
Web-Scale Workflow
Editor: Schahram Dustdar • dustdar@infosys.tuwien.ac.at

72 Published by the IEEE Computer Society 1089-7801/12/$31.00 © 2012 IEEE IEEE INTERNET COMPUTING

I n recent years, the business process com-
munity has realized the importance of col-
laboration in achieving flexible and adaptive

workflow systems.1 Typical workflows are rig-
idly designed to achieve reproducible, reliable
process outcomes. Consequently, such work-
flows restrict human involvement to limit
unpredictable behavior and side effects. Exist-
ing workflow languages such as BPEL4People
and crowdsourcing environments such as Ama-
zon Mechanical Turk don’t foresee collabora-
tion among process participants and thus can’t
harness the power of collaborative problem
solving.

Designing and deploying processes beyond
organizational structures’ traditional boundar-
ies requires that we rethink how to achieve pro-
cess reliability and control. Individual human
involvement can never guarantee 100 percent
success. The opportunities for failure are con-
siderably higher when multiple humans must
collaborate to produce a common outcome. How,
then, can we design processes to gracefully han-
dle failures and unexpected situations in mas-
sively collaborative business processes?

Here, we highlight two major obstacles: First,
beyond simple process awareness, most process
frameworks offer limited support for coordina-
tion patterns among multiple collaborating par-
ticipants. Second, current process adaptation

mechanisms remain unaware of underlying col-
laboration patterns.

Lacking the appropriate patterns either leads
to process default (as when participants can’t
complete the task), or participants resort to
generic communication forms outside the pro-
cess engine’s realm. External mechanisms can’t
provide process awareness support to partici-
pants and remain ignorant of events relevant to
the process engine. Even with the right patterns
in place, the process adaptation manager must
still become aware of the actual collaboration
structure. Failing to do so seriously impedes the
manager’s ability to reason about process prog-
ress and applicable adaptation actions.

We propose going beyond the simple mecha-
nisms that prescribe current human process
involvement and describe human coordination
and execution roles in the form of a human
architecture. We’re inspired by software archi-
tecture languages (ADLs) that describe a soft-
ware system’s design in terms of components
(the loci of computation and data manage-
ment) and connectors (which facilitate and
control the interactions between components).
Following this perspective, a traditional pro-
cess engine resembles a connector that man-
ages task, data, and temporal dependencies
between executing components (human and
software).

Flexible Social Workflows
Collaborations as Human Architecture

Christoph Dorn and Richard N. Taylor • University of California, Irvine

Schahram Dustdar • Technical University of Vienna

Human process involvement has gained momentum in recent years, but the

proposed mechanisms can’t efficiently adapt Web-scale collaborative work-

flows. Here, the authors describe collaborative problem solving and its inte-

gration with process-support systems as an architecture comprising human

components and connectors. This modeling of coordination and execution roles

enables reasoning on workflow flexibility and appropriate adaptation actions.

IC-16-02-WSWF.indd 72 2/11/12 10:42 AM

Flexible Social Workflows

MaRCH/aPRIL 2012 73

Collaborations as
Human Architectures
When we compose collaboration pat-
terns from (human) components and
(human) connectors, we can pre-
cisely define how much flexibility
we want to grant humans in shap-
ing a process during runtime. Rigid
workf lows keep all coordination
privileges with the process engine
and limit humans and services to
executing computational tasks. On
the other extreme end, ad hoc work-
flow systems offer full coordination
capabilities to process participants
but lack automated support. Among
the myriad collaborative process-
support systems, none makes the
fundamental distinction between
(human) components and (human)
connectors.

This distinction, however, is
imperative to determine how flexible
and adaptive a collaboration struc-
ture is. In software architectures,
connectors are the key element to
system adaptability. For example,
connectors allow an adaptation
mechanism to dynamically replace
behavior components in robotic sys-
tems without affecting other compo-
nents.2 Web proxies are connectors
on the Internet that decide which
server (component) should process a
particular client (component) request.
Overloaded or unavailable servers
thus become transparent to the cli-
ent. In human collaborations, a sec-
retary (connector) might respond on
behalf of the principal (component)
or coordinate meeting room reserva-
tions, thereby managing access to a
shared resource (component).3 The
importance of collaboration connec-
tors grows with joint efforts’ scale
and complexity, especially in dis-
tributed settings where individual
collaborators have little opportunity
for informal communication.

Example Scenario
Consider the following collaborative
process for producing a final report

in a large research project. At min-
imum, Alice, the scientif ic project
leader, must carry out the following
steps:

1. get hold of all relevant authors,
2. collect their contributions, and
3. format and quality check the

aggregated report (see Figure 1).

Each step calls for a different collab-
oration pattern and thus comes with
particular adaptation idiosyncrasies.4

In a large research project, Alice
isn’t likely to know all relevant
authors directly. Instead, she initiates
a peer-to-peer (P2P)-style request
through her social project network
to identify potential experts. Then,
Alice collects the experts’ contribu-
tions. Instead of sending individual
content items, Alice coordinates authors
through a set of wiki pages. The wiki
serves as a shared artifact to track
progress, achieve awareness among
authors, and relieve Alice of detect-
ing and handling conflicts.

The compiled report requires
spell checking and final formatting
before submission. A final report
easily comprises hundreds of pages,
which would overwhelm a single
person. For this task, Alice decides to

break the report into multiple parts
and have multiple workers check
each part separately. Such uniform,
independent jobs are best suited for
crowdsourcing.

As mentioned, each task requires
a particular collaboration pattern
that differs in terms of participant
coupling, communication form, out-
come, and adaptation constraints.
When designing mechanisms for pro-
cess adaptation, we must be aware of
these pattern-specific implications.

The BASE Framework
for Collaboration Patterns
Besides basic concepts, the software
architecture domain also provides a
framework for analyzing collabora-
tion patterns’ flexibility. We apply the
software runtime adaptation aspects
defined in the BASE framework —
behavior, asynchrony, state, and exe
cution context.5

Behavior focuses on the means
of adaptation and the scope of sup-
ported change. Collaboration behav-
ior adaptation includes rewiring
team members (adding or removing
coworker relations in a social net-
work), replacing them (exchanging
a report coauthor), or reassigning
a task (because the crowd fails to

Figure 1. Scenario workflow. Peer-to-peer-style search requests target the social
network, a shared artifact coordinates collaborative content generation,
and the crowd handles well-defined, independent tasks.

Request to locate
content, skill, or

services

Social
network

Author
group

Crowd

List of authors
<search>

Final report
production work�ow

Writing report
<content generation>

Proof-reading report
<artifact checking>

Request to jointly
create content

Request to
evaluate artifact

IC-16-02-WSWF.indd 73 2/11/12 10:42 AM

Web-Scale Workflow

74 www.computer.org/internet/ IEEE INTERNET COMPUTING

submit a quality report, for exam-
ple). Messages between members
and shared artifacts represent sig-
nificant loci of adaptation. A new
message type might introduce an
explicit reply-by date. A pattern fur-
ther specifies whether adaptation is
limited to the composition of exist-
ing behaviors or if the adaptation
mechanism can introduce new ones,
and what behavior must remain
unmodified. For example, in the
master/worker pattern (the generic
form of crowdsourcing), replacing a
worker is comparatively simple, but
replacing the assignment connector
is extremely difficult.

Asynchrony raises awareness
of temporal adaptation implica-
tions. Large-scale collaborations take
potentially longer to update than
compact teams and might never
reach a completely updated status.
The lag between initiating an adap-
tation plan and its completion raises
questions concerning constraints
that the adaptation mechanism
must enforce during adaptation. For
example, when replacing a docu-
ment’s authors, one previous coau-
thor must remain available during

the transition phase (rather than
exchanging all authors at once).

State refers to potential adapta-
tion side effects when we alter the
communication method, manipulate
shared artifacts, or replace work-
ers. The most knowledgeable form of
direct state change is loss of implicit
collaboration know-how upon remov-
ing a worker. When adapting the
human interaction structure, we must
explicitly consider the handover of
such implicit collaboration informa-
tion between outgoing and incom-
ing workers. Coauthoring a report
requires less state management when
coordinating through a shared arti-
fact than when sharing draft ver-
sions directly among authors.

Execution context raises aware-
ness of constraints that determine
whether and when to adapt. Multiple
factors such as explicit contracts,
cost and time for repeating a task,
and the execution of compensation
actions influence the decision to
adapt during an active collabora-
tion session (for instance, if a human
can cease work on a particular task
or must wait until task completion).
Replacing a coauthor while working

on a shared document comes with
higher transition costs than reas-
signing a self-contained job to another
worker in the crowd.

Applying BASE
to Example Patterns
In our scenario, we identify three
collaboration patterns: the social
network acts as a P2P network, the
wiki provides asynchronous, decen-
tralized coordination through shared
artifacts, and crowdsourcing mimics
parallel computing.

Social Networks
Software P2P systems primarily
serve to locate and retrieve con-
tent. Several functionally identical
peers — each maintaining a limited
list of neighboring peers — forward
requests that they can’t locally ful-
fill. The major motivation for using
P2P is resilience to node failures. To
this end, P2P systems usually lack
a centralized authority and expect
peers to arbitrarily join and leave the
network.

In our scenario, Alice applies the
principle of P2P to social networks
by issuing a request for project mem-
bers to contribute to the final report.
Her contacts within the project scope
subsequently forward her request
within their networks. The social
network’s structure ensures that
Alice reaches all relevant partici-
pants even when some contacts fail
to forward or misaddress the request
(see Figure 2).

Behavior. Social networks are typi-
cally self-organizing; members join
freely and form arbitrary links with
new acquaintances. In work environ-
ments, social networks let individual
employees form ties with relevant
coworkers rather than rely merely on
top-down designed and inflexible
organization charts. Task- or project-
specific social networks offer more
control to managers, who decide on
individual employee participation.

Figure 2. Social network collaboration pattern. Here, we apply a social network
for peer-to-peer-style information retrieval. Arrows represent forwarded
requests, dotted lines are unused coworker links, and stars mark relevant
contacts.

Coworker 3
(component)

Coworker 5
(component)

Coworker 6
(component)

Coworker 2
(component)

Coworker 4
(component)

Coworker 1
(component)

IC-16-02-WSWF.indd 74 2/11/12 10:42 AM

Flexible Social Workflows

MaRCH/aPRIL 2012 75

Nevertheless, employees still control
their friend structures.

Asynchrony. Typically, only a (small)
subset of members fluctuates at any
single point in time — members go
offline during vacations, temporarily
work on different projects, or leave the
organization for other jobs. Fluctua-
tions, however, hardly disrupt the
underlying social structure in the
presence of sufficient ties. Thus,
P2P-style requests needn’t wait for a
stable social network.

State. Collaboration know-how is
generally spread across multiple
members. In the scenario we describe,
all researchers involved in a joint
activity replicate that collaboration
state subset. Thus, new members
need support in connecting with
relevant existing team members to
gather state information before they
can respond to P2P style requests
themselves.

Execution context. Adaptation actions
such as fluctuating members and the
rewiring of “friend links” are inde-
pendent from request processing
and forwarding when such requests
require only minimal time or effort.
In our scenario, a coworker decides
to reply to, forward, or ignore the
request for authors. More t ime-
consuming requests such as creating
report content require the coworker
to remain active or delay completion.

Shared Artifact
The P2P style is suitable for find-
ing the right report contributors,
but to coordinate the actual author-
ing, Alice prefers to apply shared
artifacts. Coauthors require task
awareness to avoid duplicating work
efforts while asynchronously work-
ing on their contributions.

Shared artifacts such as wiki pages
decouple producers from consumers.
Collaborators obtain write access
to manipulate the shared artifacts.

Updates become visible to any inter-
ested participant (see Figure 3).

Behavior. Collaborators may join
or leave the workspace at any time.
They’re free to create new shared
artifacts or manipulate existing ones
without requiring a dedicated person
who collects, merges, and distributes
contributions. Artifacts might be
split or merged for performance rea-
sons. Alice splits the project report
as individual sections become too
large and too heavily edited. Authors
inspect the various parts and then
decide what to work on without
having to coordinate with all other
coworkers directly.

Asynchrony. Adaptation actions
occur on an artifact basis, affect-
ing only a subset of all contribu-
tors. When Alice decides to split a
particular section, only the involved
authors perceive this change.

State. The shared artifact maintains
the collaboration status. Collaborators
construct their internal states from
the artifact’s history. Late-joining
coauthors immediately notice who’s
contributed which sections and what
parts are still missing.

Execution context. Collaborators
must complete their artifact update

before it’s split or merged. Small,
self-contained report changes allow
for timely artifact adaptations. Lock-
ing mechanisms should be in place
to allow a single author to update
large parts of the artifact without
creating conflicts.

Crowdsourcing
Proof-reading the f inal repor t
requires almost no coordination
among participants, involves a clear
set of skills, and is highly repeti-
tive. Thus, Alice (the master) lever-
ages parallel execution, dividing
the report into multiple independent
proof-reading tasks, as in Map-
Reduce. Task distribution uses both
push and pull styles. In the for-
mer case, a job advertising connec
tor replicates the task and assigns
these replications as jobs directly to
workers, whereas in the latter case,
workers choose which jobs they
prefer to work on (see Figure 4).
Crowdsourcing is a specific form
of the master/worker pattern in
which job assignment is only pull-
based.

Behavior. Here, the master decides
how many workers can work in par-
allel on the same task artifact. In
the pull-style assignment, workers
choose which job to perform and
whether to return a job unfinished.

Figure 3. The shared artifact collaboration pattern. Here, multiple authors
coordinate via shared artifacts and (human or software) connectors.

Author 1
(component)

Author 2
(component)

Author 3
(component)

Author N
(component)

Artifact splitter
(connector)

Artifact control
(connector)

Artifact A

Create read Write Write Write Write

CreateReadManager

Artifact B

IC-16-02-WSWF.indd 75 2/11/12 10:42 AM

Web-Scale Workflow

76 www.computer.org/internet/ IEEE INTERNET COMPUTING

In the push-style assignment, workers
receive new jobs in their inbox but
might still have the option to reject
or delegate a job. Alice posts the
quality-checking tasks on Amazon
Mechanical Turk and restricts them
to workers with an appropriate “Eng-
lish language” skill.

Asynchrony. A task artifact com-
pletely decouples the master from
the workers. The job advertising con-
nector reallocates a job to another
worker when the initial worker fails
to complete the task in a predefined
timeframe. The master posts the task
again, when the job results are of
insufficient quality.

State. The task artifact contains
the complete collaboration state.
Replacing workers has no side-
effect on the state. Multiple work-
ers thus check each report section
in parallel but have no impact on
each other’s job execution because
no interaction is possible among
workers.

Execution context. Multiple work-
ers assigned to the same task artifact
work on distinct copies and have no
knowledge about each other. They
remain similarly unaware if the
master is replaced. A new worker
simply obtains the task descrip-
tion and commences task execution
independently of any previous work
done.

Pattern-Specific
Process Support
No single collaboration pattern
would support all three process steps
equally well. Likewise, a process-
support system needs specific moni-
toring and adaptation strategies
in each case. Figure 5 provides a
screenshot from our human architec-
ture modeling environment (based
on the Generic Modeling Environ-
ment; www.isis .vanderbi lt .edu/
Projects/gme). Collaboration pat-
terns comprise HumanComponents,
HumanConnectors, and Collaboration
Objects. Each element defines a set of
collaboration actions (for example,
create, observe, or claim) through
which components and connectors
are linked to collaboration objects
(such as messages, artifacts, or streams).
Adding elements such as observer
components improves the adaptability
of generic collaboration patterns such
as P2P, shared artifact, and master/
worker.

In the P2P pattern, observing
forwarded messages lets the process
engine perceive how far the request
has spread and when to stop wait-
ing for outstanding replies. Exam-
ple short-term adaptation strategies
include recommending new contacts,
provisioning specific message types
to improve collaboration efficiency,
and repeating requests to counteract
ignored messages.

For the shared artifact pat-
tern, the process engine observes

the number of involved authors,
whether multiple authors engage in
an edit war, and the frequency of
write requests. Adaptation actions
address the applicable mechanisms
for conflict detection, conflict avoid-
ance, and content-merging capabili-
ties. Large, heavily edited artifacts
become candidates for splitting.

Finally, the crowdsourced spell-
checking task requires the process
engine to monitor the successful
completion of individual jobs. The
process engine schedules multiple
identical tasks for the sake of reliabil-
ity, or issues multiple sequential tasks
until it receives the desired results.

These examples are for pattern-
specif ic observation and adapta-
tion behavior. Adaptation strategies
potentially leverage cross-pattern
synergies. If some author doesn’t
respond, and we know that we applied
the P2P pattern to find him, we sub-
sequently explore the social network
to find a suitable replacement. The
same strategy doesn’t work when the
author is a worker from the crowd.

T he explicit distinction between
(human) components and (human)

connectors is just the first step in
achieving adaptive, Web-scale col-
laborative workflows. Much effort
needs to go into investigating how
the applied patterns should change
at runtime, how to integrate humans
and software within a collaboration-
level connector, and how to achieve a
balance between autonomic and rec-
ommendation-driven adaptations.

References
1. S. Dustdar and M. Gaedke, “The Social

Routing Principle,” IEEE Internet Com

puting, vol. 15, no. 4, 2011, pp. 80–83.

2. J.C. Georgas and R.N. Taylor, “Policy-

Based Architectural Adaptation Manage-

ment: Robotics Domain Case Studies,”

Software Eng. for SelfAdaptive Systems,

B.H. Cheng et al., eds., Springer, 2009,

pp. 89–108.

Figure 4. The crowdsourcing collaboration pattern. Here, a single task splits
into multiple independent, replicated jobs that workers then claim.

Worker 1
(component)

Worker 2
(component)

Worker 3
(component)

Worker 4
(component)

Job advertising
(connector)

Master
(connector)

Task

Job

Job

Job

Job

IC-16-02-WSWF.indd 76 2/11/12 10:42 AM

Flexible Social Workflows

MaRCH/aPRIL 2012 77

3. S. Dustdar and T. Hoffmann, “Interaction

Pattern Detection in Process-Oriented

Information Systems,” Data Knowledge

Eng., vol. 62, July 2007, pp. 138–155.

4. C. Dorn and R.N. Taylor, Mapping Soft

ware Architecture Styles and Collabora

tion Patterns for Engineering Adaptive

Mixed Systems, tech. report, Inst. of

Software Research, Univ. of California,

Irvine, June 2011; www.isr.uci.edu/tech_

reports/UCI-ISR-11-4.pdf.

5. R.N. Taylor, N. Medvidovic, and P. Oreizy,

“Architectural Styles for Runtime Software

Adaptation,” Proc. Joint Working IEEE/

IFIP & European Conf. Software Archi

tecture (WICSA/ECSA), IEEE Press, 2009,

pp. 171–180.

Christoph Dorn is a visiting researcher at

the Institute for Software Research, Uni-

versity of California, Irvine. His current

research focuses on co-adaptation of soft-

ware systems and human collaboration.

Dorn has a PhD in computer science from

the Vienna University of Technology. He

was recently awarded an Austrian Sci-

ence Fond (FWF) Schroedinger Mobility

Fellowship. Contact him at cdorn@uci.

edu; http://christophdorn.wordpress.com.

Richard N. Taylor is a full professor of informa-

tion and computer sciences at the Univer-

sity of California, Irvine, and the director

of the Institute for Software Research,

which is dedicated to fostering innovative

basic and applied research in software and

information technologies. Taylor has a PhD

in computer science from the University

Colorado at Boulder. He’s an ACM fellow

and received the 2009 ACM SIGSOFT Out-

standing Research Award. Contact him at

taylor@uci.edu; www.isr.uci.edu/~taylor/.

Schahram Dustdar is a full professor of computer

science (informatics) with a focus on Inter-

net technologies and heads the Distributed

Systems Group, Institute of Information Sys-

tems, at the Vienna University of Technology

(TU Wien). Dustdar is an ACM Distinguished

Scientist. Contact him at dustdar@infosys.

tuwien.ac.at; www.infosys.tuwien.ac.at/.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

Figure 5. The human architecture modeling environment. A software designer models the desired collaboration patterns
based on HumanComponents, HumanConnectors, and CollaborationObjects.

IC-16-02-WSWF.indd 77 2/11/12 10:42 AM

