the error state measurement z̃k is then

z̃k = Ln

[
en

wn

]
+ nk, (27)

Ln = ∇hn(t)En, (28)

where ∇hn(t) is defined by Equation (18) and where we
omit the dependence of Ln on the variable t for brevity. For
the interval [t̄n, t̄n+1], the information matrix over en and
wn is

B̃n,H = LT
nLn = ET

nO
T
nW2OnEn, (29)

where

W2 =

 ti+j
k=1+ti+j

k=2+...

i!j! I . . .
...

. . .

 . (30)

To propagate to the next time window, Frey et al. use en+1 ≈
ΦK

0 e+
n . Thus,

Bn+1 = (ΦK
0 )−T

[
Bn + B̃n,H

]
(ΦK

0 )−1, (31)

where joint information matrix at the start of an interval with
an initial covariance P0 is

Bn =

[
P−1

0 0
0 I

]
. (32)

The above process is repeated for N subsequent intervals
until the final matrix BΞ is obtained. Similarly to the E2LOG
criterion, the metric is then defined by the smallest singular
value, trace, or condition number of BΞ.

C. Trajectory Parameterization

In Section III, we defined the trajectory parameters for our
calibration task as pWI(t) ∈ R3 and qWI(t) ∈ S3. A draw-
back of this parameterization in the optimization context is
that it may result in the generation of dynamically infeasible
trajectories. To prevent this problem, in our experiments, we
consider the flight of a quadrotor-type vehicle and recast the
trajectory parameterization in a differentially flat form [20].
Information on the conversion of the R3 and S3 poses to the
differentially flat form can be found in [20].

We require a continuous-time representation of the tra-
jectory also, for two reasons. First, the trajectory must
be sampled at arbitrary times to evaluate the optimization
metrics. Second, the conversion from differentially flat space
to R3 and S3 requires the instantaneous derivatives of the
differentially flat parameters with respect to time. Due to the
linearity of differentially flat dynamics, we use a uniform
R4-spline parameterization of the continuous differentially
flat trajectory.

A uniform Rd-spline represents the trajectory using a finite
set of knots Y = {yi|i = 0, . . . , N}, a spline order k,
and a temporal spacing between knots ∆tknot. Each knot
is assigned a time ti = t0 + i∆tknot. When evaluating the
spline value at time t, the time is normalized to u = t−ti

∆tknot
,

where ti ≤ t < ti+1. From Sommer et al. [21], an R4-spline
can be represented using

y(u) =
[
yi di

1 · · · di
k−1

]
M̃

(k)
u, (33)

where yi is a knot, di
j = yi+j − yi+j−1, M̃

(k)
is a mixing

matrix and uT =
[
1 u · · · uk−1

]
.

D. Trajectory Optimization

The observability-aware optimization cost function Jobs
can be defined for the matrices AΞ or BΞ from Section V-A
and Section V-B, respectively. In this work the matrix trace
is applied,

Jobs = tr(AΞS), (34)

Jobs = tr(BΞS), (35)

where S is an additional selection matrix that determines
which states or parameters the optimization is applied to.

Similar to [22], the convex hull property of splines is
used to enforce four constraints in the optimization: a fixed
starting position ystart, a fixed ending position yend, a max-
imum velocity vmax, and a maximum acceleration amax.
The convex hull property ensures that the value of a spline
at time t must lie in the convex hull of the knots ti to
ti+k−1. This property is leveraged to ensure that the starting
and ending spline values are within a slack parameter ε of
their desired values. Conveniently, the convex hull property
also extends to the time derivatives of the spline. As a
result, the velocity knots and acceleration knots constrain
the velocity and acceleration along the spline as well. The



full optimization problem is then defined as,

min
y0,...,yN

Jobs

s.t. |ẏi| ≤ vmax ∀ i ≥ 1,

|ÿi| ≤ amax ∀ i ≥ 2,

|yj − yend| ≤ ε for j = N − k + 1, . . . , N,

|yj − ystart| ≤ ε for j = 0, . . . , k − 1.
(36)

For our comparison in Section VI-B, we implemented
one additional optimization metric based on an acceleration
term and similar to that found in Zhou et al. [22]. The cost
functional is

Jaccel =

∫ tN+∆t

0

ÿ(t)TW3 ÿ(t)dt, (37)

where W3 is a user-specified weight matrix (which we
simply set to the identity matrix herein). Since acceleration
and deceleration require energy, this metric provides an
indication of the energy expended by the system while
executing a specific trajectory. Minimizing (37) effectively
minimizes the maximum acceleration (as well as the average
acceleration) along the trajectory, and so we refer trajectories
optimized in this way as MMA trajectories.

VI. EXPERIMENTS

The deterministic and stochastic trajectory optimization
methods described herein can be applied to many estimation
problems. We chose to compare these algorithms on the
benchmark task of IMU-to-stereo camera extrinsic self-
calibration. This is a well-studied problem because accurate
calibration is important for overall system performance. We
describe our simulation environment and setup in Section VI-
A, present our experimental results in Section VI-B, and
discuss those results in Section VI-C.

A. Simulation Setup

To determine the relative performance of the trajectory
optimization methods, we performed two simulation experi-
ments. In the first experiment, we compared the accuracy of
the calibration results obtained using observability-optimized
trajectories against the results obtained using random and
MMA trajectories. Our second experiment analyzed the sen-
sitivity of observability-optimized calibration to variations
in the quality (i.e., information content) of the stereo camera
measurements.

Experiments were carried out in the Gazebo simulator [23]
with the RotorS MAV plugin [24]. A modified version of
the multi-state constraint Kalman filter (MSCKF), available
in the OpenVINS [25] software package, was used as our
state estimator. OpenVINS allows the number of visible
camera landmarks to be easily adjusted, with new landmarks
generated randomly within the camera field of view as
needed. Trajectory optimization was carried out using the
nonlinear solver IFOPT [26]. To manipulate the trajectory
splines, we used the basalt-headers library [21].

For each experimental test, a random spline was generated
between a fixed starting point and a randomly-chosen end

Fig. 3. Example of trajectories from one simulation trial: random,
deterministic [3], stochastic [4], and minimized maximum acceleration. The
deterministic and stochastic trajectories were optimized using the respective
observability-aware algorithms for translation accuracy. The start and goal
positions are indicated by green and red squares, respectively.

point. The random spline included fifteen knots, spaced
evenly in time at half-second intervals. Starting with the
random initial spline, we the applied the IFOPT solver with
three different criteria: minimizing the maximum accelera-
tion along the trajectory (MMA), optimizing the determinis-
tic metric of Preiss et al., and optimizing the stochastic metric
of Frey et al. The optimization time window H , defined in
Section V-A, is the period over which the observability com-
ponent of the trajectory optimization metrics are recalculated.
We used a time window of H = 0.2 s as a compromise
between the 0.1 s window suggested by Preiss et al. [3] and
the ≤ 0.3 s window used by Frey et al. [4].

B. Results

We compared the performance of the observability-aware
trajectory optimization methods over six simulation trials.
We also considered MMA trajectories since this class of
trajectories is used in many many robotics problems [20],
[27]. Fig. 3 provides a visualization of the trajectories
produced during one simulation trial. In Fig. 4, we present a
comparison of the extrinsic translation calibration accuracy
over all test cases with 400 landmarks visible per image
frame. The sensor-to-sensor translation parameters are the
most difficult to calibrate in general [1]. For all trials we kept
the random image plane measurement noise at a standard
deviation of one pixel, in line with the noise value used
in [25]. Both the deterministic and stochastic observability-
aware methods lead to significantly better calibration ac-
curacy than the randomly-excited and MMA trajectories.
The benefit of the observability-aware algorithms is most
apparent when considering the calibration accuracy of the
z-axis offset. This is the translation along the axis that lies
parallel to the camera optical axis, which is known to be a
difficult value to determine reliably [1].

We also investigated the impact of exteroceptive measure-
ment ‘quality’ on the accuracy of the observability-aware
algorithms. We defined quality in terms of the number of



Fig. 4. Comparison of extrinsic calibration accuracy for random (red),
deterministic [3] (blue), stochastic [4] (green), and minimized maximum
acceleration (black) trajectories. For each method, the mean performance
across six trials is indicated by the solid line and the one-sigma standard
deviation is indicated by the shaded area.

landmarks (and image features) visible in each image frame.
Dynamic and consistent adjustment of the number of visible
landmarks was made possible by the OpenVINS software—
in contrast, photorealistic simulators cannot guarantee re-
peatable and consistent exteroceptive measurements across
different trajectories. In Fig. 5, self-calibration performance
for varying levels of exteroceptive measurement quality is
compared. Trials with 4, 40, and 400 landmarks per image
frame were evaluated; these were designated as low, medium,
and high quality respectively. It can be seen that the most
significant drop in calibration accuracy occurs when extero-
ceptive measurement quality is reduced from medium to low,
as would be expected.

Lastly, we considered a measure of trajectory cost in our
comparison. We determined an ‘acceleration cost’ through
a forward finite difference approximation of the changing
acceleration along each trajectory. This cost was simply the
sum of the squared acceleration values at all knots along the
trajectory; we then normalized the cost values by diving by
the average cost of the most expensive trajectories. Table I
presents the normalized cost, sum of squared estimation
error, and cost-normalized error for each set of trajectories.
The sum of squared estimation error is the squared error
for the extrinsic translation parameters (only), summed over
each trajectory. The cost-normalized error is the product of
the normalized cost and the sum of squared estimation error.
This error value allows for a comparison of the estimation
accuracy against the average cost of a trajectory.

C. Discussion

Overall, our results demonstrate that observability-based
metrics show promise for trajectory optimization. We found
that, in general, higher-acceleration trajectories produce

Fig. 5. Comparison of extrinsic calibration accuracy using the metric in [3]
(blue) and in [4] (green) for high (solid), medium (dashed), and low (dotted)
exteroceptive measurement quality. We optimized for extrinsic translation
accuracy only. For both methods and all levels of measurement quality, the
mean performance across six trials is shown.

greater system excitation leading to increased self-calibration
accuracy. At the same time, minimizing acceleration is desir-
able for efficiency and safety reasons. Therefore, trajectories
that improve self-calibration accuracy with a reduced overall
acceleration profile are preferred.

Trajectories optimized using either of the observability-
aware methods outperformed random trajectories when both
cost and calibration performance were considered. Our ex-
periments indicated that the deterministic algorithm of [3]
produced the highest-accuracy extrinsic calibration. How-
ever, we found that this method also tended to produce
higher-cost trajectories. In contrast, the stochastic algorithm
of [4] produced marginally inferior calibration accuracy
while significantly reducing the trajectory cost. We posit that
this may be because the method in [4] takes uncertainty into
account, and uncertainty increases with increasing trajectory
cost (i.e., for aggressive flight).

The sensitivity of the optimization algorithms to varia-
tions in the ‘quality’ of exteroceptive measurements is also

TABLE I
PERFORMANCE COMPARISON FOR CALIBRATION OF THE EXTRINSIC

TRANSLATION PARAMETERS WITH VARYING LEVELS OF

EXTEROCEPTIVE MEASUREMENT QUALITY.

Norm. Sum of Squared Normalized
Cost Error [m2] Cost × Error

Low Med. High Low Med. High

Random 0.20 4.50 0.88 0.72 0.90 0.18 0.14
Min. Max. Accel. 0.02 4.79 1.54 1.17 0.10 0.03 0.02
Deterministic [3] 1.00 4.32 0.85 0.59 4.32 0.85 0.59
Stochastic [4] 0.10 4.27 0.96 0.70 0.43 0.10 0.07



important for real-world applications. We observed that a
substantial reduction in the number of exteroceptive mea-
surements was necessary to significantly affect performance.
On average, the stochastic metric had the largest drop in
performance as exteroceptive measurement quality was de-
graded. This result, however, might be explained in part by
the stochastic metric producing lower-cost trajectories. The
authors acknowledge that variations in the exact configura-
tion of the simulations, and the constraints of each algorithm,
make it difficult to draw overarching conclusions for all
trajectory optimization problems.

VII. CONCLUSION

We have presented a comparison of two state-of-the-
art, observability-aware trajectory optimization methods, and
reviewed some of the limitations in the use of observability
as an optimization criterion. To evaluate the optimization
algorithms, we leveraged a detailed physics simulation en-
vironment where the number and quality of exteroceptive
measurements was controlled to be consistent across trials.
This approach permitted an analysis of the effects of varia-
tions in the fidelity and accuracy of exteroceptive perception.
Our results demonstrate that the observability-aware metrics
do enable better use of system energy to maximize the
knowledge gained about a subset of the system parameters.
For the case of self-calibration, we showed that a minimum
level of ‘perception quality’ should be maintained at all times
and that trajectories with greater cost are required to achieve
the same level of calibration accuracy as overall perception
quality degrades.

There are many opportunities for future work. Numerous
variations of our analysis are possible, including adjusting
the order of the Lie derivatives considered, the exteroceptive
sensor employed, the limits on the system dynamics, the tra-
jectory parameterization, and others. Additionally, it would
be beneficial to study the impact of the estimator used, to
determine if different estimation strategies are able to capture
more of the benefits that the observability-aware trajectory
metrics provide. More broadly, calibration algorithms, at
their core, are reliant on the degree of perceptual uncertainty.
Therefore, future work to better predict measurement uncer-
tainty and quality will likely be valuable for observability-
aware trajectory optimization.
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