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I n recent years, the business process com-
munity has realized the importance of col-
laboration in achieving flexible and adaptive 

workflow systems.1 Typical workflows are rig-
idly designed to achieve reproducible, reliable 
process outcomes. Consequently, such work-
flows restrict human involvement to limit 
unpredictable behavior and side effects. Exist-
ing workflow languages such as BPEL4People 
and crowdsourcing environments such as Ama-
zon Mechanical Turk don’t foresee collabora-
tion among process participants and thus can’t 
harness the power of collaborative problem  
solving.

Designing and deploying processes beyond 
organizational structures’ traditional boundar-
ies requires that we rethink how to achieve pro-
cess reliability and control. Individual human 
involvement can never guarantee 100 percent 
success. The opportunities for failure are con-
siderably higher when multiple humans must 
collaborate to produce a common outcome. How, 
then, can we design processes to gracefully han-
dle failures and unexpected situations in mas-
sively collaborative business processes?

Here, we highlight two major obstacles: First, 
beyond simple process awareness, most process 
frameworks offer limited support for coordina-
tion patterns among multiple collaborating par-
ticipants. Second, current process adaptation 

mechanisms remain unaware of underlying col-
laboration patterns.

Lacking the appropriate patterns either leads 
to process default (as when participants can’t 
complete the task), or participants resort to 
generic communication forms outside the pro-
cess engine’s realm. External mechanisms can’t 
provide process awareness support to partici-
pants and remain ignorant of events relevant to 
the process engine. Even with the right patterns 
in place, the process adaptation manager must 
still become aware of the actual collaboration 
structure. Failing to do so seriously impedes the 
manager’s ability to reason about process prog-
ress and applicable adaptation actions.

We propose going beyond the simple mecha-
nisms that prescribe current human process 
involvement and describe human coordination 
and execution roles in the form of a human 
architecture. We’re inspired by software archi-
tecture languages (ADLs) that describe a soft-
ware system’s design in terms of components 
(the loci of computation and data manage-
ment) and connectors (which facilitate and 
control the interactions between components). 
Following this perspective, a traditional pro-
cess engine resembles a connector that man-
ages task, data, and temporal dependencies 
between executing components (human and  
software).
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Collaborations as  
Human Architectures
When we compose collaboration pat-
terns from (human) components and 
(human) connectors, we can pre-
cisely define how much flexibility 
we want to grant humans in shap-
ing a process during runtime. Rigid 
workf lows keep all coordination 
privileges with the process engine 
and limit humans and services to 
executing computational tasks. On 
the other extreme end, ad hoc work-
flow systems offer full coordination 
capabilities to process participants 
but lack automated support. Among 
the myriad collaborative process-
support systems, none makes the 
fundamental distinction between 
(human) components and (human) 
connectors.

This distinction, however, is 
imperative to determine how flexible 
and adaptive a collaboration struc-
ture is. In software architectures, 
connectors are the key element to 
system adaptability. For example, 
connectors allow an adaptation 
mechanism to dynamically replace 
behavior components in robotic sys-
tems without affecting other compo-
nents.2 Web proxies are connectors 
on the Internet that decide which 
server (component) should process a 
particular client (component) request. 
Overloaded or unavailable servers 
thus become transparent to the cli-
ent. In human collaborations, a sec-
retary (connector) might respond on 
behalf of the principal (component) 
or coordinate meeting room reserva-
tions, thereby managing access to a 
shared resource (component).3 The 
importance of collaboration connec-
tors grows with joint efforts’ scale 
and complexity, especially in dis-
tributed settings where individual 
collaborators have little opportunity 
for informal communication.

Example Scenario
Consider the following collaborative 
process for producing a final report 

in a large research project. At min-
imum, Alice, the scientif ic project 
leader, must carry out the following 
steps:

1. get hold of all relevant authors,
2. collect their contributions, and
3. format and quality check the 

aggregated report (see Figure 1).

Each step calls for a different collab-
oration pattern and thus comes with 
particular adaptation idiosyncrasies.4

In a large research project, Alice 
isn’t likely to know all relevant 
authors directly. Instead, she initiates 
a peer-to-peer (P2P)-style request 
through her social project network 
to identify potential experts. Then, 
Alice collects the experts’ contribu-
tions. Instead of sending individual  
content items, Alice coordinates authors 
through a set of wiki pages. The wiki 
serves as a shared artifact to track 
progress, achieve awareness among 
authors, and relieve Alice of detect-
ing and handling conflicts.

The compiled report requires 
spell checking and final formatting 
before submission. A final report 
easily comprises hundreds of pages, 
which would overwhelm a single 
person. For this task, Alice decides to 

break the report into multiple parts 
and have multiple workers check 
each part separately. Such uniform, 
independent jobs are best suited for 
crowdsourcing.

As mentioned, each task requires 
a particular collaboration pattern 
that differs in terms of participant 
coupling, communication form, out-
come, and adaptation constraints. 
When designing mechanisms for pro-
cess adaptation, we must be aware of 
these pattern-specific implications.

The BASE Framework  
for Collaboration Patterns
Besides basic concepts, the software 
architecture domain also provides a 
framework for analyzing collabora-
tion patterns’ flexibility. We apply the 
software runtime adaptation aspects 
defined in the BASE framework —  
behavior, asynchrony, state, and exe
cution context.5 

Behavior focuses on the means 
of adaptation and the scope of sup-
ported change. Collaboration behav-
ior adaptation includes rewiring 
team members (adding or removing 
coworker relations in a social net-
work), replacing them (exchanging 
a report coauthor), or reassigning 
a task (because the crowd fails to 

Figure 1. Scenario workflow. Peer-to-peer-style search requests target the social 
network, a shared artifact coordinates collaborative content generation,  
and the crowd handles well-defined, independent tasks.
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submit a quality report, for exam-
ple). Messages between members 
and shared artifacts represent sig-
nificant loci of adaptation. A new 
message type might introduce an 
explicit reply-by date. A pattern fur-
ther specifies whether adaptation is 
limited to the composition of exist-
ing behaviors or if the adaptation 
mechanism can introduce new ones, 
and what behavior must remain 
unmodified. For example, in the 
master/worker pattern (the generic 
form of crowdsourcing), replacing a 
worker is comparatively simple, but 
replacing the assignment connector 
is extremely difficult.

Asynchrony raises awareness  
of temporal adaptation implica-
tions. Large-scale collaborations take  
potentially longer to update than 
compact teams and might never 
reach a completely updated status. 
The lag between initiating an adap-
tation plan and its completion raises 
questions concerning constraints 
that the adaptation mechanism 
must enforce during adaptation. For 
example, when replacing a docu-
ment’s authors, one previous coau-
thor must remain available during  

the transition phase (rather than 
exchanging all authors at once).

State refers to potential adapta-
tion side effects when we alter the 
communication method, manipulate 
shared artifacts, or replace work-
ers. The most knowledgeable form of 
direct state change is loss of implicit 
collaboration know-how upon remov-
ing a worker. When adapting the 
human interaction structure, we must 
explicitly consider the handover of 
such implicit collaboration informa-
tion between outgoing and incom-
ing workers. Coauthoring a report 
requires less state management when 
coordinating through a shared arti-
fact than when sharing draft ver-
sions directly among authors.

Execution context raises aware-
ness of constraints that determine 
whether and when to adapt. Multiple 
factors such as explicit contracts, 
cost and time for repeating a task, 
and the execution of compensation 
actions influence the decision to 
adapt during an active collabora-
tion session (for instance, if a human 
can cease work on a particular task 
or must wait until task completion). 
Replacing a coauthor while working  

on a shared document comes with 
higher transition costs than reas-
signing a self-contained job to another 
worker in the crowd.

Applying BASE  
to Example Patterns
In our scenario, we identify three 
collaboration patterns: the social 
network acts as a P2P network, the 
wiki provides asynchronous, decen-
tralized coordination through shared 
artifacts, and crowdsourcing mimics 
parallel computing.

Social Networks
Software P2P systems primarily 
serve to locate and retrieve con-
tent. Several functionally identical 
peers — each maintaining a limited 
list of neighboring peers — forward 
requests that they can’t locally ful-
fill. The major motivation for using 
P2P is resilience to node failures. To 
this end, P2P systems usually lack 
a centralized authority and expect 
peers to arbitrarily join and leave the 
network.

In our scenario, Alice applies the 
principle of P2P to social networks 
by issuing a request for project mem-
bers to contribute to the final report. 
Her contacts within the project scope 
subsequently forward her request 
within their networks. The social 
network’s structure ensures that 
Alice reaches all relevant partici-
pants even when some contacts fail 
to forward or misaddress the request 
(see Figure 2).

Behavior. Social networks are typi-
cally self-organizing; members join 
freely and form arbitrary links with 
new acquaintances. In work environ-
ments, social networks let individual 
employees form ties with relevant 
coworkers rather than rely merely on 
top-down designed and inflexible 
organization charts. Task- or project-
specific social networks offer more 
control to managers, who decide on 
individual employee participation.  

Figure 2. Social network collaboration pattern. Here, we apply a social network 
for peer-to-peer-style information retrieval. Arrows represent forwarded 
requests, dotted lines are unused coworker links, and stars mark relevant 
contacts.
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Nevertheless, employees still control 
their friend structures.

Asynchrony. Typically, only a (small) 
subset of members fluctuates at any 
single point in time — members go 
offline during vacations, temporarily 
work on different projects, or leave the 
organization for other jobs. Fluctua-
tions, however, hardly disrupt the  
underlying social structure in the 
presence of sufficient ties. Thus, 
P2P-style requests needn’t wait for a 
stable social network.

State. Collaboration know-how is  
generally spread across multiple  
members. In the scenario we describe, 
all researchers involved in a joint 
activity replicate that collaboration 
state subset. Thus, new members 
need support in connecting with 
relevant existing team members to 
gather state information before they 
can respond to P2P style requests 
themselves. 

Execution context. Adaptation actions 
such as fluctuating members and the 
rewiring of “friend links” are inde-
pendent from request processing 
and forwarding when such requests 
require only minimal time or effort. 
In our scenario, a coworker decides 
to reply to, forward, or ignore the 
request for authors. More t ime- 
consuming requests such as creating 
report content require the coworker 
to remain active or delay completion.

Shared Artifact
The P2P style is suitable for find-
ing the right report contributors, 
but to coordinate the actual author-
ing, Alice prefers to apply shared 
artifacts. Coauthors require task 
awareness to avoid duplicating work 
efforts while asynchronously work-
ing on their contributions.

Shared artifacts such as wiki pages 
decouple producers from consumers. 
Collaborators obtain write access 
to manipulate the shared artifacts.  

Updates become visible to any inter-
ested participant (see Figure 3).

Behavior. Collaborators may join 
or leave the workspace at any time. 
They’re free to create new shared 
artifacts or manipulate existing ones 
without requiring a dedicated person 
who collects, merges, and distributes 
contributions. Artifacts might be 
split or merged for performance rea-
sons. Alice splits the project report 
as individual sections become too 
large and too heavily edited. Authors 
inspect the various parts and then 
decide what to work on without 
having to coordinate with all other 
coworkers directly.

Asynchrony. Adaptation actions 
occur on an artifact basis, affect-
ing only a subset of all contribu-
tors. When Alice decides to split a 
particular section, only the involved 
authors perceive this change.

State. The shared artifact maintains 
the collaboration status. Collaborators 
construct their internal states from 
the artifact’s history. Late-joining  
coauthors immediately notice who’s 
contributed which sections and what  
parts are still missing.

Execution context. Collaborators 
must complete their artifact update 

before it’s split or merged. Small, 
self-contained report changes allow 
for timely artifact adaptations. Lock-
ing mechanisms should be in place 
to allow a single author to update 
large parts of the artifact without 
creating conflicts.

Crowdsourcing
Proof-reading the f inal repor t 
requires almost no coordination  
among participants, involves a clear 
set of skills, and is highly repeti-
tive. Thus, Alice (the master) lever-
ages parallel execution, dividing 
the report into multiple independent 
proof-reading tasks, as in Map-
Reduce. Task distribution uses both 
push and pull styles. In the for-
mer case, a job advertising connec
tor replicates the task and assigns 
these replications as jobs directly to 
workers, whereas in the latter case, 
workers choose which jobs they 
prefer to work on (see Figure 4).  
Crowdsourcing is a specific form 
of the master/worker pattern in 
which job assignment is only pull- 
based.

Behavior. Here, the master decides 
how many workers can work in par-
allel on the same task artifact. In 
the pull-style assignment, workers 
choose which job to perform and 
whether to return a job unfinished.  

Figure 3. The shared artifact collaboration pattern. Here, multiple authors 
coordinate via shared artifacts and (human or software) connectors.
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In the push-style assignment, workers  
receive new jobs in their inbox but 
might still have the option to reject 
or delegate a job. Alice posts the 
quality-checking tasks on Amazon 
Mechanical Turk and restricts them 
to workers with an appropriate “Eng-
lish language” skill.

Asynchrony. A task artifact com-
pletely decouples the master from 
the workers. The job advertising con-
nector reallocates a job to another 
worker when the initial worker fails 
to complete the task in a predefined 
timeframe. The master posts the task 
again, when the job results are of 
insufficient quality.

State. The task artifact contains 
the complete collaboration state. 
Replacing workers has no side-
effect on the state. Multiple work-
ers thus check each report section 
in parallel but have no impact on 
each other’s job execution because 
no interaction is possible among  
workers.

Execution context. Multiple work-
ers assigned to the same task artifact 
work on distinct copies and have no 
knowledge about each other. They 
remain similarly unaware if the 
master is replaced. A new worker 
simply obtains the task descrip-
tion and commences task execution 
independently of any previous work 
done.

Pattern-Specific  
Process Support
No single collaboration pattern 
would support all three process steps 
equally well. Likewise, a process- 
support system needs specific moni-
toring and adaptation strategies 
in each case. Figure 5 provides a 
screenshot from our human architec-
ture modeling environment (based 
on the Generic Modeling Environ-
ment; www.isis .vanderbi lt .edu/
Projects/gme). Collaboration pat-
terns comprise HumanComponents,  
HumanConnectors, and Collaboration
Objects. Each element defines a set of 
collaboration actions (for example, 
create, observe, or claim) through 
which components and connectors 
are linked to collaboration objects  
(such as messages, artifacts, or streams). 
Adding elements such as observer 
components improves the adaptability 
of generic collaboration patterns such 
as P2P, shared artifact, and master/
worker.

In the P2P pattern, observing 
forwarded messages lets the process 
engine perceive how far the request 
has spread and when to stop wait-
ing for outstanding replies. Exam-
ple short-term adaptation strategies 
include recommending new contacts, 
provisioning specific message types 
to improve collaboration efficiency, 
and repeating requests to counteract 
ignored messages.

For the shared artifact pat-
tern, the process engine observes 

the number of involved authors, 
whether multiple authors engage in 
an edit war, and the frequency of 
write requests. Adaptation actions 
address the applicable mechanisms 
for conflict detection, conflict avoid-
ance, and content-merging capabili-
ties. Large, heavily edited artifacts 
become candidates for splitting.

Finally, the crowdsourced spell-
checking task requires the process 
engine to monitor the successful 
completion of individual jobs. The 
process engine schedules multiple 
identical tasks for the sake of reliabil-
ity, or issues multiple sequential tasks 
until it receives the desired results.

These examples are for pattern-
specif ic observation and adapta-
tion behavior. Adaptation strategies 
potentially leverage cross-pattern 
synergies. If some author doesn’t 
respond, and we know that we applied 
the P2P pattern to find him, we sub-
sequently explore the social network 
to find a suitable replacement. The 
same strategy doesn’t work when the 
author is a worker from the crowd.

T he explicit distinction between 
(human) components and (human) 

connectors is just the first step in 
achieving adaptive, Web-scale col-
laborative workflows. Much effort 
needs to go into investigating how 
the applied patterns should change 
at runtime, how to integrate humans 
and software within a collaboration- 
level connector, and how to achieve a 
balance between autonomic and rec-
ommendation-driven adaptations. 
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