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Abstract— Fall-related injuries at the workplace account for a 

fair percentage of the global accident at work claims according 

to Health and Safety Executive (HSE). With a significant 

percentage of these being fatal, industrial and maintenance 

workshops have great potential for injuries that can be 

associated with slips, trips, and other types of falls, owing to 

their characteristic fast-paced workspaces. Typically, the short 

turnaround time expected for aircraft undergoing maintenance 

increases the risk of workers falling, and thus makes a good case 

for the study of more contemporary methods for the detection of 

work-related falls in the aircraft maintenance environment. 

Advanced development in human pose estimation using 

computer vision technology has made it possible to automate 

real-time detection and classification of human actions by 

analyzing body part motion and position relative to time. This 

paper attempts to combine the analysis of body silhouette 

bounding box with body joint position estimation to detect and 

categorize in real-time, human motion captured in continuous 

video feeds into a fall or a non-fall event. We proposed a 

standard wide-angle camera, installed at a diagonal ceiling 

position in an aircraft hangar for our visual data input, and a 

three-dimensional convolutional neural network with Long 

Short-Term Memory (LSTM) layers using a technique we 

referred to as Region Key point (Reg-Key) repartitioning for 

visual pose estimation and fall detection. 

I. INTRODUCTION

Maintenance environments can be hazardous, with 
dangerous examples such as unattended machinery running, 
lack of improper fencing/physical guards near hazardous 
locations, and cluttered workspaces. In Great Britain alone, for 
the past few years, 25-30% of fatalities were related to 
maintenance activities [1], the one of the most fatal accidents 
for workers is falling from a height [1]. Falls are defined as the 
event of an individual unintentionally approaching the rest 
position on the floor or other lower level, leading to injuries 
that are fatal or non- fatal. They are the second leading cause 
of unintentional injury deaths worldwide with an estimated 
684,000 fatal injuries occurring each year [2]. 

Given the high number of fatal falling injuries occurring 
each year, those in maintenance environments which are non- 
fatal, if detected and reported promptly, reduces the chances of 
further injury or death, thus this work proposes an inte- grated 
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computer vision based system to provide monitoring and pose 
estimation of employees whilst working in an aircraft 
maintenance environment in addition to the already in place 
control measures such as harnesses, guardrails and scaffolding 
[1]. The output of the system intends to benefit management 
staff or other employees working in a loud environment, 
alerting them to a hazardous fall for quick intervention. 

In this study, a fall detection system was developed based 
on the work done by Fan et al. [6]. The system can be divided 
into four parts, the first is the video input from continuous 
camera feed, the second is the human pose extraction, the third 
part is the human pose classification, and finally, the output or 
classification result interpretation. The main contribution of 
this study are as follows. 1) Human posture detection using 
body joints position estimation over a time span with a 
technique we termed Reg-Key repartitioning and 2) Fall 
prediction using a CNN-LSTM Model with an accuracy of 
80.5%. This study is organized as follows, section II detail out 
a review of existing literature in the realm of fall detection. 
Section III describes the methodology used to define the 
system. Section IV highlights the design details from the 
human posture extraction to the data processing approach, as 
well as details of the model training and testing. In section V, 
the results of the CNN-LSTM model are presented, and a 
discussion of outcome was done in VI while we highlighted 
possible future work in section VII before the study 
conclusion in section VIII. 

II. LITERATURE REVIEW

In spite of the scope of this project being fall detection in 
aircraft maintenance environment, we have extensively 
researched documented studies around the topic of fall 
detection in various other settings. Typically, approaches 
based upon machine learning (ML), Internet of things (IoT), 
and imaging techniques are in common use. These methods 
can be classified into three categories; vision/camera-based 
methods, wearable methods, and ambience methods [3]. The 
most relevant of these methods with respect to this paper 
would be solutions based on ML technology that could be 
synchronized with wearable technologies through sensor 
fusion. 

A. Camera-Based Methods

This methodology utilises a non-intrusive fusion of video
footage and motion analysis with computer vision to detect 
falls. To begin, the work done by Bian et al. [4] demonstrates 
an approach to fall detection by tracking joints of the human 
body using a single depth camera. Joints were tracked using a 
randomized pose-invariant decision tree algorithm to extract 
joints with a support vector machine (SVM) classifier. 
Detecting fall using 3D head trajectory analysis. By mounting 
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a depth camera close to the ceiling, occlusions were 
minimized, and they achieved an accuracy score of 97.9% 
with a low error of 2.1% by just tracking the head for their 
proposed motion analysis. The system struggled to detect falls 
if the subject falls on higher platforms like furniture. 

Another CB method that uses SVM is the work done by 
Yu et al. [5], [5] proposed a background subtraction technique 
to extract the human body silhouettes, describing posture with 
ellipse fitting and using unsupervised one class SVM to find 
abnormality in daily posture. Although their system falls short 
of being autonomous, requiring human intervention for the 
segmentation and selection of video clips, they achieved 100% 
true fall detection performance with just 3% false detection. 

Similar to the work of Yu et al. [5], Fan et al. [6] presented 
a vision-based fall detection approach with analysis of the 
human posture extracted from image sequences of moving 
body parts. The posture analysis process was done in three 
stages; 1) Body Extraction using a colour distortion model by 
Horpraset et al. [7], 2) Human Posture Description using 
Normalized Directional Histogram (NDH) and a statistical 
hypothesis testing to differentiate standing, lying, crouching, 
and sitting postures, 3)Using NDH data, a Directed Acyclic 
Graph Support Vector Machine (DAGSVM) and a majority 
voting method to differentiate a fall from a non-fall event over 
a temporal time window, a detection of up to 95.2% accuracy 
was achieved on a public fall dataset. 

In more recent study, the work of Huynh-The et al. [16] 
leverages the high dimensional data capability of deep con- 
volutional neural network (DCNN) to learn human action by 
extracting features from a 3D skeleton data using depth 
camera. Joint-to-joint distance and orientation within and 
between consecutive frames were encoded into color pixel 
action images. [16] used transfer learning to finetune a pre- 
trained Inception-v3 network model, achieving up to 90.33% 
accuracy on the most challenging NTU RGB+D dataset [17].  

Overall, camera-based systems can be useful and advanta- 
geous given their environment agnostic qualities as regards to 
installation as well as their capability to leverage improving 
ML algorithms with edge computing. They however exhibit 
some issues related to occlusions, lighting, and field of view 
coverage, thus, our proposal in this paper will be to utilize 
more advance deep learning approach, such as the use of CNN 
for image processing, posture analysis and action 
classification. 

B. Wearable-Sensor-Based Methods 

The growth in micro-electro-mechanical systems (MEMS) 
led to sensor technology becoming more compact and low 
cost. Their integration into available alarm systems or into 
accessories carried by a subject became a feasible and efficient 
way of non-intrusive and non-invasive diagnosis and 
monitoring. Xu, et al. [12] and Perry et al. [13], similar to 
Kwolek and Kepski [11], discussed how the use of 
accelerometer wearable sensors leads to more accurate fall 
detections systems as compared to other non-accelerometric 
systems along with their low power and cost advantages. They 
identified a few disadvantages as the sensitivity to 
environmental conditions such as gravity, inability to create 
contextual understanding of output data leading to high false 
positives, privacy concerns etc. 

Wu, et al. [14] carried out a study that concludes that 
adding a Gyroscopic Sensor to an already present accelerom- 
eter system for fall detection improved accuracy as the 
gyroscope takes angular velocity and object orientation into 
account. With advancements in MEMS applications of health 
sensors as electromyogram (EMG) sensors and cardiota- 
chometer, also used with accelerometers have also been used 
for fall detections by monitoring muscle control signals, 
change in heart rate etc. [15]. 

In summary, wearable sensors can be efficient for fall de- 
tection when used with other present sensor systems (usually 
combining accelerometer/gyroscopes) due to their lack of 
contextual data output and the possibility of unrecognized 
noise in data. These systems tend to use simpler threshold- 
based classifiers such as decison trees, RandomForest Clas- 
sifier, K-means clustering etc. [18]. 

III. METHODOLOGY 

Bearing in mind our original objective, i.e., to design an 
intelligent computer vision-based system for fall detection 
within aircraft maintenance environment, we scoped our study 
to focus on a single-actor fall detection in an aircraft hangar. 
We are proposing the use of wide-angle cameras installed at 
diagonal ceiling position within the hangar for our visual data 
input, while our fall detection model will adopt a CNN-LSTM 
model which allows for batch training and time distribution 
understanding of the input data. 

Although we understand that the total number of cameras 
needed is environment specific, we will suggest a minimum of 
3 cameras for reasonable handling of occlusion. This num- ber 
may however be increased based on the unique settings of 
different hangars. Video input from the camera system is 
divided into frames which gets annotated for the subject’s 
keypoints and effectively serves as input to the CNN-LSTM 
model classifier algorithm. The system architecture described 
in Fig. 1 is as follows: 

1) Process the Input video and extract pose features of 
subject in individual frames using pose estimation.  

2) Compute Reg-Key and discriminate a state of 
fall/falling event from normal/non-fall event on ex- tracted 
frame.  

3) Output and Display results if an individual has fallen 
over. 

The output has been designed with providing visual 
indica- tion of the fall, as well as a notification to the 
environment to ensure that the fallen over individual is given 
attention quickly. Falls are determined by trained AI modules, 
which determines whether an individual is fallen over based 
on their Region Keypoint (Reg-Key) matrix. More detailed 
breakdown of the individual processes is covered in the 
preceding sections of this paper. 



  

 

Fig. 1.   Proposed Fall Detection System Architecture 

IV. EXPERIMENT DESIGN 

A. Pose Estimation 

Highlighting human locations for a frame in computer 
vision can be done via methods such as Object Detection and 
Pose Estimation, using pre-trained models widely available 
online. Object Detection is essentially identifying objects of 
predetermined classes within a set of digital pixels array and 
presenting such identified objects in annotated squares called 
bounding boxes [21]. The annotated bounding box describes 
the size and position of the object in a two-dimensional plane 
relative to the image frame. Pose estimation on the other hand 
uses a set of key points that are equivalent to joint positions on 
a human, the intent is to have a skeleton-based overlay 
attached to each person within any given frame. 

Pose estimation could use any of two separate techniques, 
Top-Down and Bottom-Up [19] [20]. Top-Down approach 
works by using an object detector to determine the human 
position, then estimating the key points within the bounding 
box. Bottom-Up approach detects each joint/body part in the 
scene and constructs the skeleton joint frame for each person. 
To generate human joint position estimation described above, 
we used a pre-trained pose estimator model called MoveNet. 
This allowed us to detect and generate 17 key point on a 
moving or stationary human body captured in video frames 
seamlessly and accurately. 

1) MoveNet Keypoint Detection: MoveNet is a 
bottom-up pose estimation model, that is used in our system to 
obtain the keypoints with the MoveNet Lightning model, 
given its high-performance in latency-critical applications. 
The model utilises a feature extractor called MobileNetV2 
attached with a feature pyramid network (FPN) for higher 
resolution, rich feature map outputs (Tensorflow) [8]. 

2) Region Keypoint Repartitioning: This is the second 
stage in the pose estimation process. The body keypoints 
obtained as output from MoveNet is not used in its raw form as 
input to the neural network, but used to create what we termed 
as Region Keypoints (Reg-Key) in a process called Region 
Keypoint repartitioning. It is a way to summarise the posture 
of a human into a simple matrix. The principle is to divide the 
human body into 8 fixed regions starting from the centre of the 
hips, then each region is described as a matrix that stores 
information about the keypoints within it. This method is 
inspired by the work done by Fan et al. [6]. The process can be 
broken down into these three steps as seen in Fig. 2: 

1) Extract the position of hips of the detected human and 
compute the mean position between them to define the region 
center.  

2) Using the mid-hip point, separate the regions using, 
one vertical, one horizontal and two 45-degree diagonal lines. 
From these lines, a polygon is computed to englobe the 
delimited surface. The polygon will go from the center of the 
hips to the boundary of the frame and the regions are defined 
from R1 to R8. If the hips are higher or lower than the middle 
(x and y coordinates) of the frame, then there are cases to 
consider.  

3) Each key point is verified in which polygon region it is 
contained in and stored into a (Number of Regions × Number 
of Key points) matrix. 

As this matrix describes the overall posture, we can 
differentiate if someone is walking or falling using 
extraordinarily little computational memory. This can help us 
avoid feeding the neural network with heavy input images and 
lowers the risk of a slow system. We could attempt to further 
minimize input size by summing up all the columns of the 
Reg-Key matrix into a simpler vector, but this led to low 
accuracy for the trained model as it substantially reduces 
information about the posture, thus we used the Reg-Key 
matrix in its original size. 

 

Fig. 2. Reg-Key Process Visualized. 

B. Dataset 

With an understanding that a typical aircraft hangar is a 
large open space with very high vertical room space and three 
or less full walls, usually well-spaced to accommodate the 
aircraft horizontal stretch [11], we were biased to source for, 
and the use existing dataset captured using wide-eyed cameras 
placed at high edges to cover a very broad view of the space 
under surveillance. 

The apparent absence of ready-made airport hangar 
maintenance dataset clearly presents a possibility of a bias 
towards a more generalized fall detection that may not 
adequately account for maintenance specific scenario and 
potential for occlusion. This necessitated the need to generate 
dataset by experimentation in a real airport hangar. 

The Cranfield University maintenance hangar at the 
DARTeC building was used for the experimentation and data 
collection exercise after adequate planning and risk 
assessment was carried out. Video recording was captured 
simultaneously from three camera positions with the subject 
recreating regular maintenance actions that included safe short 
distance falls and trips at various locations outside and inside 
of the aircraft. To ensure our training set can handle occlusion, 



  

a few of the scenes captured featured part of the aircraft body 
obstructing the camera view of the subject. All simulations 
were carried out under careful supervision of the hangar’s 
safety manager to ensure participants follow all safety 
guidelines as detailed in the risk assessment document. Apart 
from the standard safety gear, the subject also used addition 
safety gear, like elbow and knee pads, winter jackets for harsh 
weather situations and an air mattress to dampen simulated 
falls. 

About 50 short (2-5 minutes) videos of simulated mainte- 
nance activities were recorded, some with falls and others 
without. The captured videos were stripped into frames and 
annotated using MoveNet pose estimator and the Reg- Key 
matrix describing different postures were generated as 
described in the Section IV.A. 

 

Fig. 3. Cranfield Local Data Collection. 

C. Data Processing 

With an homogeneous mix of sourced fall scenario dataset 
and the data generated from experimentation, each scene for 
each camera angle is separated into smaller videos for every 
action, and labelled for the fall output. 
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from the text. 

The cut videos were injected into the MoveNet/Reg- Key 
repartition program that was developed using Python 
programming language. This program detects the key points 
of every human in the video with MoveNet and computes the 
Reg-Key matrix for all the frames automatically. If multiple 
humans are detected, they are labelled with a track ID in the 
Reg-Key matrix. Some of the time, there are errors, when the 
program detects non-existent humans on the frames, therefore, 
it became necessary to sort the output matrix, deleting the few 
wrong detections. We then validate our repartition results 
visually with the output video using MoveNet.  

The Reg-Key data needs some processing to have a 
structured input that keeps regularity through actions and time. 
The data was reorganized using Pandas data manipulation 
library for Python [10] to achieve a consistent input for our 
model training. The index of the created Reg-Key data frame 
was used to regroup the Reg-Key matrix for every scene, 
camera, and action. At the end, we had a total of 36,011 frames 
with exploitable fluid human detection. 

D. Time-Series Generator 

In order to be sure that the training data will be accepted by 
the neural network we pre-process it into a Time Series 
Generator (TSG). It is useful for Recurrent Neural Network 
(RNN) and Convolutional Neural Network (CNN) to main- 
tain state across samples within a batch. This generator will 
structure the data (input and output) into samples ready to train 
the supervised deep learning model. The issue is that TSG is 
limited to one-step outputs, therefore, it was necessary to 
compute TSG on each cut videos that were stored into the 
Reg-Key data frame, and then concatenate them together with 
the input and output separately. 

D. Machine Learning Algorithm Design  

The Reg-Key repartition that we are injecting into our 
neural network is comparable to an image: it has two 
dimensions, and it describes a spatial and physical depiction. 
For this reason, a CNN is adapted to Reg-Key analysis and 
posture feature extraction. Keeping in mind that our problem 
has time dependency, our goal here is to interface a CNN with 
Long Short-Term Memory (LSTM) to take advantage of their 
strengths. A CNN layer helps extract feature specificities of 
spatial environments while LSTM supports sequence 
prediction. Their combination is perfectly suited for video 
classification. In other words, LSTM layer needs to build 
internal state across the sequence of image interpretations that 
has been handled by the CNN layers. A Time Distributed layer 
englobing the CNN layers will convert the output of the CNN 
into a sequence that the LSTM can process. The global 
architecture of CNN-LSTM model is structured as follows. 

 

Fig. 4.   High-Level CNN-LSTM Model Architecture 

The choice of number of nodes N for the LSTM layer can 
be determined from the following formula: 

 

with Ns being the number of samples in training set, Ni, the 
number of input neurons, No, the number of output neurons 
and α, an arbitrary scaling factor between 2 and 10. If the 
number of nodes of the LSTM layer stays inferior to this 
value, overfitting has better chances to be avoided. 

The final reference model used to perform video 
classification is a 3D CNN layer. The 3D Conv layers preserve 
a link through time as it outputs a temporal volume. The 
number of filters defines how many volumetric outputs we 
will have. We used inputs of size (n × 8 × 14 × 1) where n is 
the time series frames of 8 × 14 matrices on one channel. We 
kept the batches of time frames as our input data and the 
output remains a binary vector of size n. Fig. 5 visually 
describes the model architecture and Table IV shows a 
comparison of all models architectures that was tried. 



  

 

Fig. 5. Convolutional 3D Model with LSTM Layers and Sigmoid 
activation function. 

F. Model Training  

The Model described above is Optimized using Adam 
Optimizer, given its reliable performance, the loss function 
(Binary CrossEntropy) and activation function (Sigmoid) are 
chosen to limit the output values between 0 and 1. At the end 
of the training epochs, all the models, 1D, 2D and 3D achieved 
approximately the same loss value, with the third model being 
slightly better. 

G. Model Testing  

Once the three models were trained using our training data, 
it was important that the model was evaluated on its 
performance to accurately detect falls. The models were 
evaluated using a standard confusion matrix to obtain the True 
Positive (TP), True Negative (TN), False Positive (FP), and 
False Negative (FN), to generate 4 evaluation metrics of 
Accuracy, Error Rate, Sensitivity and Specificity. F1-score 
was also used to check for the harmonic mean between the 
Sensitivity and Specificity. 

 

As the confusion matrices are a visualisation of the ground 
truth labels against the model predictions, it is possible to 
conclude that the model is capable of predicting falls. The data 
obtained from these matrices can be used further to evaluate 
the test data assessed upon our model. Looking at Fig. 6 and 
Table III, a few conclusions can be drawn. First, the model had 
zero FP classifications which suggests the model does not 
misclassify a fall. This was one of our primary concerns 
(triggering false alarm). Second, there are 940 True negatives 
for each Model, this could likely be due to each test data 
containing a portion of non-falls (classified as 0) before the 
actor falls over. Finally, there are quite a few FNs where the 
system believes there is not a fall. This could be very 
constraining for our system. It could mean that the model 
leaves out some falls and would not fulfil its purpose. Some 
additional statistics are needed to validate the true 
performance of the model. 

 

Fig. 6. Confusion Matrix Plots for the Conv1D, Conv2D and 
Conv3D Models. 

 
Table I 

CONFUSION MATRIX SUMMARY 
Model True Pos False Pos False Neg True Neg 
Conv1D 488 0 428 940 
Conv2D 472 0 388 940 

Conv3D 509 0 351 940 

 

Table II 

CONFUSION MATRIX SUMMARY 
Model Accuracy 

(%) 
Error 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1-Sc
ore 

Conv1D 76.9 23.1 53.3 100 69.5 
Conv2D 78.4 21.6 54.9 100 70.9 

Conv3D 80.5 19.5 59.9 100 74.9 

V. RESULTS 

From the summarized metric in Table IV, obtained using 
the equations 2 through 6, the accuracy improves from 76.9% 
for the first model, to 80.5% for the final model, this reinforces 
the reasoning behind improving the model from Conv1D to 
Conv3D. The specificity is likely 100% due to the model 
being able to classify all non-fall movements con- ducted in 
the test dataset, but an issue is the low sensitivity score. As the 
F1 score is quite high, 69.5% for Conv1D, 70.9% for Conv2D, 
and 74.9% for Conv3D, it once again confirms the model’s 
robustness on finding falls. Looking at the metrics once again, 
it is possible to finally conclude quantitatively that the third 
model is the best proposed model for detecting falls in our 
system. 

After the testing prediction process, there were obviously a 
few errors in the output: some 0 were lost within the sequences 
of 1s characterizing a fall. To avoid those unnecessary 
variations, we used a common technique popular in video 
classification. For every prediction we performed an average 
on the previous 10 frames. 

VI. DISCUSSION AND FUTURE WORKS 

Essentially, our 3D CNN-LSTM model presented a very 
stable and consistent fall prediction, standing out in the area of 
accuracy and speed of prediction. The general observation is 
that the 1D CNN-LSTM is slower to predict the fall. We can 
easily observe that there is no time link between the frames. It 
waits for the body to be fallen and to be horizontal before 
predicting a fall. It is not sensitive to the loss of balance that 
occurs prior to a fall. The 2D CNN- LSTM is faster than the 
first model but it also lacks rapidity in identifying a fall. It is 
difficult to conclude that the model has a better sense of time. 
But if we place our judgement on the statistics, we can agree 
that the more the complexity of the model increases and the 
more dimensions we use, the more the model is accurate. 

We can assume that the 3D model is better because it has 
the better statistics. We need to visualize the results on a video 
where the fall prediction is displayed to be sure of the 
consistency of our results. It is also valid to remark that the 



  

predictions of our models can be subjective and biased under 
our judgement because of manual labelling. 

Although reasonable result was achieved in this study, we 
cannot discount the fact that availability of more data will 
significantly improve the training and validation processes, 
therefore, in the future, more data could be generated for 
model training, validation and testing purposes, especially 
from an aircraft maintenance environment. While doing that, 
it is important to ensure that the subject simulating a fall 
spends more time in a fallen state, as this creates a more 
realistic scenario for the model training. 

To further deal with cases of occlusion, strong consid- 
eration must be given to the possibility of interfacing the 
camera-based approach discussed in this study with wearable 
technologies using sensor fusion. We would like to propose a 
creative combination of accelerometer and gyroscope sensor 
data fusion with the pose description features extracted from 
the Reg-Key repartitioning. Another improvement that will 
benefit this study in future is the real-time synchronisation of 
the video feed and the fall detection algorithms as this study 
utilized only recorded video footage.  

VII. CONCLUSION  

In this work, we propose a working fall detection system 
by using a 3D CNN-LSTM model. We used a new method 
that we called Reg-Key repartition; it provides a matrix 
containing condensed information of the human posture 
through keypoint estimation via MoveNet. Three models were 
tried in this work, that have been iteratively ameliorated to 
reach the Conv3D model with an accuracy, sensitivity, and 
specificity of 80.5%, 59.9% and 100%, respectively. The 
visual output of the testing data is more than satisfying. We 
notice a real implication of the time link between frames that 
the other models did not have. The model could be trained and 
tested with k-folds in order to truly validate it. Given the 
simplicity of the models, we believe that it can integrate easily 
into embedded systems so long as the prerequisites are 
compatible with the embedded hardware. 
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