
Fabio Simeoni,
David Lievens,
and Richard Connor
Strathclyde University,
Glasgow, Scotland

Paolo Manghi
Università di Pisa, Italy

Language
Bindings to XML

By preserving application semantics, XML bindings improve

program specification, verification, and optimization. SNAQue

makes it all simple and flexible.

XML’s significance extends beyond
the purpose it was originally
intended to serve (document pro-

cessing over the Web). As a standard and
widely supported format for arbitrary
data, XML delivers to any heterogeneous,
distributed computer system the common
lingo for data exchange — something
only closed or relatively closed systems
could previously assume and enforce. In
addition, XML data contains a description
of its intended meaning, either in the
form of element names or, optionally, as
an embedded or referenced type descrip-
tion (for example, a DTD). Self-descrip-
tion allows programs to interpret the data
dynamically — with no reliance on shared
assumptions or agreements (such as
header files or interface definition lan-
guages), and thus makes them more
resilient to changes in the data.1 In its
untyped form, though, XML is an ideal
carrier for semistructured data, where the
structure is too irregular or instable to be
effectively handled in statically typed
programming languages or database

management systems.2

This broad view of XML explains the
proliferation of related technologies,
especially programming models. To date,
computations over XML data can be
specified in a variety of paradigms and
languages. Most approaches, however,
have so far focused on novel and dedi-
cated solutions: from flexible query lan-
guages, which resort to regular expres-
sions that match data with irregular or
partially known structure (for example,
XML-QL, XQL, and LOREL) to Turing-
complete or strongly typed functional
languages, which exploit structural regu-
larity to ensure correctness of arbitrary
computations (for example, XQuery,
XSLT, and Xduce).

In contrast, the computational facili-
ties of mainstream, statically typed lan-
guages have only been partially reused
in this novel context (such as the com-
pleteness and simplicity of the procedur-
al and object-oriented programming
models, the reliability and efficiency of
computations, and equally important, the

2 JANUARY • FEBRUARY 2003 Published by the IEEE Computer Society 1089-7801/03/$19.00©2003 IEEE IEEE INTERNET COMPUTING

M
ar

ku
p

La
ng

ua
ge

s

large user-base and tool support). This is the
domain of language bindings to XML — software
mechanisms that transform XML data into values
that programmers can access and manipulate
from within their language of choice. In this arti-
cle, we compare two standard binding solutions
— namely, the Simple API for XML (SAX) and the
Document Object Model (DOM) API — and two
novel approaches — Sun’s JAXB architecture and
our Strathclyde Novel Architecture for Querying
XML (SNAQue).

A Motivating Example
We identify two broad scenarios in which we could
conveniently bridge XML and typed languages.
The first approach accounts for most current XML
usage — namely, the exchange of business data
across proprietary boundaries. The second con-
cerns semistructured documents with large frag-
ments of more disciplined data, such as those that
arise in scientific domains or from the integration
of heterogeneous databases.

In general, the goal is to compute over encod-
ings of real-world entities that are maintained or
even generated outside the language jurisdiction
and that occur as fragments of (possibly semi-
structured) XML documents. For example, consid-
er the following document d about a university
department’s staff members:

<staff code=”123517”>
<member>

<name>Richard Connor</name>
<home>www.cis.strath.ac.uk/

~richard</home>
</member>
<member code=”123345”>

<name>Steve Neely</name>
<ext>4565</ext>
<project>

<name>SNAQue</name>
<project/>

</member code=”175417”>
<member>

<ext>4566</ext>
<name>Fabio Simeoni</name>

</member>
</staff>

For the sake of illustration, we’ve added a few
irregularities to the data: some staff members
have Web page information and others have pro-
jects or phone extensions. On a much larger
scale, these irregularities discourage the use of

conventionally typed technologies; although
union types and object–oriented hierarchies can
accommodate some of this irregularity, their
extensive use would soon reduce the system’s
static knowledge and complicate program speci-
fication and maintenance.

Notice, though, that all members in d have a
name and a code. The following fragment d´ of d
could be an XML representation of a standard lan-
guage value:

<staff>
<member code=”123517”>

<name>Richard Connor</name>
</member>
<member code=”123345”>

<name>Steve Neely</name>
</member>
<member code=”175417”>

<name>Fabio Simeoni</name>
</member>

</staff>

For most statically typed object–oriented lan-
guages, d´ could be an XML encoding of the state
of an object staff of class Staff, where

class Staff {
private Member[] member;
Member[] getMembers() {...}
void setMembers(Member[] members) {...}
...}

and

class Member {
private String name;
private int code;
String getName() {...}
void setName (String n){...}
int getCode() {...}
void setCode (int c){...}
...}

This simple observation raises the expectation
that programming over d´ should be at least as
simple, safe, and efficient as programming over
staff. Furthermore, we would like these proper-
ties to scale — that is, hold for generalized com-
putations over fragments of XML documents con-
siderably larger than d´.

Motivated by these requirements, we advocate the
importance of language bindings to XML. The host
language’s computational facilities do not guaran-

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 3

Language Bindings

tee per se the convenience of a binding, however, as
the resulting values must also support the program’s
interpretation of the data. One aim of this article is
to show that when this is not the case, programmers
benefit only partially from the host language’s
expressiveness, strong typing, and efficiency.

SAX and DOM
From a binding perspective, SAX transforms an
XML document into a string served to the program-
mer as a temporal sequence of tokens. The induced
programming model is based on parser–generated
events and programmer-implemented callbacks.

The SAX programmer is thus invited to share
the interpretation of the data with the underlying
parser, albeit at a higher level of abstraction. In
particular, the programmer receives only tokens
that correspond to distinguished components of
the format, such as PCDATA sections or element
names. The following code represents a SAX pro-
gram that iterates over staff members to retrieve
their names and codes:

class SaxTask extends DefaultHandler {
private String name;
private int code;
private boolean inProject;
private CharArrayWriter buffer
= new CharArrayWriter();

public void characters (char[] ch,int
start,int length)

{buffer.write(ch,start,length);}

public void startElement (String
uri,String name,String qName,
Attributes atts){

if (name.equals(“member”))
code=atts.getValue(“code”);

if (name.equals(“project”))
inProject = true;

buffer.reset();}

public void endElement (String
uri,String name,String qName){

if (name.equals(“project”))
inProject = false;

if (name.equals(“name”) &&
!inProject) name =
buffer.toString().trim();

...do something with name and
code...}}

The DOM API, on the other hand, represents an

XML document as a node–labeled tree in which
nodes correspond to the distinguished components
of the format. The DOM programmer is thus invit-
ed to interpret the data as the document in which it
is contained — that is, in terms of the “has–a” rela-
tionships between its structural components. The
following is a DOM solution to the previous task:

int code;
String name = null;
Element staff = d.getDocumentElement();
NodeList members =
staff.getElementsByTagName(“member”);

int memberCount = members.getLength();
for (int i=0;i<memberCount;i++) {

Element member = (Element)
members.item(i);

code = Integer.parseInt
(member.getAttribute(“code”));

NodeList children =
member.getChildNodes();

int length = children.getLength();
for (int j=0;j<length;j++) {

Node child = children.item(j);
if (child.getNodeType() ==

Node.ELEMENT NODE) {
String tagName=((Element)

child).getTagName();
if (tagName.equals(“name”)) name =

((characterData)
child.getFirstChild())
getData();}

...do something with name
and code...}}

Even for such a simple task, both programming
solutions are quite convoluted. Facing problems
on a much larger scale, SAX and DOM program-
mers have described their code as tedious, hard to
read and maintain, and thus prone to errors.

This is due in part to the document–oriented
nature of any complete programming interface to
XML. Conceptually related data (for example, staff
member names and codes) must be accessed with
the different algebras of elements and attributes.
Similarly, manipulating atomic data requires an
implicit or explicit cast from the type of strings
(the only data available). The main problem, how-
ever, is that the computation is expressed in an
algebra of strings and trees, whereas domain–spe-
cific concepts (such as staff names and codes) are
relegated to the role of actual parameters.

In SAX, for example, programmers don’t ask for
a staff member’s name; they patiently collect the

4 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Markup Languages

characters of name elements after they ensure that
they’re using the right name element. In DOM, the
programmer would first reach a member node, scan
its children nodes to get a name node, and then
eventually get its string value. SAX does not even
reflect the structure of the data, so to get things
right, the programmer must coordinate possibly
distant methods.

Inadequate data abstractions also compromise
static checking of computations. Correctness can
be guaranteed for generic operations on strings
and trees, but not on, say, staff members. The DOM
invocation

staff.getElementsByTagName(“mebmer”);

where mebmer is a typo for member, would silently
compile and return a null value at runtime. Safety
thus becomes the programmer’s responsibility, not
the system’s.

Programmatic checks worsen code readability
and maintainability and are not always sufficient
to guarantee correct behavior. Lacking a document
description, the code could interpret the mebmer
typo as the absence of required data and thus trig-
ger unintended behavior. Even assuming some
kind of document description, the typo could acci-
dentally identify some other data or, in the best
case, simply be signaled at runtime.

For similar reasons, the system can optimize
resources only within the limits of its static knowl-
edge of the data. For instance, it would ignore the
fact that all staff members have names, codes, and
ages. Compare this with the code required to per-
form the same task over the object staff equiva-
lent to d´:

Member[] members = staff.getMembers();
for (int i=0;i<members.length;i++) {

int code = members[i].getCode();
String name = members[i].getName();
...do something with name and code ...}

The code is now aligned with the task’s seman-
tics. Its also more succinct: generic operations on
staff and staff members can easily be factored out
in class definitions, thoroughly tested, and then
reused. The programmer can also count on finer-
grained system type checking to ensure code cor-
rectness: the age has the properties of an integer
number, and all members have one and only one
name, so the system can detect erroneous manip-
ulations at compile time.

Overall, SAX and DOM do not preserve the

semantics of XML encodings of real–world enti-
ties. When computations must address, respec-
tively, the syntax and structure of the data, both
solutions can be quite effective. For example,
SAX offers an efficient and simple way of count-
ing the number of elements or the occurrences of
a particular string within the document. Similar-
ly, DOM is ideal when it comes to adding or
removing “has–a” relationships between docu-
ment components.

Large classes of computations, however, are
directly concerned with the intended meaning of
the data rather than its syntactic or structural
properties. In these cases, the data should be rep-
resented within the language by values whose
semantics reflect the intended meaning as closely
as possible. When a binding does not satisfy these
expectations, the programmer faces the choice of
expressing computations in an awkward algebra
or writing ad hoc translation code between the
bound values and the preferred ones.

For example, many SAX and DOM program-
mers would prefer to tackle the proposed task by
mapping the string or tree the parser generates
into staff and then computing directly over
staff. In a statically typed language, this requires
the preliminary declaration of type Staff as a
description of the semantics intended for d´. This
suggests the possibility of defining automated
solutions that take types as the input to seman-
tic–preserving bindings to XML data.

JAXB
In the Java Architecture for XML Binding (JAXB),
type information is automatically generated from
document descriptions, such as DTDs. Specifical-
ly, descriptions are converted into classes with
unmarshaling functionality, in that they can recur-
sively generate their own instances from valid
XML documents.

For example, suppose the fragment d´ of d
exists as a stand–alone document associated with
the following DTD STAFF :

<!ELEMENT staff (member*)>
<!ELEMENT member (name)>
<!ATTLIST member code CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>

The JAXB programmer passes STAFF to a schema
compiler, which generates the declarations for two
classes Staff and Member. These classes resemble
those shown earlier but also include a static
method unmarshal for binding to XML encodings

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 5

Language Bindings

of their instances.
The programmer may then add domain–specif-

ic functionality to the generated classes and use
them in programs. To compute over d´, applica-
tions invoke the unmarshal method of Staff on d´.
Assuming that doc denotes the file that contains
d´, the instantiation of d´ would look like

Staff staff = Staff.unmarshal(doc);

Thereafter, applications can manipulate staff with
the host language’s standard facilities (see Figure 1).

Binding is successful only if the target docu-
ment is valid with respect to the initial DTD — oth-
erwise, the marshaling method raises an exception.
The schema compiler guarantees this by augment-
ing the binding logic within the generated classes
via programmatic checks equivalent to the con-
straints expressed in the DTD. Validity is thus
enforced at runtime, with a single dynamic check
in an otherwise statically typed program.

In addition, the generated classes can marshal
their instances back into XML documents, there-
by implementing a lightweight, file–based update
model. Object marshaling is also validated, in that
it only generates documents that conform to the
initial DTD.

The JAXB programmer can also feed a binding
schema to the compiler to specialize its binding
strategy. The binding language gives programmers
control over generation of class names, properties,
and methods, as well as type conversions, con-
structor functions, type–safe enumeration class-
es, and even interfaces. A simple binding schema,
for example, could specify that Staff objects
encapsulate arrays of Member objects instead of
lists and that their code property is an integer
rather than a string.

Although JAXB succeeds in preserving data
semantics, it has some shortcomings. Some of
these are certainly related to its early implementa-
tion status (such as the unstable and incomplete

functionality, including the limited support for
description formalisms). Others occur more notice-
ably in the form of loss of type information, as
JAXB enforces DTD-imposed constraints at the
point of marshaling rather than when they are
actually violated.

The main issues, however, come from the archi-
tecture’s dependency on document descriptions.
First, programs cannot directly bind to document
fragments and thus access regular subsets of semi-
structured documents; for example, JAXB pro-
grams cannot bind directly to d´ within the more
irregular d. Instead, they must provide a DTD for
the entire d and bind to it. Given the irregularities
in d, the DTD would probably be rather convolut-
ed, thus compiling into classes that offer poor or
excessive abstraction over the actual data. Such
classes would provide little static knowledge to the
system and a cumbersome, inefficient, cast–based
algebra to the programmer. Overall, this approach
would result in the introduction of semistructured
data into a statically typed language, which is a
notoriously inconvenient match. Describing staff
members, for example, would require either a sin-
gle class with the totality of required properties or
a rather unnatural class hierarchy of Member,
MemberWithHomepage, MemberWithPhone, Member-
WithNameAndPhone, and so on. In both cases, com-
putations would have to use extensively type casts
and conditional statements.

Document–level bindings also show poor
resilience to changes in the data. Even when a
change is irrelevant to existing programs, the
classes generated from old document descriptions
become invalid and must be regenerated. Besides
the problems class regeneration could introduce in
loosely coupled systems, class regeneration dis-
courages programmers from adding domain–spe-
cific functionality to the generated classes. For
example, a method find that takes a member’s
name and returns the corresponding Member object
should not be directly declared for Staff objects

6 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Markup Languages

program
Binding

Staff & Member
Classes

staff

Uses

Instantiates

Generates STAFF

d′

d

d′
?

Projects

(b)(a)

Staff and Member
Classes

program
BindingIs valid

staff

Figure 1. (a) JAXB bindings are driven by document descriptions, while (b) SNAQue bindings are driven
by program types.

because future class generations would simply
make it vanish. Solutions must therefore be based
on wrapper classes or extension patterns, which
means the programmer must be aware of the bind-
ing architecture’s internal workings.

Because of automatic class generation, this
complexity is in fact propagated throughout the
binding process. To control the generation, the
programmer must learn a new binding language,
which becomes complicated in most nontrivial
cases. Programming control remains partial due to
the unavoidable tension between the mechanism’s
generality and the computational requirements’
specificity. Finally, the generated classes remain
rather opaque to the programmer and can prove
difficult to integrate with legacy code.

SNAQue
In the SNAQue binding architecture, document
descriptions play no role, and binding programs
directly project type information over XML docu-
ments.

A type — possibly derived from inspecting the
document or, when available, a document descrip-
tion — is then projected by the programmer over
the document in an attempt to find a conforming
fragment. This entails a recursive match between
the structure of the type and the names of the ele-
ments in the document. If the match is successful,
the system transforms the conforming fragment
into an instance of the projected type and returns
the latter to the binding program.

SNAQue is thus similar to mechanisms used
extensively in statically typed languages to guar-
antee type–safe access to heterogeneous or persis-
tent data. These include the numerous language
incarnations of infinite, untagged union types (for
example, Simula-67’s subclass structure or
Amber’s type dynamic), especially their implemen-
tations in persistent languages (for example, Napi-
er88’s type any). Instead of performing a dynamic
check between the type the computation projects
and the type associated with the data, however,
SNAQue compares the former directly with the
self–description embedded in the document.

The programmer now has full control of the pro-
jected types — which might have been defined for
binding purposes or simply reused from legacy code
— and the design in which they should participate.
Bindings can be defined with an arbitrary degree of
granularity and thus enable access to fragments of
possibly semistructured XML documents. Moreover,
irrelevant changes to the data have no effect on
projected types or binding programs.

For the time being, the SNAQue architecture
focuses on bindings. An update model over the
bound data is not precluded, however, and
SNAQue could here offer a finer-grained model
than JAXB. This could introduce validity issues
because language types cannot capture the full
range of document constraints but instead require
programmatic checks. While JAXB automatically
generates these checks from document descrip-
tions, SNAQue leaves such responsibility to bind-
ing programs.

A Binding Example
Consider an object–oriented program that wants
to bind to d´ using SNAQue. Now, the program
declares the classes Staff and Member shown ear-
lier and then projects Staff on d. The binding
mechanism infers a structural type from Staff and
begins a recursive analysis of both type and docu-
ment in an attempt to match their structures.

Because Staff has only an instance variable
member of class Member[], the mechanism consid-
ers only homonymous elements immediately
below the staff element. In the second step, it
repeats the analysis between the type inferred from
class Member and the subdocuments of d rooted in
each of the member elements identified previously:

<member code =”123345”>
<name>Steve Neely</name>
<ext>4565</ext>
<project>

<name>SNAQue</name>
<project/>

</member>

In particular, the mechanism looks in each
subdocument for at least a name element and a
code attribute. During the third step, it repeats
the analysis comparing the atomic type String
and int with the CDATA and PCDATA content
of, respectively, the name elements and code
attributes identified in the previous step. The
comparisons are all successful because any
PCDATA content is a string, whereas the system
can convert the CDATA value of all code attrib-
utes into an integer.

At this point, the fragment of d that conforms
to the type inferred from class Staff is the one
obtained by traversing d along the elements and
attributes that the recursive analysis successfully
considered (for example, d´). The last step is then
to convert d´ into the Staff object staff and
return staff to the binding program, as shown in

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 7

Language Bindings

Figure 1b. (You can find more detailed examples
of SNAQue bindings at www.cis.strath.ac.uk/
research/snaque/examples.)

Formal Definition
and Canonical Specification
The SNAQue architecture can be more formally
defined as follows. Let D be the set of XML docu-
ments, L a statically typed programming language,
and V and T the value and type spaces of L,
respectively (see Figure 2a). Let sd: V → D be a
mapping that gives an interpretation of language
values as self–describing documents. Let also ≤ in
D × D be a relation of containment between XML
documents that gives an interpretation of the
notion of document fragments.

Definition 1. Let v ∈ V. v is extractable from d ∈ D
according to T ∈ T if v has type T and there exists d′ ≤ d
such that sd(v) = d´.

Finally, a SNAQue binding mechanism for L
takes both a document d and a type T and
returns a value v extractable from d according to
T, if one exists.

Elsewhere, we have shown that we could cor-
rectly implement the SNAQue architecture, and we
did it for a canonical language core L.3 In doing
so, we followed a principle of generality that
allows binding mechanisms for other typed lan-
guages to be derived directly from L.

The canonical language L is defined around a
value notation V, a type language T, and a typing
relationship between the two. In particular, we
chose a selection of the first–order types com-
monly found in existing procedural languages for
T. We can recursively build canonical types from
a set of atomic types and include record, set,
union, and recursive types. Specifically, a type T

∈ T is one of the atomic types B1, B2, …, BN, a
record type [l1:T1, …, ln:Tn], a set type set(T), a
union type T1 + T2, or a recursive type µX.T, where
X is a type variable and the operator µ binds
occurrences of X in T.

Canonical values mirror the available types. A
value v ∈ V is an atomic value bk ∈ Bk, a record
value [l1 = v1, …, ln = vn], a set value {v1, …, vn}, or
the empty set {}. The typing relation is inductive-
ly defined in a standard fashion. An atomic value
bk has the corresponding type Bk, whereas a record
[l1 = v1, …, ln = vn] has the type [l1:T1, …, ln:Tn], but
only if each vi has type Ti. A set {v1, v2, …, vn} has
the type set(T) only if all the vi have type T; the
empty set has the type set(T) for all T. A value v
thus has type T1 +T2 if v has type T1 or type T2 and,
finally, v has type µX.T if v has the type obtained
by substituting µX.T for all the bound occurrences
of X in T.

For the canonical mechanism’s specification,
we have defined a fairly simple self–describing
interpretation of canonical values, although the
lack of XML support for set values introduces
some subtlety in the definition of sd. Therefore,
we defined the relation of document containment
≤ by following the intuition that a document is a
fragment of another if both are well formed and
the first is syntactically contained in the second,
as in the case of d′ and d.

In the canonical binding mechanism, for exam-
ple, the binding would require the projection of the
following canonical type over d:

[member : set([name : String, code : int])]

and result in the identification of the following
canonical value equivalent to d′:

[member : {[name = ‘’RichardConnor’’,

8 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Markup Languages

CORBA
objects

V

T

d′ ≤ d•
D

T

sd

L

v

Binding mechanism

Ex
t

T

D

T

d

V

v

o

XML

IDL

Client

(a) (b)

Figure 2. (a) SNAQue and (b) SNAQue/J architectures.

code = 123517],
[name = ‘’SteveNeely’’, code

= 123345],
[name = ‘’FabioSimeoni’’, code

= 175417]}]

Our algorithm Ext takes an XML document d and
a canonical type T and returns a canonical value
v, which is extractable from d according to T. In
particular, we have proved the soundness and
completeness of Ext with respect to the canonical
specification.3

SNAQue/J
The SNAQue architecture for the Java language
(SNAQue/J) consists of an API with a single public
class SNAQueJ that exposes a static method bind for
binding to fragments of XML documents. In par-
ticular, bind takes a Class object and a reference
to an XML document, and returns an instance of
the class corresponding to the Class object.

Consider the university department staff exam-
ple presented earlier and assume that clStaff and
doc denote the Class object corresponding to
Staff and the document d, respectively. SNAQue/J
is then invoked simply as

Staff staff = (Staff)
SNAQueJ.bind(clStaff,doc);

If the binding fails, an exception is raised; other-
wise, the program can downcast the returned
object to the projected class.

We derived SNAQue/J directly from the canon-
ical mechanism discussed earlier. The projected
classes are mapped onto canonical types before
invoking Ext and then, as Figure 2b shows, the
mapping is used to guide the conversion of the
canonical values returned by successful bindings
into equivalent graphs of Java objects. The same
extension scheme can be used to derive imple-
mentations of the SNAQue architecture for other
typed languages.

SNAQue/J is thus completely defined by the
mapping between Java classes and canonical
types. The mapping is established at binding time
via a reflective analysis of the projected class.
Roughly, the mapping behaves like the identity
function on atomic types while it associates class-
es with record types (possibly recursively defined).
For example, class Member would map onto the
record type [name : string, code : int].

We derive union and set types by inferring
additional information at binding time. In partic-
ular, SNAQue/J maps an array class or any class

that implements the Collection interface onto a
type set(T), using the names of instance variables
to deduce the type T. Consider, for example, the
following version of class Member:

class Member {
String name;
int code;
List project;}

where the intended class of objects in list project is

class Project {
String name;
Member coordinator;}

When Member is projected over an XML docu-
ment, SNAQue/J uses the name project of the
List variable in Member to infer the following
recursive type:

µX.[name : String, code : int, project :
set([name : String, coordinator : X])]

Inferring union types is less trivial because Java
— like most object–oriented languages — offers no
direct support for them. Partly, this is because
much of the union types’ flexibility is achieved
with inheritance. In particular, we infer nondis-
joint union types from class hierarchies and dis-
joint union types from structurally disjoint class-
es that implement the same (possible empty)
interface. For example, if the following class is in
scope when Member is projected,

class Professor extends Member {
Project[] supervisedProject;}

SNAQue/J maps class Member into the following type:

µX.[name : String, code : int, project :
set([name : String, coordinator : X])]

+
µX.[name : String, code : int, project :

set([name : String, coordinator : X]),
supervisedProject : set([name : String,
coordinator : X])]

As an example of disjoint union types, consider
a binding to a semistructured XML document in
which university projects are represented by proj-
ect elements having either a name or a title subele-
ment. To capture this terminological diversity, the
binding program might first declare an interface

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 9

Language Bindings

Project with a single method getName(). It could
then declare two classes Project1 and Project2 that
implement Project using a String instance variable
called name and title, respectively. Finally, the pro-
gram might project Project over the target docu-
ment and let SNAQue/J infer the following type:

[name : String] + [title : String]

Depending on their content, SNAQue/J would con-
vert the project elements in the document into
instances of either Project1 or Project2.

Conclusions
In contrast to SAX and DOM, JAXB and SNAQue
preserve data semantics and thus promote pro-
gramming simplicity and safety (see Table 1). Par-
ticularly in SNAQue, bindings are driven by par-
tial and user–specified type projections rather
than document descriptions, as in JAXB. This
makes defining and maintaining them simpler,
especially in the presence of semistructured and
rapidly evolving data.

The results suggest that type projections may be
fruitfully used within a dedicated XML language
rather than at its boundary with the file system or
network. Early tests of the hypothesis appear else-
where4,5 in the context of an object–based and a
mixed–paradigm (procedural and query) model,
respectively. Interestingly, the tests bring out the
similarity between partial projections over untyped
but self–describing data and structural record sub-
typing of statically typed data. Besides achieving
flexibility within a safe environment, however,
projections appear also to enable partial typing —
typed and untyped views of the same data within
the same computation. Further work in this direc-
tion is nonetheless required.

References

1. C. Low, J. Randell, and M. Wray, Self–Describing Data Rep-

resentation (SDR), Hewlett Packard Labs, 1997.

2. P. Buneman, “Semistructured Data,” Proc. 16th ACM

SIGACT–SIGMOD–SIGART Symp. Principles of Database

Systems, ACM Press, 1997, pp. 117–121.

3. F. Simeoni et al., “An Approach to High–Level Language

Bindings to XML,” Special Issues in Information & Soft-

ware Technology, Elsevier, 2002, pp. 217–228.

4. R. Connor et al., “Projector: A Partially Typed language for

Querying XML,” Plan–X: Programming Language Tech-

nologies for XML, 2002; www.research.avayalabs.com/user/

wadler/planx/planx-eproceed/proceed.html..

5. P. Manghi et al., “Hybrid Applications over XML: Integrat-

ing the Procedural and Declarative Approaches,” submit-

ted for publication, Proc. WIDM 2002: Web Information

and Data Management, ACM Press, 2002.

Fabio Simeoni is a research fellow in the Computer Science

Department at the University of Strathclyde. His research

interests include programming language design, program-

ming models over semistructured and self-describing data,

and architectures for loosely-coupled distributed systems.

Contact him at fabio.simeoni@cis.strath.ac.uk.

David Lievens is pursuing a PhD at the University of Strath-

clyde. His research interests include programming lan-

guages, middleware and distributed systems. He received

his BSc in computing Science from the Universiteit Gent,

Belgium. Contact him at david.lievens@cis.strath.ac.uk.

Richard Connor is the chair of computer science at the Univer-

sity of Strathclyde. His research interests span persistent

object systems, database programming languages, type sys-

tems and programming system implementation. Contact

him at richard.connor@cis.strath.ac.uk.

Paolo Manghi is a research fellow in the Computer Science

Department at the University of Pisa in Italy. His work

mainly focuses on programming over XML data, specifi-

cally on XML query languages and type systems (TeQuy-

La, TQL, and microXQuery projects) and programming lan-

guage bindings to XML data. Contact him at manghi@

unipi.di.it.

10 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Markup Languages

Table 1. Characteristics of SAX, DOM, JAXB, and SNAQue.

Header? Data structure Computational model Application domain
SAX String Parsing events and callbacks Syntax–oriented processing
DOM Tree Tree navigation Structure–oriented processing
JAXB Document dependent Generic Semantics–oriented processing mostly in tightly

(via type generation) coupled systems (regular and stable data)
SNAQue Computation dependent Generic Semantics–oriented processing mostly in

(via type projection) loosely coupled systems (data with
semistructured features)

