
Dynamic Load Sharing in Peer-to-Peer Systems:
When some Peers are more Equal than Others

Sabina Serbu, Silvia Bianchi, Peter Kropf and Pascal Felber
Computer Science Department, University of Neuchâtel

CH-2009, Neuchâtel, Switzerland
{sabina.serbu, silvia.bianchi, peter.kropf, pascal.felber}@unine.ch

Abstract— In the past few years, several DHT-based abstrac-
tions for peer-to-peer systems have been proposed. The main
characteristic is to associate nodes (peers) with keys (objects)
and to construct distributed routing structures to support an
efficient location. These approaches address the load problem,
and load balancing is achieved by moving the keys. However,
the problem is still not properly covered. In this paper we
present an analysis of structured peer-to-peer systems taking
into consideration Zipf-like requests distribution. Based on our
analysis, we propose a novel approach for load balancing relying
on object popularity. Our approach is based on routing table
reorganization in order to balance the lookup traffic load. We
have implemented this approach in a Pastry-like system. The
obtained results demonstrate a better balance of load, which can
lead to improved scalability and performance.

I. INTRODUCTION

Peer-to-peer (P2P) networks are distributed systems where
every node — or peer — acts both as a server providing
resources and as a client requesting services. These systems
are inherently scalable and self-organizing: they are fully
decentralized and any peer, regardless its power, can join or
leave the system at any time.

Numerous peer-to-peer networks have been proposed in the
past few years. Roughly speaking, they can be classified as
either structured or unstructured. Unstructured P2P networks
(e.g., Gnutella, Freenet) have no precise control over object
placement and generally use “flooding” search protocols. In
contrast, structured P2P networks (e.g., Chord [1], CAN [2],
Pastry [3]), also called distributed hash-tables (DHTs), use
specialized placement algorithms to assign responsibility for
each object to specific peers, as well as “directed search”
protocols to efficiently locate objects. DHTs mostly differ in
the rules they use for associating the objects to peers, their
routing and lookup protocol, and their topology.

Regardless the nature of the system, a P2P network must
scale to large peer populations and provide adequate perfor-
mance to serve all the requests coming from the end-users.
A challenging problem in DHTs is that, due to the lack of
flexibility in data placement and replication, uneven request
workloads may adversely affect specific peers responsible
for popular objects. Performance may drastically decrease as
heavily-loaded peers become hot-spots in the system.

Several strategies have been proposed to improve load
balancing by adjusting the distribution of objects among
all the participating peers in the system. Such techniques

do not, however, satisfactorily deal with the dynamics of
the system, or heavy bias and fluctuations in the popularity
distribution. In particular, requests in a structured P2P system
have been shown to follow a Zipf-like distribution [4], with
few highly popular objects being requested most of the times.
Consequently, the system shows a heavy lookup traffic load
at the peers responsible for popular objects, as well as at the
intermediary nodes on the lookup paths to those peers.

This paper presents a study of the load in structured peer-to-
peer systems under Zipf-based request workloads. Simulation
results demonstrate that, with a random uniform placement of
the objects and a powerlaw (Zipf) selection of the requested
objects, the request load on the peers also follows a Zipf
law. More interestingly, the routing load resulting from the
forwarded messages along multi-hop lookup paths exhibits
similar powerlaw characteristics, but with an intensity that
decreases with the hop distance from the destination peer. One
important point that must be considered is that the process of
downloading files is out of bound for this study.

Based on our analysis, we propose a novel approach for
balancing the system load, by taking into account object pop-
ularity for routing. More precisely, we dynamically reorganize
the “long range neighbors” in the routing tables to reduce
the routing load of the peers that have a high request load,
so as to compensate for the bias in object popularity. Our
mechanisms require changes neither to the topology, nor to the
association rules (placement) of the objects to the peers. They
can, however, be combined with load balancing approaches
that use these techniques. Simulations show that the resulting
network has a more balanced routing traffic.

The paper is organized as follows. In Section II we introduce
the characteristics of the structured peer-to-peer system taken
into consideration in this work, followed by the motivation of
the object popularity load in such systems. Then we present
simulations showing that a Zipf-like distribution of requests
results in an uneven request and routing load in the system. In
Sections III and IV we present, respectively, our approach for
popularity-based load balancing and its evaluation. We discuss
related work in Section V, and Section VI concludes the paper.

II. MOTIVATION

In this section, we present the DHT model used in the sim-
ulation and some general ideas for introducing our popularity-

based load balancing solution for structured peer-to-peer sys-
tems.

A. System Design
In the past few years, several structured P2P systems have

been proposed, such as Chord [1], Tapestry [5], CAN [2].
Basically, these DHT approaches differ in the hash space (ring,
Euclidean space, hypercube), rules for associating the keys to
the peers and the routing algorithm.

In our work, we assume a DHT overlay composed by N
physical nodes and K objects mapped on a ring. Each node
and object has an m-bit identifier, such that the maximum
capacity of the ring (maximum number of nodes and objects)
is 2m.

A node and object identifier is the result of hashing, respec-
tively, the IP address and the name. For consistent hashing,
we assigned the identifiers using the SHA-1 cryptographic
hash function, so that, with high probability, the distribution is
uniform (all nodes receive roughly the same number of keys).
The resulting identifier of a node indicates the region of the
identifier space that the node is responsible for. In our model,
the assigned region for a node is its neighbourhood: half of
the area between its predecessor and itself, and half of the
area between itself and its successor.

The routing procedure is based on prefix routing similar
to Pastry [3], with at most O (log2bN) messages exchanged
between nodes to resolve a request, where the identifiers use a
sequence of digits with base 2b. Each node has a routing table
and a leaf set. The routing table is composed of log2bN rows
with 2b − 1 entries each. The ith entry in the table maps to a
node with a common prefix of length i in the ring. A request
is forwarded to the node in the routing table whose ID has the
longest common prefix. The procedure is based on finding the
proper entry in the routing table and forwarding the request
to the node at this entry. Figure 1 presents an example with
b=1 and an identifier space between 0 and 25.

In the routing table, each entry contains a node whose ID
has a common prefix of a given length with the current node
ID. There may be several nodes suitable for an entry. In Pastry,
the selection of the node for each entry is based on a proximity
metric. In our work, we propose to reorganize the routing table
by selecting the nodes with the lowest load.

For the purpose of this study, we assume that the system
has the following characteristics:
• stability: as churn is not expected to affect the load

balancing significantly, no node joins nor leaves the
system. As a consequence, we do not consider a retry
mechanism to search for a key nor a bootstrap mechanism
to join the system;

• homogeneity: same characteristics for all nodes (CPU,
memory, storage size), same bandwidth for all links, and
same size for all keys;

• no locality: no topology aware routing in the system.

B. Hot-spots
The load in a P2P system denotes several aspects that

degrade the performance of the system. This includes the

N0(00000)

N9(01001)

N11(01011)

N29(11101)

N28(11100)

N24(11000)

N4(00100)

NodeId 00100

Leaf set :

01001

00000

Routing table:

01011

11101

lookup(11000)

N15(01111)N18(10010)

N22(10110)

NodeId 11000

Leaf set :

11100

10110

Routing table:

10010

00000

11101

Fig. 1. Overlay and routing structure.

following:

• distribution of the objects in the system, which may be
uneven;

• number of requests for a particular object in a period of
time, i.e., its popularity;

• traffic: amount of bytes received and forwarded.

The load caused by an imbalance of the objects distribution
in the system has been largely discussed. This imbalance can
reach an O(logN) factor depending on the consistent hashing,
i.e., the fraction of space owned by a peer is exponentially
distributed. Many solutions have been proposed based on the
concept of virtual servers, first introduced by [6]. This concept
consists of a node having multiple IDs in the ring for a
better load balancing. Because we focus in our work on object
popularity and the associated routing load of the requests, we
assume a uniform distribution of the objects and the keys by
using a good hash function.

Similar to Web requests [7], the popularity of the objects in
DHTs follows a Zipf’s-like distribution [4]. This means that
the relative probability of a request for the ith most popular
object is proportional to 1/iα, where α is a parameter of
the distribution. The request distribution follows a Zipf-like
distribution with varying α, resulting in hot-spots for a set of
nodes that hold the most popular objects.

In case of file sharing applications, many studies have
observed that the request distribution has two distinct parts.
Very popular files are equally popular, resulting in a linear
distribution and less popular files follow a Zipf-like distribu-
tion. This usually happens because of the immutability of the
objects in file sharing where the clients will request once the
object and download it [8], [9], [10].

In both cases, the amount of traffic received and forwarded
by some nodes is much higher than for other nodes. In
this context, the paper analyzes the worst case, having a
Zipf-like distribution, and focuses on improving the degraded
performance caused by hot-spots.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

nu
m

be
r

of
 r

eq
ue

st
s

(l
og

)

nodes, in decreasing order by number of requests (log)

number of received requests
1st hop away
6th hop away

Fig. 2. Request and routing load.

C. Implications of Zipf-like requests

Each node ni has a capacity for serving requests ci, which
corresponds to the maximum amount of load that it can
support. In our study, we consider the load as the number
of received and forwarded requests per unit of time. Some
nodes are more popular than others (i.e., have a higher number
of received requests), thus being overloaded, with a load
`i >> ci. Other nodes are less popular, or not popular at all,
presenting a small load compared to their capacity ci >> `i.
Moreover, with a random uniform placement of the objects
and a Zipf-like selection of the requested objects, the request
load on the peers also follows a Zipf law. Consequently,
the routing load resulting from message forwarding along
intermediary nodes exhibits similar powerlaw characteristics,
but with an intensity that decreases with the hop distance from
the destination peers.

To better understand this problem, we have performed some
simulations to see the request load associated to each node
in the system. At each node, we keep track of the number
of requests received by a node, as well as the number of
requests forwarded for a destination node located n hops away
(see Figure 3). A small set of nodes have a much higher
number of received requests than others and many nodes
have few received requests. Moreover, the node 1-hop away
to the destination presents almost twice as more number of
forwarded requests in the second row than the third row of a
node 2-hops away. The Figure 2 shows the total number of
received requests in first row, the forwarded requests in the
second row (1-hop away) and the total number of forwarded
requests in the 7th row (6-hops away) of all the nodes in
the system. This graph points the Zipf-like request load and
routing load, where the load and the bias attenuates with the
distance of the node to the destination.

In the next section we present our load balancing solution
that aims to equilibrate the request load and routing load of

Node 105

of received
requests

of forwarded
requests

11621

Node 6065 Node 12410

124

115

716

1669

2445

0

9573

50

51

12

10

0

176 5557

1368

585

976

1047

1932

0

1 hop away

2 hops away

3 hops away

4 hops away

11 hops away

Fig. 3. Statistics of received and forwarded requests.

the nodes in the system.

III. LOAD BALANCING SOLUTION

Figure 3 shows part of the results of a simulation of an
average sized overlay network with 1,000 nodes and 20,000
objects randomly and uniformly distributed, and 100,000 re-
quests following a Zipf-like distribution. As shown, node 105
receives only few requests, but it forwards many requests.
Conversely, node 6065 holds a popular object, thus receiving
many requests, but it doesn’t forward a lot of requests since it
is not on a path to a popular key. Node 12410 presents both a
high request load and a high routing load. Thus, nodes 6065
and 12410 become hot-spots.

The mostly used technique to deal with hot-spots is caching
and replication [11], [12]. For unstructured peer-to-peer sys-
tems, several studies [13], [14] have analyzed the proportion
of replication of the objects and their popularity to achieve
optimal load balancing. Since DHTs lack on flexibility in data
placement, i.e., the objects have a specific position in the
overlay network, these techniques have a limited applicability
for this kind of system.

We propose an approach based on reorganizing the routing
table in order to minimize the number of forwarded requests
for the nodes that already have a high number of received
requests. Our approach is based on dynamic reorganization of
the “long range neighbors” in the routing tables to reduce the
routing load of the peers that have a high request load, so as
to compensate for the bias in object popularity.

As presented before, Pastry defines for each entry in the
routing table a region of potential nodes and it selects the node
topologically closest to itself. In our approach, we reorganize
the routing table choosing the nodes with the lowest (request
and forwarding) load in order to minimize the load for the
most loaded nodes. The nodes that have a high load (as
a consequence of a popular object or too many forwarded
requests or both) are removed from the other nodes’ routing
tables in order to minimize their load. Instead, the entry will
contain another node, from the same region (same prefix),
which is less loaded. This way, the nodes that have a high
request load will have a small forwarding load, and the nodes
with low request load will share the forwarding load.

Figures 4 and 5 show an example of updating the routing
table based on this mechanism. In the example, node N4 holds
a popular object resulting in a high request load. Its load is
too high, so it will be removed from the other nodes routing
tables. Node N24 will update its first entry with node N9,

N9(01001)

N11(01011)

N29(11101)

N28(11100)

N24(11000)

N4(00100)

N18(10010)

N22(10110)

of received requests

of forwarded requests

Potential nodes for the 3rd row

Potential nodes for the 2nd row Potential nodes for the 1st rowRouting table:
nodes topologically-closest

of received requests

of forwarded requests

of received requests

of forwarded requests

++

++

++

--

--

--

NodeId 11000

Leaf set :

11100

10110

Routing table:

10010

00100

11101

Fig. 4. Topologically closest based routing table.

N9(01001)

N11(01011)

N29(11101)

N28(11100)

N24(11000)

N4(00100)

N18(10010)

N22(10110)

of received requests

of forwarded requests

Potential nodes for the 3rd row

Potential nodes for the 2nd row Potential nodes for the 1st rowRouting table:
“long range neighbors” reorganization

of received requests

of forwarded requests

of received requests

of forwarded requests

++

--

++

--

--

++

NodeId 11000

Leaf set :

11100

10110

Routing table:

10010

01001

11101

Fig. 5. Traffic load based routing table.

which is less loaded then node N4. Consequently, the load of
node N4 will decrease, and the load of node N9 will increase,
thus equilibrating the load in the system.

The routing tables updates are performed dynamically, while
running the requests, without increasing the number of mes-
sages. In our algorithm, each node keeps track of the load
`k of each node nk in its routing table. Before forwarding
(or sending) a request message, each node will add itself and
its load to the message. The ith node in the request path will
receive in the request message the load information of i nodes.
A node ni that receives the request, besides treating it, will
use the load information in the message in order to update
its routing table with better entries in terms of load. Each
node nj in the message can match exactly one entry in the
routing table of node ni. If the load is better (smaller) for
node nj than for node nk found in the routing table, the entry
will be updated with nj and its load. The load information
corresponding to the entries in the routing table of node ni is
not accurate, since the node cannot know at each moment the
real values for the load of each entry. To try to compensate
this, we use several techniques: (1) if node nj is the same as
node nk, its load will be updated; (2) when a node forwards
(sends) a request, it will increment the load of the entry that
it used (for estimation we use an increment of 1, knowing
that the real load will be incremented with at least 1 from this
request); (3) even if the loads for the two nodes nj and nk are
equal, the entry will be updated, since load lj is nj’s real load
but lk is only an estimation of nk’s load. The routing table
update algorithm for a node that forwards a request is shown
in pseudo-code in Algorithm 1.

IV. EVALUATION

We primarily focus on measuring and analysing the request
and routing load in the system, subsequently simply called
load.

The simulated system has 103 nodes and 2×104 keys, and
we issue 5×105 requests from random sources. The nodes and
the key IDs are computed on 15 bits. The system is based on
an implementation of Pastry, with base b=1 and a leaf set of
|L|=4 nodes.

To analyze the results of our solution, we use the same
experimental setup while applying different routing strategies.

Algorithm 1 Pseudo-code for the load algorithm at node ni

0: {Receive request}
1: for each (nj , `j) in the message do
2: entry ← matching entry for nj in the routing table
3: nk ← current node at entry
4: if nj 6= nk then
5: if `j <= `k then
6: Replace nk by nj at entry
7: Store `j at entry
8: end if
9: else

10: Store `j at entry
11: end if
12: end for
13:
14: if ni not owner of requested key then
15: nk ← next node to forward request
16: lk ← lk + 1
17: {Add (ni, `i) to the request message to be forwarded}
18: end if

First we do a dynamic run, where the routing tables are
dynamically updated while running the requests, and then
we evaluate the results. After that, we use the obtained
routing tables to perform a second dynamic run, to see the
improvements when we start with optimized routing tables.
Finally, we do a static run with no routing table updates at all.
The purpose of this last run is to show that in a system with
no load balancing strategy, the results are better when starting
with optimized routing tables.

The selection of the keys in the requests follows a Zipf dis-
tribution and, as a consequence, the same applies for the load
distribution in the system, as can be seen in Figures 6 and 7
where the nodes are ordered in decreasing order of load.

Figure 6 shows the load distribution with no load balancing.
The load is not evenly distributed among the nodes: some of
the nodes have very high load (the left side of the graph), and
other nodes have just a small load or no load at all (the right
side of the graph).

Figure 7 shows the load distribution in exactly the same
system, but with our solution taking into account the request

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 200 400 600 800 1000

lo
ad

all nodes, in decreasing order by load

number of received and forwarded requests

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Fig. 6. Load distribution without load balancing

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 200 400 600 800 1000

lo
ad

all nodes, in decreasing order by load

number of received and forwarded requests

 1000

 10000

 100000

 1 10 100 1000

Fig. 7. Load distribution with load balancing

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

to
ta

l n
um

be
r

of
 u

pd
at

es
 in

 r
ou

tin
g

ta
bl

es

time

number of updates

Fig. 8. Evolution of the number of updates over time (100 requests per unit
of time) in the first 200 time units

popularity, after the second dynamic run of the experiment.
As shown in the graph, the highest load is decreased by half.
Moreover, the load in Figure 6 tends to 0, while in Figure 7
it remains almost constant (approximately from node 300),
showing that most of the nodes have the same load.

Figure 8 shows the rate of updates to the routing tables in
the second dynamic run: the rate of updates is high in the
beginning, but quickly stabilizes at a small value.

Our algorithm for dynamically updating the routing tables
of the nodes in the system shifts the load from the most loaded
nodes to less loaded nodes, by having the less loaded nodes
forward most of the traffic instead. This way, the highly loaded
nodes will get rid of the traffic that they had to forward,
and become less loaded. The solution does not deal with
distributing the keys. This problem has already been well
studied and can be addressed by using virtual servers [15].
Our techniques cannot decrease the load below the number of
requests addressed to a node. Thus, we still have a Zipf-like
distribution, but with much lower intensity.

The statistical analysis showed that the variance of the
system load is decreasing from 7,161 for the results shown
in Figure 6, to 2,167 for the results shown in Figure 7. This

TABLE I
STATISTICS

Experiment type Leaf set Average Variance

no update 4 2,353 7,161
run 1: update 4 2,535 2,526
run 2: update 4 2,585 2,167

run 3: no update 4 2,648 2,466

no update 8 2,253 7,103
run 1: update 8 2,319 2,394
run 2: update 8 2,350 1,966

run 3: no update 8 2,383 2,152

confirms that the load extremes are getting closer. The load
average is slightly increasing from 2,353 to 2,585, because
changing the routing tables in the destination node’s closest
area might increase in some cases the path length. However,
the path length is still in the order of O (log2bN), where N
is the number of the different nodes in the system.

In order to better perceive the load distribution for the
most loaded nodes, Figures 9 and 10 show the same data as
Figures 6 and 7 for the first 300 nodes. They also show the
number of received requests per node.

The nodes at the left hand side of the graphs are the most
loaded ones. Comparing the two graphs, Figure 9 exhibits
more nodes with a high load mostly induced by the forwarded
requests. In Figure 10, fewer nodes have a high load, which
mainly results from the received requests. The most loaded
nodes are now the nodes with the highest number of received
requests; the next most loaded nodes are their direct neigh-
bours. The less loaded nodes at the right hand side of the
graph (see Figure 9) are now more loaded, which results in
a more balanced overall load tending towards a constant (see
Figure 10).

Until now, we considered a leaf set of 4 nodes. With a higher
size of the leaf set, the results are even better, as the routing
load is shared by more nodes in the vicinity of a popular node.
These results after two dynamic runs are shown in Figure 11.

Table I contains some statistics (load average and variance)

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250 300

lo
ad

first 300 nodes, in decreasing order by load

number of received requests
number of received and forwarded requests

Fig. 9. The 300 most loaded nodes, without load balancing.

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250 300

lo
ad

first 300 nodes, in decreasing order by load

number of received requests
number of received and forwarded requests

Fig. 10. The 300 most loaded nodes, with load balancing.

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250 300

lo
ad

first 300 nodes, in decreasing order by load

number of received requests
number of received and forwarded requests

Fig. 11. Load distribution for the 300 most loaded nodes, using a leaf set
of 8 nodes (detail)

from two experiments. The first experiment has no load
balancing solution. For the second experiment we show the
statistics after each of the three runs: first two with updating
the routing tables, and the last one without. Both types of
experiments are done for a leaf set of 4 and 8 nodes.

The load average is increasing as a consequence of increas-
ing the path length, but the increase is very small. However,
we can note a high decrease of the variance. The first dynamic
run has a lower variance than the experiment with no routing
table updates. The variance after the second dynamic run,
which is using the optimized routing tables obtained from the
first dynamic run, is even lower. When doing no routing table
updates, the variance is much lower when optimized routing
tables are used.

V. RELATED WORK

Many load balancing schemes have been proposed for DHT-
based systems. They can be classified in three categories:
virtual servers, flexible choice, caching and replication.

Virtual Servers. Most of the schemes focus on the imbal-
ance of the key distribution due to the hash function [16],
[17], [15]. They argue that a naive hash function can result
in a O(log N) imbalance in the number of keys associated

to nodes. Moreover, some applications associate semantics
with object IDs, such as dictionary applications, causing a
bigger imbalance factor since the IDs are no longer uniformly
distributed. To solve this problem, these approaches make use
of virtual servers, first proposed by [6]. The concept is based
on simulating at each node a logarithmic number of virtual
servers organized as a ring. However, the virtual servers do not
completely solve the problem of load balancing, because the
method fails to adapt to dynamic request patterns; in that case,
frequent reorganization of virtual servers may be required.

The solutions proposed by [15], [18] complement this
idea taking into consideration also the dynamism and the
heterogeneity of the system. In this context, the imbalance can
significantly increase as the heterogeneity and the dynamism
(joins and departures) increase.

In [19], [20] the goal is not only to ensure fair load
distribution over nodes proportional to their capacity, but also
to minimize the load balancing cost by transferring virtual
servers between heavily loaded and lightly loaded nodes.

These approaches do not consider the load of a specific
resource (such as CPU, storage size or bandwidth) since they
focus on the distribution of virtual servers. The load caused
by popularity is not treated by these load balancing solutions,
being considered as a orthogonal problem.

Flexible choice. In [21], the focus is also on the imbalance
of the key distribution that may be caused by a naive consistent
hashing, but they do not use the concept of virtual servers since
the number of messages necessary for maintenance and failure
detection is high. As an alternative to virtual servers they have
proposed to use the power of two choices where two or more
hash functions are applied and examined in order to use the
node with the lowest storage load.

A better distribution is proposed in [22], by the kind each
joining node can choose its position in the hash space by
learning the positions of a few existing nodes.

In the same context, in [23], a k-Choices load balancing
algorithm for DHTs is proposed. The node generates a set
of verifiable IDs and at join time it chooses an ID in a way
to minimize the discrepancies between capacity and load for

itself and the nodes that will be affected by its join time. In
addition, each node can change its position in the identifier
space by choosing another ID.

These solutions can be used to minimize the load traffic
caused by popularity by choosing a peer less loaded in the
overlay network, but at the expense of more complex overlay
maintenance protocols.

Caching and replication. In [24], a lightweight adaptive
replication protocol is proposed to solve the problem of hot-
spots in DHT systems. The protocol was applied in Chord for
replication of objects. However, when an object is replicated,
the finger list must also be replicated among the other nodes
in the system. This protocol solves the problem of hot-spots
at the cost of having a longer routing table to be managed and
more objects in the system.

As our technique only updates routing tables and do not
change nodes, in principle, they can be combined with another
load balancing techniques. We will study this problem as part
of our future work.

VI. CONCLUSIONS

In the past few years, several DHT-based abstractions for
peer-to-peer systems have been proposed. The basic principle
is to associate nodes (peers) with keys (objects) and to
construct distributed routing structures to efficiently locate
objects. Basically, the existing DHT approaches differ in their
topology (ring, multi-dimensional spaces, tree, etc), the rules
for associating the objects to the nodes, the construction of
the routing tables and their lookup protocols.

In this paper we presented an analysis of the load distribu-
tion in structured peer-to-peer systems taking into considera-
tion the load caused by the popularity of the objects. Based on
this analysis, we proposed a novel approach to minimize the
load generated by popular requests by reorganizing the routing
tables accordingly.

Our mechanisms neither require changes to the topology
nor to the association rules (placement) of the objects to the
peers. Simulations demonstrate a more balanced routing traffic,
which can lead to improved scalability and performance.

ACKNOWLEDGEMENTS

This work is supported in part by the Swiss National
Foundation Grant 102819.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of ACM SIGCOMM Conference, 2001, pp. 149–160.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-
able content addressable network,” in Proceedings of ACM SIGCOMM,
2001, pp. 161–172.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” Lecture Notes
in Computer Science, vol. 2218, pp. 329–350, 2001.

[4] A. Gupta, P. Dinda, and F. E. Bustamante, “Distributed popularity
indices,” in Proceedings of ACM SIGCOMM, 2005.

[5] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz,
“Tapestry: A resilient global-scale overlay for service deployment,”
IEEE Journal on Selected Areas in Communications, vol. 22, no. 1,
pp. 41–53, 2004.

[6] F. Dabek, M. Kaashoek, D. Karger, R.M., and I. Stoica, “Wide-area
cooperative storage with CFS,” in Proceedings of 18th ACM Symposium
on Operating Systems Principles, 2001, pp. 202–215.

[7] L. Breslau, P. Cao, G. P. L. Fan, and S. Shenker, “Web caching and
Zipf-like distributions: Evidence and implications,” in Proceedings of
IEEE Infocom, 1999, pp. 126–134.

[8] K. Sripanidkulchai, “The popularity of gnutella queries and. its implica-
tions on scalability,” Carnegie Mellon University,” White Paper, 2001.

[9] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J. Zahorjan,
“Measurement, modeling, and analysis of a peer-to-peer file-sharing
workload,” in Proceedings of 19th ACM Symposium on Operating
Systems Principles, 2003, pp. 314–329.

[10] A. Klemm, C. Lindemann, M. K. Vernon, and O. P. Waldhorst, “Char-
acterizing the query behavior in peer-to-peer file sharing systems,” in
Proceedings of ACM Internet Measurement Conference, 2004, pp. 55–
67.

[11] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pan-
igrahy, “Consistent hashing and random trees: Distributed caching pro-
tocols for relieving hot spots on the World Wide Web,” in Proceedings
of ACM Symposium on Theory of Computing, 1997, pp. 654–663.

[12] J. Wang, “A survey of Web caching schemes for the Internet,” in
Proceedings of ACM Computer Communication Review, 1999, pp. 36–
46.

[13] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-
to-peer networks,” in Proceedings of ACM SIGCOMM Computer Com-
munication Review, 2002, pp. 177–190.

[14] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and repli-
cation in unstructured peer-to-peer networks,” in Proceedings of 16th
International Conference on Supercomputing, 2002, pp. 84–95.

[15] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load balancing in dynamic structured P2P systems,” in Proceedings of
IEEE Infocom, 2004.

[16] D. Karger and M. Ruhl, “Simple efficient load balancing algorithms
for peer-to-peer systems,” in Proceedings of 16th ACM Symposium on
Parallelism in Algorithms and Architectures, 2004, pp. 36–43.

[17] A. R. Karthik, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load balancing in structured P2P systems,” in Proceedings of 2nd
International Workshop on Peer-to-Peer Systems, 2003, pp. 68–79.

[18] B. Godfrey and I. Stoica, “Heterogeneity and load balance in distributed
hash tables,” in Proceedings of IEEE Infocom, 2005.

[19] Y. Zhu and Y. Hu, “Towards efficient load balancing in structured P2P
systems,” in Proceedings of 18th International Parallel and Distributed
Processing Symposium, 2004.

[20] Y. Zhu and Y. Hu., “Efficient, proximity-aware load balancing for DHT-
based P2P systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 16, no. 4, pp. 349–361, 2005.

[21] J. Byers, J. Considine, and M. Mitzenmacher, “Simple load balancing for
distributed hash tables,” in Proceedings of 2nd International Workshop
on Peer-to-Peer Systems, 2003, pp. 80–87.

[22] K. Kenthapadi and G. S. Manku, “Decentralized algorithms using both
local and random probes for P2P load balancing,” in Proceedings of
17th ACM Symposium on Parallelism in Algorithms and Architectures,
2005, pp. 135–144.

[23] J. Ledlie and M. Seltzer, “Distributed, secure load balancing with skew,
heterogeneity, and churn,” in Proceedings of IEEE Infocom, 2005.

[24] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher, “Adap-
tive replication in peer-to-peer systems,” in Proceedings of 24th Inter-
national Conference on Distributed Computing Systems, 2004, pp. 360–
369.

