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When TCP Breaks
Delay- and Disruption-Tolerant Networking

S ending data over a computer network can be
difficult, especially if that network suffers sig-
nificant delays or disruption. There are many

reasons for this, along with various ways to handle
such problems. You might take the view that
delays or disruption don’t require any new net-
working technology — thinking, for example, that
standard Internet protocols are sufficiently capa-
ble. However, in certain networking scenarios,
important Internet protocols just aren’t usable, and
it’s for these cases that a number of research
groups are developing the delay- and disruption-
tolerant networking approach.

The critical fact is that, in such situations, the
Transmission Control Protocol (TCP)1 often doesn’t
work, although it underlies most of the applica-
tions we use every day — email, the Web, and
enterprise single-sign-on, to mention a few. So, if
we have a set of interesting application scenarios
for which TCP simply can’t work, then we really
do have a compelling need for new protocols. We
argue that new delay- and disruption-tolerant pro-
tocols are required and outline the ongoing work
in researching, developing, and piloting protocols
that address these scenarios.

The Problem with TCP
To explain why TCP presents such problems for

certain application scenarios, it might help to pro-
vide an example. Much of the work described here
has its roots in a NASA research project to devel-
op an interplanetary Internet, or interplanetary
network (IPN). The basic idea is to try to make data
communications between Earth and (very) remote
spacecraft seem almost as easy as that between
two people on different sides of the world. As it
happens, before a network node can send any
application data using TCP, a three-way handshake
is required that consumes 1.5 round-trip times
(RTTs). There’s also a generic, two-minute timeout
implemented in most TCP stacks: if no data is sent
or received for two minutes, the connection breaks.
Putting these facts together, we can see that once
a spacecraft is more than a minute away (in terms
of light-trip time), every attempt to establish a TCP
connection will fail, and no application data will
ever be transmitted. In the case of Mars, for exam-
ple, at its closest approach to Earth, the RTT is
roughly eight minutes, with a worst-case RTT of
approximately 40 minutes. Thus, normal TCP can’t
work at all for Earth–Mars communications.

Of course, communicating with spacecraft
will never be as easy as using the terrestrial
Internet because many other difficulties must be
overcome — for example, your radio antenna is
frequently on the wrong side of the planet. At
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least in terms of networking, however, we can
make good progress compared to how spacecraft
data communications currently occur, which is
to essentially be manually scheduled on a mission-
by-mission basis.

Interplanetary
becomes Delay-Tolerant
At its core, the “vision” behind this work is to try
to extend Internet architecture to cater to applica-
tion contexts for which delays or disruption are
significant factors. This vision was initially fos-
tered and promoted, in large part, by a relatively
small group of people, including Vint Cerf and
NASA engineers at the Jet Propulsion Laboratory
(JPL) and elsewhere. Their work on IPN began in
1998, and, since then, a couple of fairly substan-
tial protocol development groups and many inter-
esting projects have received funding to further
develop their work.

The IPN group eventually morphed into an
Internet Society (www.isoc.org) IPN special-interest
group (IPNSIG; www.ipnsig.org), which had (and
still has, to an extent) a public Web site and mail-
ing list for discussions on relevant topics. IPNSIG
developed an architecture for a large-scale net-
work and made some progress toward developing
protocols for this architecture. In fact, much of that
work survives in the delay-tolerant networking
(DTN) protocols’ latest versions, and work on an
IPN is ongoing within NASA. Nevertheless, the
IPNSIG had a problem — it’s very hard to experi-
ment with an interplanetary network, given that
one doesn’t exist and would be very, very expen-
sive to create!

At the same time, other researchers were inves-
tigating how IPN concepts might apply to terres-
trial applications — in particular, sensor networks,
which turn out to have a lot in common with a
putative IPN. Given that experimenting with a sen-
sor network is a lot easier to do (and to get funding
for), it became clear that the IPNSIG was no longer
the best venue for doing work on this topic. Con-
sequently, the Internet Research Task Force (IRTF)
created a new research group to examine the more
general area of DTN — that group is called the
DTNRG, and it’s currently the main open venue for
work on the DTN architecture and protocols.

The DTNRG is developing two main protocols,
the Bundle Protocol and the Licklider Transmis-
sion Protocol (LTP), which we discuss in more
detail later. The DTNRG is documenting these
protocols as so-called experimental RFCs — which

are for protocols whose benefits are still uncer-
tain, should they undergo wide Internet deploy-
ment. If, over time, the Internet community does
believe that the Bundle Protocol or LTP is suffi-
ciently useful, then the IETF would likely form a
working group to produce new standards-track
protocol specifications and create updated proto-
col versions.

To confuse matters somewhat, the US Depart-
ment of Defense, under Darpa, issued a call for
proposals in early 2004 for what it called “disrup-
tion-tolerant networking” (also called DTN), which
is yet another generalization of the same concept.
The difference is that until the Darpa call, the main
focus of DTN work was on high-delay cases such
as with the IPN or sparse sensor networking (in
which sensor readings aren’t needed in real time).
However, other types of disruption can occur —
such as radio shadowing or frequent passage in
and out of base station range, for example — a fact
that the phrase “delay tolerance” doesn’t properly
reflect. Whether the D in DTN will come to mean
“disruption” or continue to mean “delay” isn’t yet
clear, but, in any case, the same architecture and
protocols can hopefully serve in both contexts. 

So, several different but overlapping groups are
working toward the common goal of developing
DTN protocols. Figure 1 shows a graphic that we
used at a recent DTNRG meeting to explain this to
the audience. The remainder of this article primar-
ily describes the DTNRG position because it’s the
only fully open group depicted in the diagram.
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Figure 1. Delay-tolerant networking (DTN) diagram. Several
organizations, including the Delay-Tolerant Networking Research
Group (DTNRG), the interplanetary networking (IPN) group,and Darpa
are trying to solve DTN and disruption-tolerant networking issues.
(Figure courtesy of Vint Cerf and DTNRG members.)
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DTN Protocols
Certain terrestrial applications must deal with
various forms of disruption, as well as delays,
although not on the same scale as light-trip times
across the solar system. Delays and disruption in
these cases will much more likely be due to the
operating system turning off battery-powered
devices to conserve scarce power or mobile devices
leaving each others’ radio ranges. In both cases,
protocols that implement a store-and-forward
approach reminiscent of how email works can
offer significant advantages — and because TCP
doesn’t work that way, it doesn’t work well for
these applications.

It turns out that many applications can benefit
from DTN. In addition to spacecraft, researchers
have proposed or used DTN techniques to support
rural schools in developing countries, zebra track-
ing in Africa, water quality in Irish lakes, social
networking in northern Scandinavia, and even
monitoring of the cane toad’s ongoing invasion of
Australia. Details of these use cases and more are
available elsewhere (www.dtnrg.org).2

Of course DTN doesn’t just involve a study of
application requirements; we also need to think
about some reasonable ways in which we can
meet those requirements. So, the DTNRG are de-
veloping some protocols that could develop over
the next few years into the kind of standard pro-
tocol TCP represents.

The Bundle Protocol
The Bundle Protocol is an example of what is gen-
erally called an overlay network (see Figure 2), and
can run on top of the current Internet protocol
suite as well as over the more esoteric protocols for
spacecraft, complex sensor networks, and other
challenging environments. The protocol packages
a unit of application data along with any required

control information into a “bundle” that’s similar
to an email message. Nodes then forward this bun-
dle along a route consisting of several intermediate
machines that can each store it for significant peri-
ods. Thus, the Bundle Protocol is an overlay net-
work store-and-forward protocol.

If the source machine is a lander on Mars, for
example, it might create a bundle but be unable to
forward it to a Mars orbiter for a few hours until
the next time the orbiter is overhead. When the
orbiter receives the bundle, it, in turn, might have
to store the bundle until its next scheduled contact
with an Earth station. When the Earth station
receives the bundle, it can quickly forward it to its
destination — perhaps the desktop machine of a
scientist studying some Martian rock formation.
The overall delay could be hours, or even longer if
sufficiently intense rain disrupts the orbiter-to-
Earth-station contact, in which case it could take
days for the data to arrive at the scientist’s PC. In
this example, the bundle will probably have tra-
versed at least three different lower-layer commu-
nication stacks — between lander and orbiter, from
orbiter to Earth station, and from there, via the
Internet, to the scientist’s desktop.

The overlay network approach, as demonstrat-
ed by the Bundle Protocol, represents the main-
stream DTN approach as regards the number of
people working on its specification and develop-
ment. You can find details about the protocol in two
main documents: the DTN architecture document,
which introduces the general overlay architecture,
puts it in context in terms of applicability, and intro-
duces key architectural terminology;3 and the Bun-
dle Protocol Specification, which specifies the
formatting of bundles and the processing rules asso-
ciated with sending and receiving them.4 A few sub-
sidiary documents related to security also exist,
including an overview5 and a document that defines
security extensions for the Bundle Protocol.6

A DTN node is an entity that runs an instance
of the Bundle Protocol and can thus, in principle,
send and receive bundles — although some excep-
tional nodes can only ever transmit (such as a sim-
ple sensor), and, more commonly, some nodes
might not be able to both transmit and receive
simultaneously. We identify nodes via endpoint
identifiers (EIDs), which are the bundling equiva-
lent of addresses. EIDs are syntactically uniform
resource identifiers (URIs), and each refers to one
or more bundle nodes. 

Clearly, some component of each DTN must map
from EIDs to lower-layer addresses when a node
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Figure 2.The overlay network approach. The Bundle Protocol, in teal,
can run over various transport and lower-layer protocols.
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decides how to forward bundles. The DTN architec-
ture calls for this to follow the late-binding princi-
ple so that the URI resolves into a lower-layer
address as close to the final destination as possible.

The next concept to consider is the contact,
which presents the idea that not all nodes will be
in contact at any given moment. This is in contrast
to the Internet trend in which we increasingly
assume that addressable entities are always online.
In DTNs, however, we must explicitly consider that
communication is only possible at certain times —
perhaps with additional time-varying constraints.

Because bundles must traverse lower-layer net-
works, they’re ultimately subject to whatever
restrictions exist on those networks in terms of
maximum packet sizes. On most Internet Protocol
(IP) networks, for example, it’s safest to assume
that single packets should be less than 1,500 bytes
long. Some DTNs will clearly be subject to extreme
constraints in this respect — for instance, if some
nodes near the network edge are running over an
extremely low bit-rate radio link (as was the case
with the Galileo probe to Jupiter, where, due to a
malfunction, bit rates in the tens to hundreds of
bits per second were common [see www.parkes.
atnf.csiro.au/people/jsarkiss/galileo/galileo.html]).

Other DTNs might be able to support forward-
ing much larger bundles but could be subject to
disruption of the lower-layer connections. Of
course, in many cases, such as those in which the
lower layer runs over TCP, the bundle won’t, in
fact, be fragmented (at the bundle layer) thanks to
the retransmissions of lost IP packets being han-
dled by the TCP layer.

The LTP Protocol
The Bundle Protocol addresses many problems that
arise in DTNs. However, sometimes a need exists
for delay tolerance at a lower network layer —
basically, to handle cases with very high delays
between one host and the next. The classic exam-
ple here is the connection between the orbiter and
the Earth station we just mentioned. Some terres-
trial applications require similar behavior if, for
example, no contact between two machines will
ever be sufficiently long to complete an applica-
tion-layer exchange. In such cases, we need a way
to handle forwarding data one part at a time when
a delay of hours might exist between each partial
transmission. Essentially, we need a delay- and
disruption-tolerant point-to-point protocol.

LTP tackles delay tolerance and disconnection
in a point-to-point environment with an empha-

sis on operation over single — but typically very
long-delay — links. Such links can suffer from long
light-trip times, occultations, and Earth-station
scheduling restrictions. If an orbiter is about to be
eclipsed behind its planet, for example, it might
still send a block of LTP data; knowing that it
won’t receive an acknowledgment until it’s no
longer eclipsed, the orbiter can freeze all the timers
that drive the protocol for the duration of the
eclipse. Once out of the eclipse, the spacecraft can
restart these timers. This concept of frozen or
“punctuated” timers is a crucial aspect of LTP. 

From this description, it might seem like LTP is
useful only for space communications, but it can
also be useful with terrestrial applications for
which disruption is highly likely. Applications
dealing with disruptive environments can either
be conventionally structured so that the applica-
tion handles the expected errors, or, using a pro-
tocol such as LTP, we can essentially isolate the
application from all of this complexity by having
a communications daemon that handles all dis-
ruptive events, such as retransmissions required
after a host shuts itself down. In the case of a sen-
sor network, the resulting sensor code can be very
simple, yet have highly reliable transmission over
disrupted connections.

It’s important to understand that LTP is a point-
to-point protocol, so there are no routing or con-
gestion issues to consider — bytes are simply
transferred between two peers with no inter-
mediaries. Three documents describe LTP, one
covering the motivation for the protocol,7 one
specifying the base protocol itself,8 and one on
protocol extensions.9

LTP is designed to be a potential convergence
layer to support the Bundle Protocol — although
we can also use it in other contexts. For instance,
we’ve seen uses for LTP/UDP between nodes in a
sparse sensor network.

As we’ve observed, to operate in such environ-
ments, a protocol can’t be chatty like TCP is because
requiring any round trips before application data
flows just isn’t an option. Consequently, LTP effec-
tively has no negotiation, and nodes must agree on
all parameters required for interoperability before a
contact occurs. LTP is thus highly stateful, requir-
ing relatively large amounts of information about
previous and upcoming contacts.

LTP separates the handling of protocol ex-
changes (such as automatic request for retrans-
mission, or ARQ) from issues related to when and
how much to transmit or receive. Traditional reli-
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able protocols (like TCP) handle these issues in an
algorithmic manner — in TCP’s case, using sliding
windows, slow-start, and other mechanisms.
Although binding together ARQ and network per-
formance has obviously been enormously success-
ful for Internet transport, several problematic
scenarios exist, including deep-space communica-
tions and some sensor networks for which TCP and
similar protocols are simply unusable.

While LTP uses a fairly standard set of proto-
col primitives for providing ARQ, data integrity,
origin-authentication, reliability, and other on-
the-wire issues, it’s all done without multiple (or
any) round trips prior to sending application data.
Where LTP really differs, due to its deep-space
heritage, is in its concept of lower-layer cues sup-

porting scheduled communications. We can think
of an LTP implementation sitting on top of a sep-
arate “layer” that knows the network state suffi-
ciently well to tell each peer when and how much
to receive and transmit. As it turns out, this is
also a great way to handle a sensor network using
data mules.

In addition, if a sender can only communicate
with a receiver once each hour for one minute, and
the sender expects an acknowledgment message
from the receiver within two minutes of sending a
message, then the appropriate timer to use is one
that will take two hours to expire. The two min-
utes represent what we might call punctuated time,
not elapsed time, where punctuated time is the
continually-being-interrupted duration of the
scheduled contacts with the peer in question. 

Once nodes maintain such punctuated timers
independently for each LTP peer and in each direc-
tion, then we have already achieved a fairly high
degree of delay tolerance. High-latency cases are
thus handled by ensuring that the lower-layer cues
reflect the communication’s in-transit or scheduled
latency, which, in the case of deep-space contact,
will be dominated by the light-trip times between
the peers in question.

Other Protocols
A few other protocols, some historic and some cur-
rent, are potentially relevant in considering how
to meet DTN requirements — perhaps the most fre-
quently quoted of these being the “IP over avian
carriers”10 or carrier-pigeon IP protocol. This was
originally a joke, but was eventually implemented
and is actually a fairly nice demonstration that IP11

(although not TCP) can run successfully in many
previously unexpected environments.

Regardless of how many times someone says
that something good can be done, doing it in the
real world is better. This makes attempting DTN
deployments quite interesting. At Trinity College
Dublin for example, we are building a pilot DTN
sensor network (http://down.dsg.cs.tcd.ie/sendt/)
for lake-water-quality monitoring and have
learned, and continue to learn, many lessons (some
obvious, some less so) from this work. Figure 3
shows some of the testing we performed on these
sensor nodes prior to deployment, which involved
ensuring that the enclosure was waterproof and
that radio range wasn’t affected so close to the
water’s surface.

Much as we’d like to, we’ve yet to attract the
level of funding required to attempt a space mis-
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Figure 3. Delay-tolerant networking (DTN) experimentation. (a) We
tested a DTN node by taking it for a walk to check waterproofing
and radio range. (b) A close-up of the node in the water.

(a)

(b)



sion, so we’re limited to modeling how a DTN
might work in that context. Of course, others are
luckier when it comes to funding space missions,
and in fact, the NASA JPL has now implemented
a version of the Bundle Protocol intended for use
in future space missions. (See the “Implementa-
tions” sidebar for information on other implemen-
tations of these protocols.)

In the end, DTN is a new technology, and much
work remains in a couple of fairly large areas

before we can deploy it on anywhere near the scale
of even part of the current Internet. By far, the
biggest issue is routing, for which we’re only now
starting to see proposals that we can evaluate.
Luckily, a good review of DTN routing has recent-
ly been published.12  The various routing propos-
als described there could in fact form a sort of
continuum, so that future DTN routers (meaning
almost all DTN nodes) should perhaps be able to
route bundles using one of several schemes,
depending on current circumstances. Although
other concerns exist, such as the unmet need for
some basic delay-tolerant cryptographic key man-
agement schemes, routing is by far the biggest hole
in today’s DTN story.

Fortunately, DTN is a technology that is gain-
ing momentum, due partly perhaps to the attrac-
tive nature of the applications it addresses and
partly to the amount of work done and remaining
to be done, which attracts network researchers

(and project funders). Our expectation is that the
number of DTN pilots will continue to grow over
the coming years, and that, in the not-too-distant
future, some commercial DTN applications will
appear. Whether DTN as a technology joins the
mainstream remains to be seen, but hopefully this
article will help you decide whether you think that
should happen.
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Implementations

W ith something as complex as the
Bundle Protocol, the potential

clearly exists for us to specify many seem-
ingly sensible protocol features that turn
out to be overly complex, useless, or sim-
ply broken. In the absence of running code,
protocol designers will, in fact, include all
three types of error in any reasonably com-
plex protocol. Due to a recognition of this
as fact, the Bundle Protocol has a reference
implementation that has several useful con-
sequences. First, as we just pointed out, it
keeps the protocol designers honest by
acting as a reality check whenever paper-
only plans get out of control. Second, the
reference implementation makes it easier
for people to experiment with the Bundle

Protocol. An excellent example occurred
during the IETF meeting in Dallas in 2006,
where a vendor had a special offer for
attendees on a new handheld wireless
device. During the meeting, an attendee
(Well done Jörg Ott!) successfully ported
the delay-tolerant networking (DTN) ref-
erence implementation to this (relatively)
new platform, while still, apparently, paying
attention to the proceedings!

The Bundle Protocol reference imple-
mentation is freely available for download
(look for “code” below www.dtnrg.org)
and is currently maintained by a small team
(basically, Michael Demmer), but with con-
tributions from other DTN coders. To find
out more, download the code and start

working with it.There is also a separate
NASA Jet Propulsion Laboratory imple-
mentation that is tailored for use in space-
craft and which was described at a recent
Delay-Tolerant Networking Research
Group meeting (http://www3.ietf.org/
proceedings/06mar/DTNRG.html).
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Transmission Protocol (LTP) implementa-
tions, although only one has been released
to date. The Ohio University LTP imple-
mentation is available for download at
http://masaka.cs.ohiou.edu/ocp/ and is a
Java implementation of LTP. We will also
release the Trinity College Dublin LTP
implementation (in C) in the near future at
http://down.dsg.cs.tcd.ie/ltplib/.
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