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Multiagent Systems
with Workflows

Industry and researchers have two different visions for the future of Web
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services. Industry wants to capitalize on Web service technology to

automate business processes via centralized workflow enactment.

Researchers are interested in the dynamic composition of Web services.

The authors show how these two visions are points in a continuum and

discuss a possible path for bridging the gap between them.

and the Semantic Web has renewed
people’s interest in building large-
scale, adaptive multiagent systems. Indus-
try is largely interested in business process
interoperation so it can automate process-
es such as purchasing and form processing,.

The trend is to have workflow manage-
ment systems enact statically defined com-
positions of Web services. The interaction
among these services generates the work-
flow. However, researchers want to realize
their long-term vision of dynamically com-
posed Web services. As such, standardizing
Web service transport and centralizing
enactment mechanisms are important
development steps toward future adaptive
multiagent-based workflow systems.

In this article, we discuss a possible
path for gradually bridging this gap
between the centralized mindset on cur-
rent Web service platforms and
researchers’ vision of distributed, dynam-
ic Web service composition.

The recent popularity of Web services

Static Workflow
Specifications
Many businesses are interested in work-
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flow automation. A workflow, for our
purposes, is a series of actions performed
by a series of actors. In a car insurance
company, for example, a workflow
instance starts whenever a driver submits
a new claim. As part of the workflow,
various experts step in at different stages:
one might look at the wrecked car, anoth-
er might check the driver’s accident
record, someone else might provide a
repair estimate, and so on. Each expert
contributes something to the claim, with
the workflow ending when a final expert
decides the total amount to award. Dif-
ferent agents can do many of the actions
in the workflow in parallel, but some
actions have temporal or conditional
dependencies among them. It is the work-
flow description language’s job to unam-
biguously declare all these dependencies.

The Business Process Execution Lan-
guage for Web Services (BPEL4WS) is an
XML-based language for describing work-
flows (see the sidebar).! With support from
Microsoft and IBM, it’s the current de facto
standard for workflow description. A
workflow described in BPEL4AWS details
the flow of control and any data depen-
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The Business Process Execution Language for Web Services (BPEL4WS)

BPEL4WS workflow description is a

structured XML document;as such, a
collection of tags defines the BPEL4WVS lan-
guage’s vocabulary. Here’s a summary of the
primary tags and their meanings:

o <partners> contains a list of the
Web services invoked as part of this
workflow;

e <variables> contains the variables
used in this workflow;

e <correlationSets> providesa way
to specify precedences and cor-
relations between Web service in-
vocations that cannot be expressed as
part of the main workflow;

o <faultHandlers>
exception-handling routines;

contains

® <compensationHandler> handles

compensation actions if a transaction
rollback occurs;and
{eventHandlers> show how the
workflow handles external (asynch-
ronous) events.

Workflow logic is expressed with

tags that map to traditional control flow
structures:

{sequence> executes the contents in
a sequence,

<{flow> executes the contents in parallel,
<while> implements a while loop,
{switch>
statement, and

implements a case

<pick> waits for external event then
performs the activity associated with
that event.

Within  control flow structures,
BPEL4WVS defines tags that specify what activ-

ities to perform.These include the following:

e <Jinvoke> invokes a specific Web
service,

e <receive> receives an invocation
message,

e <reply> sends a response message,
and

e <assign> assigns a value, perhaps
from a received message, to a variable.

The full BPEL4WS specification
describes detailed semantics for the com-
plete set of allowable tags. Additionally, the
specification includes an XML Schema for
BPEL4WS that can be used to validate syn-
tactic correctness.

dencies among a collection of Web services being
composed. When enacted, the composition itself
becomes available as a meta-Web service, eligible
for inclusion in other compositions. BPEL4AWS
requires that all Web services be described with
available Web Services Definition Language (WSDL)
descriptions.? The expectation is that domain
experts will write workflow descriptions encoded in
BPEL4WS, so these workflows won’t change until
the experts that wrote them decide to modify them.

Industry likes workflows because they offer
predictable performance: once a company devel-
ops a workflow, the actors are expected to follow it
to the letter. Moreover, the workflow’s imple-
menters can analyze and modify it if data from
past experiences shows inefficiencies. These work-
flows also have some degree of fault tolerance
thanks to their fault-handling mechanisms. Unfor-
tunately, they remain largely rigid, which means
they can’t exploit resources for unexpected events.

Due to industry’s increased focus on business
process management (BPM) and acceptance of
BPEL4WS, vendors are producing new software
tools for workflow design, specification, and
enactment. An example of one such tool is IBM’s
BPEL4WS Java Runtime (BPWS4J) platform. Think
of the BPWS4J engine as an interpreter for the
workflow specification: when the engine receives
a workflow description, it enacts the workflow in a
centralized manner. The engine manages each Web
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service’s interaction in the workflow, ensuring that
all operations are performed as specified in the
BPEL4WS description. The downside to this
approach is that, although the engine can execute
these invocations asynchronously (thus generat-
ing some degree of parallelism), the process is still
centralized, which means it suffers from the sin-
gle point-of-failure weaknesses that plague cen-
tralized designs. This approach to workflow enact-
ment should not, however, come as a surprise
because it’s exactly the type that BPEL4AWS was
designed to describe.

Dynamic

Composition via DAML-S

At the other end of the flexibility spectrum, we
have the DAML-based Web Service Ontology
(DAML-S)? and dynamic Web service composition.
This approach’s supporters propose that every Web
service be described with DAML-S’s inputs, out-
puts, preconditions, and effects (IOPEs) so that
when someone needs a specific service that no
existing service can deliver, an Al planner can
make it happen. If a user had $5,000, for example,
and wanted to go on vacation, the planner would
pull together a series of services to transform the
money into goods (such as airplane tickets, hotel
reservations, and so on). This plan is similar to a
workflow because it describes a set of steps toward
a goal, but its functionality is more limited than a
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workflow’s. Plans are simple sequences of actions
whereas a workflow can contain while loops, if-
then conditions, and so on.

Obviously, if we dynamically compose Web
services into plans that achieve specified objec-
tives, we get much more flexible solutions than
static workflows. However, this approach is not
without its drawbacks: as we just mentioned, Al
planners generate only sequences of actions. To
obtain a workflow’s level of sophistication, we’ll
either have to develop more sophisticated planners
or perform frequent replanning. Unfortunately, due
to the planning process’s computational complex-
ity, planners do not scale well as the number of
available services increases. Dynamic composition
becomes feasible only when already-available Web
services describe themselves with DAML-S’s IOPEs
and use the same ontologies.

Multiagent Workflow Enactment
Decentralized, multiagent workflow-enactment
techniques can bridge the gap between static work-
flow enactment and dynamic Web service compo-
sition. Static workflows fall on the rigid, but com-
putationally cheap, end of the spectrum, whereas
dynamic composition falls at the opposite end:
flexible but computationally expensive. Multiagent
workflow enactment falls somewhere in the mid-
dle, and it has many implementation options, each
of which lands at a different point in the spectrum.
Initially, we’ll constrain the discussion to the
simplest case in which we eliminate the central-
ized workflow engine, and a decentralized collec-
tion of cooperating agents assumes responsibility
for maintaining the workflow’s integrity. Notably,
this simple scenario is complicated by the fact that
BPEL4WS was not designed for multiagent enact-
ment and, therefore, lacks explicit instructions
about how agents should coordinate. Other work-
flow description languages are more amenable to
multiagent enactment,* but by using BPEL4AWS, we
can exploit existing workflows and tools. As such,
we must first develop methods for performing the
BPEL4WS-to-multiagent-enactment mapping,.

Functional Equivalency

Our first task when mapping from BPEL4WS to a
multiagent enactment is to make sure that the new
enactment is functionally equivalent to the cen-
tralized version. As part of this task, we also must
decide how to allocate services among agents. If
enough agents are available, we simply give each
service to a different agent, but even in a simple
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scenario like this one, it’s not clear if such an allo-
cation is optimal. For example, if the output from
one service is a large picture that another service
must receive for processing, then it might be better
to give these two services to one agent to minimize
the amount of communication. But how do we
determine where an agent should next forward its
results, or if we’ve attained the proper workflow?
The simple answer is to give each agent explic-
it directions about what to do once it receives a
service invocation. For example, if services A and
B must run in sequence, then the agent responsi-
ble for A must invoke B right after it finishes its
invocation. More generally, we can transform a
workflow into different Petri nets, depending on
the chosen mapping between services and
agents.>® Petri nets combine a precise mathemati-
cal formalism with an intuitive graphical repre-
sentation. A Petri net N = (P, T, F) consists of a set
of transitions T (boxes), a set of places P (ellipses),
and a flow relation F (arcs).” A transition represents
an active element, and a place is a passive element.
Petri nets are well suited for modeling workflow
processes.? We can then test the Petri nets using
one of many available simulation tools to deter-
mine if the resulting workflow is functionally
equivalent, if any bottlenecks exist, and so on.

From BPEL4WS to Petri Nets

We build every process in a BPEL4WS workflow
by plugging language constructs together; we thus
can translate each construct of the language into
a Petri net. Such a net forms a pattern of the
respective construct, and each pattern has an inter-
face for joining it with other patterns, as is done
with BPEL4WS constructs. Some of the patterns
have parameters — for example, some constructs
have inner constructs. The respective pattern must
be able to carry any number of inner constructs,
as its equivalent in BPEL4WS can do. We aim to
keep all constructs’ properties in the patterns. The
collection of patterns generates a Petri net seman-
tics for BPEL4WS.

Figure 1 shows the pattern for the BPEL4AWS’s
receive construct. This construct receives a mes-
sage that it saves in a variable unless a fault is
thrown because of a mangled message or some
other error. In general, a dashed box frames a pat-
tern, and inside this frame, the net models the cor-
responding BPEL4WS construct’s structure. The
nodes depicted directly on the frame establish the
interface. Control flows from top to bottom; com-
munication between processes flows horizontally.
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Outside the frame, external objects relate to the
scope. Petri net patterns for each BPEL4WS con-
struct already exist, so by plugging the patterns
together and nesting them, we can translate every
workflow specified in BPEL4WS into a Petri net.

Once we have a Petri net representation of the
workflow, we can analyze it by testing it on a sim-
ulator. Specifying the Petri net with a broadly
accepted standard format increases the set of tools
we can use for analysis. For this reason, we use
the XML-based Petri Net Markup Language.’
PNML also supports a module concept that lets
modules reference one another using their well-
defined interfaces.'°

Figure 2 summarizes the transformation from
a BPEL4WS description to a PNML file. The
BPEL4WS workflow process proc.bpel is the
input to the parser, which is a collection of EXten-
sible Stylesheet Language Transformations (XSLT)"
templates along with the PNML modules. The pars-
er replaces each construct in the workflow with its
corresponding PNML module and glues their inter-
faces together. The end result is a Petri net called
proc.pnml in PNML.

Beyond Functional Equivalence

As we move beyond ensuring simple functional
equivalence, the agents’ autonomous nature
demonstrates its importance. The system becomes
more flexible as the agents gain more autonomy
in their decision-making; simultaneously, these
techniques extract a cost in terms of runtime
computational complexity. As such, we can place
the various systems that we’ll discuss in this sec-
tion in a spectrum (see Figure 3, next page).
Specifically, we’ll consider a slightly more
sophisticated scenario than the one we just used.
We start by replacing one atomic service with
another, then one service with a group of ser-
vices, and finally, we replace one group with
another group. We can base these replacements
on straightforward matching or on more complex
similarity measures.

Moving further, agents learn from the services
they represented in the past to make better future
matches. Ultimately, we can consider a communi-
ty of selfish agents in which many workflow
instances are enacted, although the agents might
disagree about which workflow instances exist at
any point in time. The agents in this environment
make decisions about which actions to take based
on their beliefs about the currently instantiated
workflows and their expected payoffs.

IEEE INTERNET COMPUTING
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<Property Type>

initial
<MessageType> receive
cs
<Channel> (x,cs)
v running

<CorrelationSet>

<MessageType>

obj3

<Variable>

Figure I. Petri net pattern for the BPEL4WS receive construct.
When the pattern is activated, it’s executed in two steps. First, the
message is taken from the channel, and the CorrelationSet is
read (t1). In the second step, this information is analyzed. Either a
fault occurs (t3) or the message is written into the variable (t2).In

both cases, the pattern is finished.

Parser

XSLT templates

+

PNML modules

proc.bpel

Y

A4

proc.pnml

Figure 2.Transformation of BPEL4WS to the Petri Net Markup
Language (PNML). A BPEL4WS workflow process proc.bpel is
the input to the parser. Using XSLT templates and the PNML
modules, the process is translated into a process proc.pnml in

PNML format.

Enactment with Substitutions
BPEL4WS uses WSDL to identify the Web services
to be invoked. Because WSDL does not provide
any semantics on a service’s effects, it’s unsuitable
as a tool for finding interchangeable services. The
most common solution is to use DAML-S instead,
meaning we change the workflow to use the
DAML-S descriptions of the needed services
instead of using WSDL. This change is akin to hav-
ing the workflow description describe the services’
effects rather than providing the services’ names.
Once we make this change, we can use a ser-
vice’s semantic description to find a replacement
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Figure 3. The spectrum of possible Web service composition
scenarios. The x-axis ranges from static workflows completely
pre-determined at the outset to very flexible systems that generate
new workflows and plans as needed. The y-axis ranges from
minimal runtime complexity to systems that require very large
computational resources at runtime. The various multiagent
workflow enactment techniques occupy the center of this space.
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service that is either an exact match or more gen-
eral than the one currently specified.'> We could
also replace it with a more specific service than the
current one, but we must be careful because it
might break the workflow. Replacing a current-
weather service with a current-temperature service,
for example, could lead to problems later if we
need to know the wind speed.

Replacing one service with another that pro-
vides an exact or more general service is easy, but
replacing a service with a group of services requires
a plan. This type of substitution pushes us further
toward the dynamic end of the spectrum. In fact,
the search for a suitable replacement set might
require searching over all existing services and thus
increase complexity. We can limit the search by
considering only a subset of the available services.

Similarity Matching

Matching algorithms try to determine if two ser-
vices are similar enough to substitute for each
other. This matching goes beyond simple sub-
sumption matching; it uses domain knowledge
about the particular services’ ontologies. Services’
descriptions lie within their IOPEs, which can use
any ontology, so we need domain knowledge
about these ontologies to refine our search. For
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example, if a service provides a weather forecast
(from the weather ontology) as an output, we need
to know exactly how similar this weather forecast
is to a severe weather warning, a temperature fore-
cast, a wind advisory, and so on.

Because similarity matching requires intimate
knowledge of the domain ontology, it seems
unlikely that we could develop domain-indepen-
dent algorithms for it. At best, we might hope to
develop algorithms that take as input the particu-
lar ontologies (along with specific domain knowl-
edge about them) and match from there. We then
could express this specific domain knowledge in a
standardized ontology that could describe the sim-
ilarity or replaceability of concepts within the Web
service’s context. It’s hard to imagine how this
ontology might look without the benefit of many
sample cases, but we expect it would represent
concepts such as the composition of an item (even
if a service for it doesn’t exist yet), or two items
being similar to each other when we're concerned
only with a particular service.

Notice that the problem of matching services is
similar, but not identical, to the problem of match-
ing ontologies. Matching ontologies requires
matching terms from one ontology to another in
order to determine, for example, that what one
ontology calls “automobile” is the same thing
another one calls “car.” When matching services,
we assume that this ontology matching has
already occurred and that the agent knows all pos-
sible equivalencies between terms. The problem
then becomes finding matches between different
terms that, within the appropriate service’s con-
text, can be suitable substitutes for each other.

Contextual Substitutions

We can find more, perhaps better, matches by ana-
lyzing the service’s place within a workflow. If
only one of a service’s several outputs is used later
in the workflow, for example, then it’s probably
safe to replace that service with another that pro-
vides only that one output. BPEL4WS’s structure
enables this because it shows how results from ser-
vices are stored in variables or databases; we
access these results later in the workflow as inputs
to other services. More complex contextual sub-
stitutions look at the effects part of the service
description to determine which effects serve as
preconditions for other services. In general, this
process strives to determine the minimal set of
IOPEs necessary to replace a given service. As
such, it assumes that the workflow’s designer has
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failed to specify the service’s minimal require-
ments — a reasonable assumption because new
services likely have been added since the design-
er wrote the workflow. Think of this process as a
form of workflow optimization performed when
the designer creates or updates the workflow, or
when new service descriptions arise.

Adaptation

Certain aspects of the service might not be cap-
tured or might be incorrectly specified in the
ontologies that describe it. When an agent con-
sumes a service and detects these anomalies, it can
choose to update its own model of the service to
better reflect reality. For example, a stock-quote
service might deliver stock quotes consistently 30
seconds later than another identical (according to
the IOPE description) service. The service’s con-
sumer might want to remember this fact and use
the faster service next time.

These techniques build on past agent-modeling
research'>!* by integrating it with the use of ontolo-
gies. Agent-modeling research is based on utility
functions and the assumption that all we can know
about an agent must be learned via interactions —
by applying the utility function to the services the
agent renders. If we also have a description of both
the desired and provided services, we can use these
descriptions to influence the utility function, per-
haps modifying its results. In this way, agents could
build accurate models of other agents with fewer
interactions. In machine-learning terms, this tech-
nique amounts to using the ontology match to
reduce the set of possible hypotheses (descriptions)
and then using the interactions (sample data) to
pick the best hypothesis from those remaining.

Once an agent has built models of other agents,
we expect it to want to share them. Think of these
models as filters or modifiers of the published
descriptions. The new descriptions contain seman-
tics and utility, unlike many recommender sys-
tems, which deal only with utilities. One agent
should be able to explain to another why a partic-
ular service did not meet its criteria. For example,
it could state, “although the service claims to be
speedy, my experience is that sometimes it takes
too long, but it does return the data as advertised.”
To dynamically adapt a workflow, we can thus
combine the power of an ontology of services with
existing techniques from recommender systems.

Multiagent Systems with Workflows
Looking further into the future, we foresee systems
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veering increasingly toward the adaptive end of the
spectrum. In these workflow-based multiagent sys-
tems, the service providers are agents themselves;
they therefore acquire the full proactive,
autonomous, and selfish characteristics that we
normally associate with agency. In these systems,
it’s no longer clear which workflow instances are
currently active. For example, a company that does
contract-based consulting has many workflows
that describe how to go from an idea or a call for
proposals to a contract award. The individuals in
this company receive a reward proportional to the
number of awards they help realize. As such, they
take actions that maximize the expected number
of workflows achieved. However, individuals on a
team might disagree about which potential con-
tracts the company is currently developing.

In this scenario, we abandon the workflow-
based view and acquire a multiagent-based
approach. The agents take actions that push pos-
sible workflow instances further without knowing
which instances currently exist. They also must
sometimes make complex decisions about which
actions to take to maximize the expected utility.
For example, a simple decision arises when the
agent receives a complete proposal and is asked to
submit it to the appropriate client. Because this
action is near the end of the workflow, the agent
can easily determine that taking the action will
lead to a successful workflow termination. On the
other hand, an agent might be asked to write a
summary in response to a client’s call for propos-
als. In this case, it’s so early in the process that it’s
hard for the agent to determine the likelihood that
the action will lead to the workflow’s completion.
Therefore, we need some rules or methods that
help the agents determine a given proposal’s
expected likelihood of success. These rules will
require some knowledge of current and past sys-
tem dynamics: who is doing what, who has done
what in the past, and so on.

Workflows are used in this case as blueprints
for orchestrating the system’s dynamics. Although
the agents are free to diverge somewhat from the
available workflows, they are not free to assemble
entirely new workflows. As such, the designer
maintains some control over the system’s dynam-
ics while still letting the agents exploit any oppor-
tunities that might arise. Workflows are also less
computationally expensive than the planning that
must occur if we let agents dynamically compose
their own plans.

Unlike traditional multiagent systems based on
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joint plans and intentions, which require agents first
to jointly commit to a plan and then to execute it,
the agents in our workflow-based system are com-
pletely opportunistic and never commit to finishing
a workflow. Flexibility means that the designer must
structure the payoffs in some way that creates the
proper incentives for the agents to finish the work-
flow. An advantage of this flexibility is that no syn-
chronization bottlenecks crop up in which the
agents needed to fulfill a particular workflow must
all agree to participate. The workflow can get start-
ed even before all the required agents are available.

Moving Forward

The path we describe in this article will let us quick-
ly produce systems that meet the current, often des-
perate, need for interoperation among companies
while still building systems that developers can fur-
ther modify to include dynamic adaptation and
composition. We are currently developing tools for
mapping BPEL4WS workflows into Petri nets that
we can use to generate multiagent instantiations of
the workflow. We will then be able to run tests on
these Petri nets to determine various instantiation
algorithms’ benefits and drawbacks. After this, the
next stage is the development of algorithms for
effective similarity matching and contextual sub-
stitutions. These algorithms would let agents intel-
ligently diverge from prescribed workflows when
needed. We believe that these algorithms will
require induction and machine-learning techniques
along with deduction methods. i¢
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