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Abstract— This paper explores multi-person pose estimation
for reducing the risk of airborne pathogens. The recent
COVID-19 pandemic highlights these risks in a globally
connected world. We developed several techniques which
analyse CCTV inputs for crowd analysis. The framework
utilised automated homography from pose feature positions to
determine interpersonal distance. It also incorporates mask
detection by using pose features for an image classification
pipeline. A further model predicts the behaviour of each person
by using their estimated pose features. We combine the models
to assess transmission risk based on recent scientific literature.
A custom dashboard displays a risk density heat-map in real
time. This system could improve public space management
and reduce transmission in future pandemics. This context
agnostic system and has many applications for other crowd
monitoring problems.

Keywords— Social Risk Analysis, Pose Estimation, Distance
Estimation, Mask Detection, Behaviour Classification

I. INTRODUCTION

The importance of public space management during future
pandemics like COVID-19 is paramount. Crowd monitoring and
social distancing analysis can ensure adequate safety measures.
This work proposes a computer vision-based system that provides
multi-functional crowd monitoring. Risk metrics based on scientific
literature are output using a heatmap. Social distance, behaviour,
and mask usage are the main factors impacting transmission [1].
These metrics form the basis for the proposed risk model.

Social distancing is a common topic of study following the recent
COVID-19 pandemic. Work in [2] applies OpenCV and Faster-
RNN to transform an input scene into an aerial view, which is
used to estimate distance and identify dangerous social distancing
behaviour. However, a disadvantage with this technique is the
requirement to manually configure camera parameters. Work by [3]
used OpenPose to perform human recognition and obtained higher
accuracy than conventional object detection approaches, since pose
features allow more precision and context than raw bounding
boxes. Nawaz et al. [4] also proposed a similar method and added
population density analysis. [5] and [6] extend on this by using
the assumption that the height of a human is approximately the
same, which enables localised homographic matrices and the least
squares method to perform automatic configuration and estimate
inter-personal distance. Such techniques could prove valuable for
an integrated crowd analysis platform, as proposed in this work.

Several recent studies have focussed on social distance analysis,
behaviour analysis and mask detection, such as [7] and [8]. These
focus on object detection based systems with using simple scenes of
people with and without masks. A criticism is that the data used is
too simple compared to real world applications of social distancing

analysis, which would generally involve significantly more complex
and crowded scenes. They also lack application of homography
techniques to accurately estimate the positions of people in scenes,
which arguably is crucial for effective distancing analysis.

This work overcomes these limitations by development of a pose-
based system to analyse social distancing risk using three unique
downstream models. The model results are used to estimate various
social distancing risk factors. The final outputs provide valuable
crowd monitoring capabilities and assessment of risk using a density
heatmap. This is displayed alongside the original scene, which helps
pin-point key regions of risk over time for different areas. Thus, the
framework provides an intuitive display of social risks and crowd
monitoring analytics that can improve public space management.

The core contributions of this work include:

1) Integration of crowd-pose features to perform social dis-
tance analysis and crowd-monitoring on real-world camera-
surveillance scenes.

2) Crowd inter-personal distance estimation using automated
homography techniques, without the need for manual camera
calibration or referencing.

3) Classification of person behaviour status using extracted pose
features.

4) Face-mask classification using an image classification
pipeline based on pose-feature extracted regions.

5) Development of a combined social risk metric, which can
be used to gauge crowd safety during pandemics or general
purpose crowd analysis.

All code and modelling is available on GitHub at the fol-
lowing link: https://github.com/BenjaminFraser/Social-Distancing-
Pose-Platform.

II. PROPOSED METHOD

The system applies multi-person pose detection on all the people
in each scene. The extracted features include the predicted positions
and associated confidences of 17 human skeleton key-points. The
chosen pose-estimation model was AlphaPose [9], due to its high-
performance on a variety of complex and crowded scenes. This
outperformed OpenPose significantly in comparison [10].

AlphaPose is used to obtain pose features for all persons in a
scene. These features include the x and y coordinates for each key
point, along with associated confidences and human bounding box
coordinates. These features are then fed into a range of downstream
models, which produce various predictions relating to social-risk
and crowd monitoring. The collective results are combined and
analysed using a custom density-heatmap, which shows areas with
higher transmission risk averaged. Each downstream modelling
technique is summarised in the following sections.
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Algorithm 1: Camera parameters and positions estimation algorithm

Input: xh
1 , y

h
1 , ..., x

h
n, y

h
n: Head positions of the persons in the frame

x
f
1 , y

f
1 , ..., x

f
n, y

f
n: Feet positions of the persons in the frame

ε: Error on estimated focal length

α: Interval reduction factor (0 < α < 0.5)

h: Average height of a person

framewidth: Width of the frame

[FOVmin, FOVmax]: Confidence interval of the camera FOV

Output: θ, H and f : Camera parameters

X1, Y1, ..., Xn, Yn: Positions of the persons in the scene

Initialize interval I =

[

framewidth

2 tan(FOVmax
2

)
, framewidth

2 tan(
FOVmin

2
)

]

while max I−min I
2

> ε do

f1 ← min I + α (max I −min I)
f2 ← max I − α (max I −min I)
for i ∈ [1, 2] do

for p ∈ [1, ..., n] do

if xh
p �= 0 and xf

p �= 0 then

Xp ←
xh
p h

√

√

√

√

(

fi

(

1−
xhp

x
f
p

))

2

+

(

yhp−y
f
p

xhp

x
f
p

)

2

Yp ←
Xp y

f
p

x
f
p

√

√

√

√1−

(

Xp

h

(

yhp

xhp
−

y
f
p

x
f
p

))

2

θp ← arccos
(

Xp

h

(

yhp
xh
p
−

y
f
p

x
f
p

))

Hp ←
Xp

x
f
p

(

fi

√

1−
(

Xp

h

(

yhp
xh
p
−

y
f
p

x
f
p

))2

− yfp cos (θp)

)

end

end

θfi ← median
p∈[1,...,n]

θp

Hfi ← median
p∈[1,...,n]

Hp

∆fi ← median
p∈[1,...,n]

(

(

fi Xp
sin θfi

Hfi
+Yp cos θfi sin θfi

− xf
p

)2

+
(

fi Yp
sin2 θfi

Hfi
+Yp cos θfi sin θfi

− yfp

)2
)

end

if ∆f1 > ∆f2 then

min I ← f1
else

max I ← f2
end

end

f ← max I−min I
2

for p ∈ [1, ..., n] do

if xh
p �= 0 and xf

p �= 0 then

Xp ←
xh
p h

√

√

√

√

(

f

(

1−
xhp

x
f
p

))

2

+

(

yhp−y
f
p

xhp

x
f
p

)

2

θp ← arccos
(

Xp

h

(

yhp
xh
p
−

y
f
p

x
f
p

))

Hp ←
Xp

x
f
p

(

f

√

1−
(

Xp

h

(

yhp
xh
p
−

y
f
p

x
f
p

))2

− yfp cos (θp)

)

end

end

θ ← median
p∈[1,...,n]

θp

H ← median
p∈[1,...,n]

Hp

for p ∈ [1, ..., n] do

Xp ←
H x

f
p

f sin θ−y
f
p cos θ

Yp ←
H y

f
p

f sin2 θ−y
f
p cos θ sin θ

end

Fig. 1. Homography of a scene.

A. Distance Estimation within 2D Scenes

Whether people are violating social distancing rules or not can
be predicted by estimating the distance between them. We propose
a novel approach where the extracted pose features are used to
generate and tune the camera parameters needed for homography.
Homography allows transitioning from the camera view to the
top-down view of each scene (Fig. 1), which facilitates effective
distance estimation and group clustering.

The advantage of this method is that it does not require manual
calibration and measurement of camera parameters. Additionally,
it provides robustness for the model in overcoming drift errors
and allows real-time adaptation to dynamic contexts such as a
moving camera on a drone. This method is more accurate than
using bounding boxes to determine the distances between people
because they are more sensitive to pose-feature estimation errors.
This method finally uses inverted-homography to project the risk
heatmap on the camera display to better identify high risk areas.

The distance estimation is based on the homographic relations
between the image position (x, y) and the 3D position (X , Y , Z).
The central point of the 3D position is defined as the origin, this is
then projected on the centre of the 2D image using a homography
function. The function parameters are the tilt angle θ, the height H
and the focal length f of the camera.

It is possible to estimate the camera parameters and the positions
of the detected persons in the 3D scene given their head and feet
positions in the frame. The process applied in this work is detailed
in Algorithm 1. Estimates are first computed for the camera tilt
angle and height to determine the focal length using the head and
feet positions for each person in the frame. The median value for
each parameter is then computed across all estimates, which helps
remove noisy or spurious values. Once the focal length has been
determined, the two estimations of camera tilt angle and height are
computed, and their median values are taken as the final values.
These camera parameters are then used to calculate the positions
of the detected persons in the 3D scene.

B. Pose Behaviour Classification

According to simulation data on diffusion of coughing particles
from Muthusamy [1], particles expelled from the mouth can travel a
greater distance while in a sitting position compared to a standing
position. This means we need to differentiate people in different
poses so that the model can apply different risk weights. Human
pose features offer a valuable means of understanding the behaviour
and intentions of persons in a scene. This is exploited by feeding
the pose features from AlphaPose into a neural network. This then
predicts the most likely current behaviour status out of one of five
possible defined classes (Fig. 2).

The pose classification model was developed using a custom
dataset created from the Oxford Streets dataset. The pose features
were extracted from each frame using AlphaPose and each per-
son labelled according to their current behaviour. This included
standing, sitting, walking, lying and other pose categories. Sparse
categorical cross-entropy was used as the model training loss. ReLU
activation was applied throughout all Deep Neural Network (DNN)
layers, with exception to the final layer, which was softmax. The
model inputs included the key-point coordinates and confidences



Fig. 2. Examples of standing, walking, sitting and lying status classes.

Fig. 3. Overview of the head-region extraction process using pose features.

obtained for each person from AlphaPose. During pre-processing
the coordinates were centred and normalised between 0 and 1.
This was achieved using the human bounding box coordinates as
reference points.

C. Mask Detection

The purpose of mask detection is to predict the presence of a
mask on all people in a scene. Existing works have tackled this
problem through applying object detection over an entire scene to
detect masked faces. This work proposes a novel approach where
the extracted pose features are used to obtain suitable head regions.
These are then fed into an image classifier to predict the likelihood
of wearing a mask. The classifier was developed using transfer-
learning and fine-tuning with a BiT-M R50x1 architecture pre-
trained on the ImageNet-21K dataset. The Big Transfer fine-tuning
and optimising process proposed by [11] was adopted.

This process consists of computing the average head, shoulder
and hip coordinates from the pose features. The torso length is
approximated using the Euclidean distance between the average
shoulder and hip co-ordinates. This is multiplied by a scaling factor
to give the length of extracted square region, which is centred on the
average head co-ordinates. This small region can then be efficiently
processed by an image classifier to predict mask likelihood for each
person (Fig 3).

This process is advantageous over object detection since clas-
sification is performed efficiently on small regions. This provides
faster inference on large scenes. It also integrates more naturally
into the proposed framework, since the pose features are directly
leveraged for obtaining the head regions. Finally, the classification
performance metrics are simple to evaluate and optimise compared
to object detection metrics.

D. Risk Density Heatmap

The downstream model outputs are combined to estimate the
risk profile for each scene. A density heat-map was generated to
represent this using Kernel Density Estimation (KDE) with risk-
based weights (Equation 1). A gaussian based kernel was chosen.
Each weight was computed based on the distance, behaviour and
mask status of the associated person in the scene. This represents

Fig. 4. Example of the risk density heatmap on the top-down perspective
of a scene.

the temporal social-distancing risk for each scene, with a 2D risk
matrix developed for each timestep (Fig. 4).

p(x|D) =
1

N

N
∑

n=1

αriskκh(x− xn) (1)

where xn is the input feature vector for the nth

sample, N is the total number of samples in the
dataset D, κh is the chosen density kernel function,
and αrisk is the risk−proportional weight.

The data samples, D, are the 2D coordinates of each person
in the top-down representation of each scene. The sample weights
were computed for each sample, based on whether that person was
violating distance, wearing a mask, and their current pose status
(Equation 2).

αrisk(x) = Ivio(x)
[

τdist + Ino mask(x)τmask

+ Ipose risk(x)τpose
] (2)

where Ivio is an indicator function (0 or 1) for a
person violating distance, Ino mask is an indicator
function for a person with no mask, Ipose risk is an
indicator function for a higher−risk pose, τdist is a
chosen distancing factor, τmask is a mask−usage
factor and τpose is a pose status factor.

For a given scene, all persons that are well-distanced from others
by a defined distance are assigned a weight of zero. The violation
distance used in this work was 1.6 m, based on research from
[1]. At any instance in time, the risk is zero for that location and
no contribution is made towards the risk density heatmap if no
distance-violation is detected. Conversely, those persons violating
proximity will be assigned a risk-based weight based on whether
that person is wearing a mask (Ino mask) and whether they are
assuming a risky behaviour (Ipose risk). The influence of each
social distancing factor on the final weight is determined by
the specific factors chosen for each: τdist, τmask, and τpose, as
determined from [1].

These concepts were extended to video sequences by using a 3D
tensor, which contained a 2D risk-matrix for each timestep. This
generates a risk profile heatmap based on an average risk over a
designated time-period rather than individual frames. Furthermore,
this was also projected to the original scene, rather than from a
top-down perspective, using reverse-homography techniques.

III. EXPERIMENTS AND RESULTS

The overall system modelling process consists of one large loop,
which takes an input video feed and processes the image frames at 5
frames-per-second. Pose features are extracted from each frame and
applied to each downstream model. The results are then integrated
into a set of outputs suitable for analysis and visualisation on a
dashboard application.



TABLE I

DATASETS USED FOR SYSTEM DEVELOPMENT

Dataset Summary Used for

Moxa3k [12] 3,000 facemask Custom mask
classification classifier.

images. dataset.

Real-World Webcam 2,311 facemask Custom mask
Mask Dataset [13] classification classifier

images. evaluating pose
estimation.

Face Mask Detection 4,357 facemask Evaluating mask
Video Dataset [4] classification classifier, final

video frames. test dataset.

CityUHK-X-BEV 3,191 images Evaluating pose
[14] from CCTV cameras estimation,

with their developing distance
parameters. estimation, final

test dataset.

Oxford Street 5 minutes video Developing distance
Dataset [15] of public street estimation, density

with camera heatmap, test
parameters. dataset.

Human-centric Video 32 airport video Final test
Analysis in Complex sequences with video scenes.
Events (HiEve) [16] persons’ activity.

A. Datasets

In the process of system modelling, some data sets are used
for the development of downstream models and testing at different
stages. These are: Moxa3k [12], Real World Webcam Mask Dataset
[13], Face Mask Detection Video Dataset [4], CityUHK-V-BEV
[14], Oxford Street Dataset [15], and HiEve [16]. These datasets
contain large amounts of images and videos of crowds and public
spaces (Table I).

B. Distance estimation

An example of the distance estimation accuracy computed across
a range of different values of θ and H is given in Fig. 5. The
distance estimation accuracy is dependent on AlphaPose’s accuracy.
In general, AlphaPose becomes less accurate with higher distances
from the camera and larger crowds. This is due to the lower
resolution images of each person and occasional overlapping body
parts. The distance estimation has a global 10% confidence interval.
For typical tilt angle of CCTV camera, the confidence interval drops
below 5%, which is less than a 10 cm range for a 2 m social distance
limit for example.

Cluster analysis was performed using the DBSCAN algorithm
because it’s effective for identifying the movement of social groups
in public places. This density-based clustering model can be adapted
to current social distancing policy by adjusting the threshold dis-
tance of the algorithm.

C. Pose behaviour classification

The behaviour classifier is a fully connected DNN that outputs
the behaviour class of each detected person. Its input contains
coordinates and confidence scores of 17 key-points and information
on bounding box size. Information on bounding box size includes
aspect ratio and relative width and height to the frame. The formula
used for aspect ratio is:

Aspect Ratio =
Widthbbox

Heightbbox
(3)

The formulas for relative width and height to the frame are:

Relative Width =
Widthbbox

Widthframe

(4)

Fig. 5. Distance estimation accuracy for different camera parameters.

TABLE II

PERFORMANCE OF DIFFERENT INPUTS

Input Accuracy Loss

Only Coordinates 78.52% 0.531

Add Confidence Scores 87.13% 0.331

Add Bounding Box Information 93.04% 0.213

Relative Height =
Heightbbox

Heightframe

(5)

To accelerate convergence and improve performance, the x and
y coordinates of the key-points were centred and normalized as
follows:

X =
Xkeypoint −Xbbox

Widthbbox

(6)

Y =
Ykeypoint − Ybbox

Heightbbox
(7)

The final behaviour classifier used all 54 dimensions of data from
the extracted pose features because it improved the model to obtain
the highest classification performance. The final model used seven
layers with 64 units per layer.

After 120 epochs, the accuracy on the test set reached 93.04%.
On inspection, the model appears more prone to error when
distinguishing between standing and walking (Fig. 6). Since the
DNN is simple, it does not require costly computation, and thus
the prediction speed was measured as more than 32 people per
millisecond on CPU.

D. Mask Detection Modelling

For assessing mask detection performance, a combination of
accuracy, precision, recall, F1-score, and the Receiver Operator
Characteristic (ROC) were assessed. False positives (predicting a
mask) were deemed more important than false negatives (predicting
no mask), and therefore precision was optimised through adjustment
of the prediction threshold to 70% confidence during evaluation.

To obtain the best compromise of precision and recall, the
mask prediction probability threshold was optimised using the ROC
curve, which gave the confusion matrix results in Fig. 7. The model
prioritised reducing the number of false positives. This came at
the expense of allowing higher numbers of false negatives where
masked people were classified as non-masked. This adjustment
facilitates a cautious risk model, which accounts for the relatively
high consequences of transmission.



Fig. 6. Confusion matrix of pose behaviour classification model.

Fig. 7. BiT mask classifier final confusion matrix on the held-out test set.

IV. FINAL SYSTEM RESULTS AND DISCUSSIONS

A. Combined System Results and Risk Density Heatmap

The final system was tested on four distinct areas containing
public crowds in different social settings, which were selected from
a combination of the datasets presented in Table I. The modelling
pipeline was applied on video sequences from each area at a
frequency of 5 frames per second. Examples of this are shown for
an airport in Fig. 8. Overall, the system effectively demonstrated
the potential of a multi-person pose feature framework. The models
worked well across a variety of different scenes and camera view-
points, highlighting the benefits that the automated homography
approach provides.

The heatmap generated for each area using all the downstream
modelling results can provide valuable visualisations for public
area management. This is particularly valuable when scenes are
analysed for social-risk and crowd-features over designated time-
periods (Fig. 8). This strategy allows analytics to be generated
during key times throughout the day, and even specially chosen
dates throughout the year. This could be helpful to identify key
trends that can be used to implement additional safety barriers or
make infrastructure adjustments to improve daily flows of people.
This also facilitates the gathering of useful statistics regarding social
groups and movement of people, including person counts, mask
usage, group sizes, and pose behaviours.

B. Further System Discussions and Improvements

A huge advantage of the system is the ability for the homography
and distance modelling to calibrate automatically to any scene,
regardless of camera position and angle. Thus, the system can
be integrated into new applications with minimal effort, providing
there is available video surveillance. It even supports accurate
use with moving cameras operated from a dynamic platform such
as a drone or aircraft. Thus, the concepts could be extended to
any outdoor public space for crowd monitoring regardless of pre-
existing infrastructure.

Fig. 8. Dashboard displaying the scene at (a) 1 second, averaged risk-
regions at (b) 5 seconds, (c) 10 seconds and (d) all timesteps.

Beyond social distancing the system has enormous potential.
Although this paper focused on social distancing, the same concepts
could be applied to other domains. An example might be the
adaptation to health and safety, where the workforce areas could
be monitored for correct working practices. This might include
personal protective equipment (safety helmets and high-visibility
vests) and ensuring they are not lone-working for safety-critical
tasks. Another example is self-driving or driver-assisted vehicles,
where the crowd-monitoring framework could help analyse the
risk profile of nearby pedestrians. A further application could be
monitoring social compliance and safety within prisons for security
personnel and inmates.

An observed limitation of the system was the accurate counting
and monitoring of people in complex and crowded scenes with large
number of people (typically greater than 30). In these complex
environments it was common for people to be missed by the
object detector used during pose estimation. This highlights the
heavy reliance the system has on the performance of the initial
human detection phase. A YOLOv3 model was used within this
framework, but improvements could be made using a more modern
and improved architecture more suited for small objects.

A further concern was the difficulty in assigning risk factors
for distance violation, mask-usage and pose behaviour for the risk-
density heatmap. Despite being informed from research, the values
chosen are subjectivity and depend on many contextual factors.
This includes the type of epidemic, the virus, and its variants
(contagiousness, survival rate, etc). This subjectivity presents a
challenge and would require refinement through further research
and work with specialist organisations.

A valuable improvement would be the use of person tracking.
This could provide advanced behaviour modelling for individuals
and groups. For example, clusters of small groups of people could
be analysed over time to assess whether they are travelling together.
This would help provide more realistic and usable results for the
system risk heatmap. Sequence tracking would also improve the
reliability and performance of mask-usage and behavioural classi-
fication. In this case, predictions could be averaged for individuals
over time, helping to overcome noise, anomalies and obscurities.

V. CONCLUSION

The aim of this paper was to present an integrated machine-
learning based framework for crowd monitoring and social distance
analysis in public environments. The final system combines many
methods and technologies into a unified framework and displays
social risk distribution using a heatmap. The results were promising
and demonstrate the flexibility and adaptability of the framework.
The modelling parameters are informed by academic research
however a challenge is that they remain subjective. This is due to
the uncertainty and disagreement that may arise when assigning



risk weights for distance violation, mask-usage and behaviour
status. Moreover, the system was focussed predominantly on the
COVID-19 virus. Nevertheless, the system has great potential
beyond analysing social risks. The concepts naturally extend to
other applications, including autonomous vehicles, health and safety
monitoring, social compliance in prisons, shopping centres, public
transport and more. The system is also highly flexible, since
the automated homography allows convenient adaptability to new
environments or even moving cameras.
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