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Abstract— Navigation using only one marker, which contains
four artificial features, is a challenging task since camera pose
estimation using only four coplanar points suffers from the
rotational ambiguity problem in a real-world application. This
paper presents a framework of vision-based navigation for
a self-driving vehicle equipped with multiple cameras and a
wheel odometer. A multiple camera setup is presented for the
camera cluster which has 360◦ vision such that our framework
solely requires one planar marker. A Kalman-Filter-based
fusion method is introduced for the multiple-camera and wheel
odometry. Furthermore, an algorithm is proposed to resolve
the rotational ambiguity problem using the prediction of the
Kalman Filter as additional information. Finally, the lateral
and longitudinal controllers are provided. Experiments are
conducted to illustrate the effectiveness of the theory.

I. INTRODUCTION

Fiducial marker systems, such as AprilTag [1], [2], are
designed to enhance augmented reality, evaluate performance
of robot systems, and improve human-robot interactions,
etc. Markers provide the environment with controllable and
stable artificial features. This simplifies feature extraction [3],
which is why markers are widely used for tasks that require
high detection speed, such as visual servoing [4]. As markers
are being designed to be easily detected from a wider range
of locations, planar marker-based SLAM [5], [6] is becoming
a hot trend. It is fundamental to estimate the 6-DOF pose of
the camera with respect to the world or marker coordinate
system in research that employs marker-based localization.
In practice, the pose is computed using the four corners of
the marker. Since the corners are co-planar, this is known
as a specific case of the Perspective-N-Point problem called
planar pose estimation [3].

Theoretically, there exists a unique estimation of the 6-
DOF pose given four co-planar but non-collinear points like
the corners of a marker [7]. Yet in the real-world, when the
projected marker on the image plane is small and the relative
motion between the camera and the marker is fast, the
perspective effects become weak due to sensory noise. There-
fore, in weak-perspective conditions, the problem of two-fold
ambiguity that corresponds to an unknown reflection about
the plane, and flips the z-axis in the camera’s frame, arises
[8]. Fig. 1 shows a sketch of the rotational ambiguity problem
which occurs very often in real applications [5].

Solving the rotational ambiguity is crucial for visual
servoing works where the control commands are generated
based on the camera’s measurements. Take our proposed
framework as the example, the steering angle command
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Fig. 1. An illustration of the rotational ambiguity problem. When the
camera is moving with the robot, the image noise shall weaken the
perspective such that a marker could project at the same pixels from two
different poses, Tvw1 and Tvw2.

Fig. 2. A diagram of our self-driving vehicle. There are four 2D CSI
cameras placed on the vehicle on the front, rear, and both sides. The
360◦ view of the camera cluster guarantees that the marker can always
be observed. The on-board wheel odometer is also employed in this work.

mainly relies on the relative orientation between the desired
waypoint and the current location of the vehicle (Fig. 2).
Thus, the rotational ambiguity can affect the decision of
whether to turn right or left. Once the vehicle executes the
wrong turning decision; the navigation task then fails. Even
worse, the ambiguity of rotation leads to the flipping of
translation, which ruins the positioning directly. Note that
such a problem cannot be solved by methods like applying
a Kalman Filter (KF) since the error is not caused by noise
but by possible dual solutions.

In this work, we employ the AprilTag system since
it has better performance over other systems [2]. Even
though the rotational ambiguity is not considered in the
implementation of the AprilTag system [1], [2], the state-
of-art planar pose estimation method, Infinitesimal Plane-
Based Pose Estimation (IPPE) [9], returns the two possible
solutions. A straightforward method to disambiguate the two
poses is comparing the reprojection errors. The pose with a
lower reprojection error is then selected as the true pose.
However, as shown in [6] and [3], the reprojection errors
of the two ambiguous poses can be extremely close to each
other and the one closer to the ground truth could have a
higher reprojection error. Although the rotational ambiguity
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problem has been clarified in the novel theory [9] for marker
pose estimation, it is still challenging to find the true pose
from the two returned physically possible solutions. In the
next section, a further survey is presented for the works that
have been done for resolving rotational ambiguity in marker-
based pose estimation.

A. Related Work

To the best of our knowledge, the methods for resolving
the rotation ambiguity can be categorized as ambiguity detec-
tion [5], [6], marker improvement [10], [11], and additional
information assistance [12], [3], [13], [14].

Munoz et al. proposed an ambiguity detection algorithm
in [5]. If the difference of the reprojection errors of the two
possible poses is greater than a predetermined threshold, the
pose with lower reprojection error is selected as the true
pose. Otherwise, that marker detection is discarded. This
algorithm is proved to be effective for marker-based SLAM
[5], [6]. However, for difficult environments where only one
marker is available, and also for the applications where the
robot needs to respond to the camera’s measurements in real-
time, simply detecting the ambiguity poses and discarding
the ambiguity detections will lead to loss of localization and
unstable performance.

Tanaka et al. [10], [11] presented a new type of marker
called LentiMark by adding two new Moiré patterns to the
conventional marker design. Unique angle information can
be obtained from LentiMark, which eliminates the pose am-
biguity. The main limitation of LentiMark is the complicated
fabrication compared to that of the low-cost conventional
marker.

Besides the methods mentioned above, additional infor-
mation assistance is also very effective for mitigating the
rotational ambiguity. The source of the alleged additional
information can from another sensor, predefined motion
model, etc. Jin et al. [12] introduced an algorithm based
on the measurements from an RGBD camera. The depth
pose estimation provides optimization constraints such that
the optimal pose is the one aligned with the plane in the
depth space. While this algorithm requires an RGBD camera.
Ch’ng et al. [3] developed a method that solves ambiguity
by examining the consistencies of a set of markers across
multiple views. This method shows good potential in marker-
based SLAM, but it is not applicable for cases where only
one marker is available and the robot needs to respond based
on a single view. Wu et al. [13] showed a filtering based
approach to disambiguate the poses. However, their approach
only considers the 3D object-space error. Visual-IMU-wheel
odometry [15] methods have the capability to deal with
ambiguity poses using factor-graph based optimization. A
factor-graph based approach using IMU preintegration is
presented in [14] to solve the rotational ambiguity. Although
factor-graph is very effective as it uses the measurements
from inertia sensors to construct constraint edges, the graph
optimization is usually a back-end process that cannot pro-
vide the optimized results for the current frame in real-time.

B. Contributions
We first introduce a multiple-camera model for fusing the

features detected on different image planes and a KF to
fuse the sensor data from the camera cluster and the wheel
odometry. Then, we propose a novel algorithm to solve the
rotational ambiguity by constructing a cost function, e, at the
feature level. In particular, the cost function considers both
the 2D reprojection error (image-space error), and the 3D
object-space error. This algorithm is capable of providing
robust pose estimation under weak-perspective conditions
caused by robot motion and limited marker size. Moreover,
our algorithm only requires one marker and the current frame
to work.

II. PROPOSED FRAMEWORK
A. Multiple-Camera Model

Before introducing the coupled multiple-camera model, we
first present the pinhole camera model (see Fig. 3) for a
single camera:

si

[
ui
1

]
= KT

[
pw

i
1

]
(1)

where si are scalar projective parameters for i = {1,2,3,4}
being the corners of the marker. K ∈ R3×3 is the camera
intrinsic matrix determined by calibration [16]. T ∈ SE(3)
is defined as the camera extrinsic matrix that represents the
transmission from the world coordinate system {W} to the
camera coordinate system {C}. Detailed math preliminaries
of SE(3) are introduced in [17].

Fig. 3. The pinhole camera model. pw
i = [xw

i ,y
w
i ,z

w
i ]

T are the 3D world
coordinates of the 4 reference points. ui = [ui,vi]

T are the 2D image
coordinates of the projection in the image plane. [u0,v0]

T is the optic center
of the image plane.

Due to the distribution of the cameras (see Fig. 4),
only the adjacent cameras have overlapping views. Hence,
no more than two cameras can observe the marker at a
moment. Looking down from above, the cameras are indexed
with the first at the front of the vehicle, incrementing
clockwise around the vehicle. Then, we denote the index
number(s) of the camera(s) that can observe the marker as
j ⊆ {{1},{2},{3},{4},{1,2},{2,3},{3,4},{4,1}}.

Inspired by the camera model presented in [18], the
proposed multiple-camera model is:

si j
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ui j
1

]
= K jT jvTvw
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1

]
(2)



Fig. 4. The multiple-camera model. T1v, T2v , T3v , and T4v represent the
extrinsic matrices that describe the transmission from the camera coordinate
systems {C}1, {C}2, {C}3, and {C}4 to the vehicle coordinate system {B},
respectively. These extrinsic matrices are determined by calibration [16].

where si j are scalar projective parameters and ui j is the 2D
projection of the ith reference point on the image plane of
the jth camera. K j denotes the camera intrinsic matrix of the
jth camera. T jv is introduced in the caption of Fig. 4. Tvw
is the extrinsic matrix that describes the transmission from
the vehicle coordinate system, {B}, to the world coordinate
system, {W}. Note that no central camera is defined here
and we use the pose of the vehicle to represent the pose
of the camera cluster. In the cases where two cameras see
the marker at the same time, we define the camera index
numbers as j = { j1, j2}. The reprojection error of a given
pose Tvw becomes:

e1 : SE(3)→ R+

e1(Tvw) =
j2

∑
j= j1

4

∑
i=1
|| 1

si j
K jT jvTvw

[
pw

i
1

]
−
[

umi j
1

]
||2

(3)

where umi j = [umi j,vmi j]
T is the observed 2D projection of

the ith reference point on the image plane of the jth camera.
As for the scenes with only one camera observing the marker,
the summation ∑

j2
j= j1

in Eq. (3) shall be removed.
The vehicle pose Tvw is determined through minimizing

the reprojection error shown in Eq. (3), which is inherently a
least square problem that can be solved using the Levenberg
Marquardt (LM) algorithm [19]. The initial values for LM
optimization are obtained from solving IPPE [9].

B. Kinematics of the Vehicle

The wheel odometer provides the measurement of linear
velocity, Vw, by transforming the encoder counts. Moreover,
the steering angle δr can be measured by a angle recorder
in this work. To propagate the pose of the vehicle, a 3-DOF
bicycle model (see Fig. 5) is employed.

From the geometric relation behind Fig. 5, the sideslip
angle β is obtained by:

β = tan−1(
1
2

tanδr) (4)

The turning radius Rr becomes:

Rr =
l

cosβ tanδr
(5)

where l is wheelbase of the vehicle. Given the linear velocity,
vw, and turning radius, Rr, the vehicle’s angular rate is as

Fig. 5. The 3-DOF bicycle model. {B} and {W} denote the vehicle and
world coordinate systems, respectively. ψ is the yaw orientation of the
vehicle w.r.t. {W}. δr is the steering angle of the front wheel. Depending on
δr , the vehicle turns about the turning point, O, with a turning radius, Rr . β

is the sideslip angle that describes the orientation of the velocity vector, vw,
w.r.t. the vehicle coordinate system. [x,y]T is the 2D position of the vehicle
w.r.t {W}. The centre of gravity of the vehicle is close to the centre of the
vehicle chassis so that we assume that they are the same, i.e. L f = Lr .

follows:
ψ̇ =

vw

Rr
(6)

The velocity of the vehicle w.r.t. {W} is then: vx
vy
ψ̇

=

 vwcos(β +ψ)
vwsin(β +ψ)

ψ̇

 (7)

In this system, δr is available from the steering angle
recorder and vw is obtained from the wheel odometer. Based
on the equations introduced in this section, [vx,vy, ψ̇]T can
be measured. Note that we use a different system model
(see Eq. (8)) to construct the KF in the following section for
simplicity.

C. Kalman Filter Based Sensor Fusion

A KF is employed to fuse the measurements from the
camera cluster and the wheel odometer. Following [20], the
filter state vector is defined as x = [x,y,ψ,vx,vy, ψ̇]T and the
discrete model is given as:

xk = Axk−1 + γk

zk = Hxk +υk
(8)

where A =
[

I3×3 dt · I3×3
03×3 I3×3

]
is a 6×6 matrix. Here, dt

denotes the sample period, and k denotes the sample step.
γk is the systematic noise vector described by a zero-mean
Gaussian distribution with covariance Qk. H = I6×6 is an
identity matrix. zk = [zx,zy,zψ ,zvx,zvy,zψ̇ ]

T is the observation
vector. Note that [zx,zy,zψ ]

T is measured by the camera
cluster and [zvx,zvy,zψ̇ ]

T is obtained from the wheel odometer
and steering angle recorder (refer to section.II-B). υk is the
observation noise vector described by a zero-mean Gaussian
distribution with covariance Rk.

The prediction is then given by:

x̂k,k−1 = Ax̂k−1,k−1

Pk,k−1 = APk−1,k−1AT +Qk−1
(9)



where Pk−1,k−1 is a posterior covariance of the estimation
error for sample step k−1. Pk,k−1 is the a priori covariance
of the estimation error for sample step k. The Kalman gain
is obtained by:

Kk = Pk,k−1HT (HPk,k−1HT +Rk)
−1 (10)

The update process will be then:

x̂k,k = x̂k,k−1 +Kk(zk−Hx̂k,k−1)

Pk,k = (I−KkH)Pk,k−1
(11)

where Pk,k is the a posterior covariance of the estimation
error of sample step k.

D. Resolving Rotation Ambiguity

Suppose x̂k,k−1 is the a priori of sample step k (see
Eq. (9)), we defined the pose associated with x̂k,k−1 as
Tw ∈ SE(3). The formula that transforms the Euler angles
and translation vector into SE(3) is shown in [17]. We define
the function of this transmission as:

f : R6→ SE(3)

Tw = f ([x̂T
k,k−1,01×3]

T )
(12)

where [x̂T
k,k−1,01×3] ∈ R6 represents x̂T

k,k−1 augmented by
01×3. That is, we set the pitch, roll angles and Z position
as zero. The core of the proposed algorithm for resolving
the rotational ambiguity is to minimize the value of a cost
function at feature-level:

e : SE(3)→ R+

e(Tvw) = e1(Tvw)+ e2(Tvw)
(13)

where Tvw is the to be determined pose of the vehicle and
e1(Tvw) is the reprojection error shown in Eq. (3). The
definition of e2(Tvw) is given by:

e2 : SE(3)→ R+

e2(Tvw) =
4

∑
i=1
||Tvw

[
pw

i
1

]
−Tw

[
pw

i
1

]
||2

(14)

where Tw is the pose associated with the a priori from the
prediction of the KF (see Eq. (9)). e2(Tvw) describes the
error between the 3D coordinates of two points, Tvw

[
pw

i
1

]
and Tw

[
pw

i
1

]
, in {B}. There is no subtraction defined on

SE(3) [17], but we can evaluate the difference between Tw
and Tvw through Eq. (14). Hence, the cost e is actually a
sum of the 2D image-space-error e1(Tvw) and 3D object-
space error e2(Tvw).

Suppose the two poses given by the IPPE method [9] are
Tvw1 and Tvw2. The unambiguous pose T∗vw is given by:

T∗vw ∈ {Tvw1,Tvw2} s.t.
e(T∗vw) = argmin{e(Tvw1),e(Tvw2)}

(15)

That is, the pose which has a smaller cost value is selected
to be T∗vw.

There are two issues we want to clarify for this algorithm.
First, usually the direct measurements are used to construct
the residual errors, such as the preintegration-based methods

proposed in [15]. In this work, we use kinematics and
integration to obtain Tw, then we construct e2(Tvw). The
direct measurements are the encoder counts and steering
angle. Thus, errors due to kinematics and integration are
brought into e2(Tvw). Nevertheless, as illustrated in [3], [13],
the true pose is one of the two possible poses returned by the
IPPE method [9]. Moreover, the true pose can be found using
additional information from other sensors [12]. Hence, when
solely concerning the rotation ambiguity problem, Eq. (13) is
still an effective criteria. Secondly, we augmented x̂k,k−1 ∈R3

into R6 to compute Tw, which seems superfluous for a
ground vehicle. However, using SE(3) indicates that Eq. (13)
can also be used for aerial robots, while the kinematics and
the KF will be different.

E. Lateral and Longitudinal Control

The lateral controller is based on the classic Ackermann
steering geometry. As illustrated in Fig. 5, the vehicle turns
about the turning point O, with a turning radius Rr. Thus,
the trajectory of the centre of the vehicle chassis will be a
circular arc as shown in Fig. 6.

Fig. 6. The Ackermann steering geometry. (Xd ,Yd) is the desired waypoint.
α is the angle between the desired waypoint and the vehicle velocity. Ld =√

(Yd − y)2 +(Xd − x)2 is the distance between the desired waypoint and
the centre of the vehicle chassis.

At discrete control iteration k, from the geometry shown
in Fig. 6, we have:

Ld,kcosαk = Rr,ksin(2αk) (16)

where αk is shown as follows:

αk = arctan(
yk−Yd,k

xk−Xd,k
)−ψk−βk (17)

Thus, given a desired waypoint (Xd,k,Yd,k), the desired
steering angle δrd,k is generated by substituting Eq. (5) into
Eq. (16):

δrd,k = arctan(
2lsinαk

Ld,kcosβk
) (18)

We employ a PI controller for the longitudinal control.
The throttle input uk of the vehicle is given by:

uk = p1Ld,k + p2

k

∑
n=1

Ld,n, n = {1, · · · ,k} (19)

where p1 and p2 are the proportional and integral gains,
respectively. We can summarize our proposed framework in
the following algorithm.



Algorithm 1: Proposed Framework
Input: a desired waypoint coordinate, (Xd ,Yd)
Output: steering angle, δr, and throttle input, uk.

Define a waypoint radius, r.
while

√
(Xd− x)2 +(Yd− y)2 > r do

Get images from camera.
Get AprilTag features.[2]
Get both possible poses Tvw1, and Tvw2 using the
IPPE method [9] and (3)

Get the a priori from the Kalman Prediction (9)
Compute Tw using (12).
Compute e(Tvw1) and e(Tvw2) using (13).
Compute T∗vw using (15).
Get the a posteriori from the Kalman update (11).
Compute β , Rr, Ld , and α using (4), (5), (16),

and (17).
Solve for δr and uk using (18) and (19).

Get next waypoint.

Remark 1: The one marker case is not an artificially difficult
scenario. Even if multiple markers are set in the environment,
there might be a moment where only one marker is observ-
able. Since our framework is developed for the one-marker
case, it can be easily extended to the multi-marker scenario.

III. EXPERIMENTAL RESULTS

The proposed framework is validated using the Quanser’s
Qcar (see Fig. 2) which is a sensor-rich autonomous vehi-
cle for testing novel self-driving algorithms. The QCar is
equipped with an NVIDIA Jetson TX2 for a computer. Our
algorithm is developed using Python 3, and is implemented
on an Ubuntu 18.04 OS. Quanser provides the Python
libraries required to drive all the sensors and actuators.
The camera cluster’s image timestamps are aligned, and the
cluster can capture images while detecting the AprilTag at
approximately 15 Hz. We sample from the encoder when
new images are captured, and only generate the control
commands after updating the KF. Overall, the proposed
framework can run at approximately 11 Hz on the QCar
platform. Additionally, the wheelbase of the vehicle is 25.6
cm and the steering servo can rotate from -0.5 to 0.5 rad. Our
marker setup is a low-cost implementation. The marker, with
a side length of 17.2 cm, is printed on A4 paper. To further
verify the proposed framework, we employ the OptiTrack
Motion Capture System (MoCap) at the Spacecraft Dynamics
Control and Navigation Laboratory at York University to
obtain the ground truth. Fig. 7 shows the MoCap system.

In the experiment, we compare the localization output
of our algorithm (denoted Our Method), the MoCap, and
the method (denoted Method A) which chooses the pose
with lower reprojection error as the correct one. The original
implementation of AprilTag [2] does not employ the IPPE
method [9], so it’s pose output is the one with the lower
reprojection error. Thus, Method A is the method used
in the AprilTag system, which is the reason for the large

Fig. 7. The OptiTrack Motion Capture System, composed of 16 OptiTrack
cameras and one work station. It can track the 6-DOF pose of predefined
rigid bodies via optical markers at 100 Hz.

measurement errors found in [12]. The vehicle is placed
approximately at (200, -100) cm in {W}, and we do not know
the accurate initial poses in advance. From our experiments,
we found that for this initial location, the true pose has a
lower reprojection error while the vehicle is static, and the
ambiguous pose has a lower reprojection error while the
vehicle is moving. The objective is to navigate the vehicle
through waypoints at (130, 0) cm and (50, 65) cm by turning.
It should be noted that the navigation of the vehicle is based
only on the output of Our Method, while Method A runs
simultaneously with Our Method. Moreover, we applied the
same KF (Section. II-C) for Method A. The experiment
video can be found at the following URL: http://3vf8.2.vu/1.

As shown in Fig. 8 and Fig. 9, the outputs of Method
A + KF and Our Method are almost the same at the
beginning. This is because the perspective-effect is relatively
strong when the vehicle is static and the true pose has the
lower reprojection error. However, when the vehicle starts to
move, the perspective-effect is weakened and Method A +
KF starts to select the ambiguous pose while Our Method
remains stable. Therefore, without using Our Method to
resolve ambiguity, the vehicle can execute a wrong steering
command, leading to a crash. As the vehicle approaches the
marker, both Method A+KF and Our Method converge to
the measurement from MoCap. This is because the size of
the marker in the image plane increases as the vehicle gets
closer the marker thus perspective-effect is enhanced and
Method A + KF can also work. However, an initial error
exists between the output of Our Method and the MoCap. If
the perspective-effect is insufficient due to a limited marker
size, and long distance between the camera and marker, then
Our Method cannot handle the initial error since the cameras
are the only source for the initial localization of {W}.

Using the proposed framework, the vehicle successfully
passes through the waypoints. Fig. 8 and Fig. 9 show that
even if the KF is applied, such a navigation task shall fail
using Method A. This is the default logic used in the
AprilTag system for choosing the true pose from possible
poses. As for the unsolved initial error problem, a deep
learning-based image deblurring approach, such as HINet
[21], is a promising solution for cases where the perspective-
effect is not ideal.



Fig. 8. Comparison of the trajectories in X position, Y position, and Yaw
angle along time.

Fig. 9. Comparison of trajectories in the X-Y plane of {W}. The four
corners of the marker are set at (-8.6, 147, 31.2) cm, (8.6, 147, 31.2) cm,
(8.6, 147, 14) cm, and (-8.6, 147, 14) cm in {W}, respectively.

IV. CONCLUSIONS
In this work, a navigation framework of a self-driving

vehicle using only one fiducial marker is proposed. The rota-
tional ambiguity problem is solved through the computation
of a novel feature level cost. The cost is computed for each
pose returned by the IPPE method, using the a priori given
by the Kalman Filter, which fuses the measurements from the
cameras with the wheel odometer. The pose with lower cost
is selected for the Kalman Filter update and control command
generation. The framework is validated experimentally and
proven to be effective. Future work includes using a deep
learning-based image deblurring approach to mitigate mo-
tion blur and enhance the perspective-effect, which has the
potential for further improving the pose estimation accuracy.
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