
JULY/AUGUST 2012	 1089-7801/12/$31.00 © 2012 IEEE	 Published by the IEEE Computer Society� 15

Pr
og

ra
m

m
at

ic
 W

eb
 I

nt
er

fa
ce

s

A ny attempt to standardize the inter-
faces of commercial IT service offer-
ings must cope with the tension

between unification and differentia-
tion. Although, from the standardiza-
tion viewpoint, the agreed-on interface
should be alike for all service provid-
ers, each vendor naturally strives for a
way to expose its unique features and
ensure customer retention.

In the domain of cloud computing,
several current projects aim to provide
a single API for the plethora of proprietary
service provider interfaces. However,
the most popular of these — libcloud
(http://libcloud.apache.org) and Delta-
Cloud (http://deltacloud.apache.org) —
follow a proxy/adapter pattern approach.
This has a fundamental limitation: it
introduces an additional layer of indi-
rection into the system.

The Open Cloud Computing Interface
(OCCI) addresses both the unification
and differentiation aspects. It provides
a unified and extensible API and offers

discoverable capabilities. OCCI reduces
the overhead of code and operational
management by removing intermedi-
ate state management and reclaiming
latency losses. Here, we describe OCCI’s
development and architecture, discuss
current issues associated with the
spread of proprietary cloud manage-
ment APIs and approaches to harmo-
nize them, and highlight current OCCI
implementations and deployments in
the cloud community.

Why a Cloud Standard?
Multiple cloud service and software
providers exist, and they all have
some kind of API. So why do we need
another one?

We could have asked the same
question about network software APIs
before TCP became widely accepted as
a lingua franca for networking. The
answer at the time was that customers
wanted to be able to buy from any ven-
dor, possibly several at once, without

Today’s cloud ecosystem features several increasingly divergent management

interfaces. Numerous bridging efforts attempt to ameliorate the resulting

vendor lock-in for customers. However, as the number of providers continues

to grow, the drawback of this approach becomes apparent: the need to

maintain adapter implementations. The Open Cloud Computing Interface

builds on the fundamentals of modern Web-based services to define a

standardized interface for cloud environments while enabling service providers

to differentiate their service offerings at the same time.

Andy Edmonds
Intel Labs Europe

Thijs Metsch
Platform Computing

Alexander Papaspyrou
Technische Universität Dortmund

Alexis Richardson
VMware

Toward an Open
Cloud Standard

IC-16-04-Papa.indd 15 6/5/12 5:23 PM

Programmatic Web Interfaces

16	 www.computer.org/internet/� IEEE INTERNET COMPUTING

having to change how their applications were
written to use that vendor’s software. For non-
commercial users, better integration can lead to
more effective collaboration.

Standardizing APIs is an integration and
interoperability problem. One way to solve it is for
the market to pick one vendor as the “standard,”
and for every competing system to then duplicate
that vendor’s API. Unfortunately, this approach
has some problems. The first is asymmetry:
this privileges a single vendor who can then
dictate the terms for use of its API. In most
cases, this means that whenever the vendor
changes its API, everyone else must follow. But
the vendor is under no symmetric obligation to
cooperate — for instance, by warning others of
changes. Worse, the vendor can introduce com-
mercial and legal frictions, including fees and
patents. The second problem is fitness: in early
stage markets, arguing that a single vendor is
fit for all common purposes is difficult, because
use cases are still emerging.

In the TCP case, the community solved this
problem by picking a technology specification
that described real systems with broad cases
that weren't vendor controlled. Furthermore,
by choosing a suitable legal framework (the
IETF), TCP users could have confidence that they
wouldn't be sued. By enabling interoperable net-
working, TCP solved the integration problem.

The chief benefit was commoditization. The
creation of an open marketplace for TCP software
and solutions providers, as well as an ecosystem
of add-on applications, drove down costs. So, not
only did this solve the integration problem, but
everyone could build better systems faster and
bring new business to market at lower cost.

Born from a community of real cloud com-
puting practitioners, OCCI aims to do this for
cloud APIs. As with TCP and networking, HTTP
has become the lingua franca for cloud APIs.
OCCI builds on HTTP using the well-established
and broadly accepted REST patterns.1 Like TCP,
it’s completely open, and it can evolve and co-
exist with all open and proprietary APIs.

OCCI Overview
OCCI comprises a set of open, community-
led specifications delivered through the Open
Grid Forum (OGF) that deal with cloud service
resource management. Since OCCI efforts began
in April 2009, it has become one of the most
promising APIs in cloud standardization.

OCCI’s ambitious goal is to enable service
providers to differentiate their service offer-
ings through a standardized interface. During
its first months, the OCCI working group took
a top-down approach and evaluated many of
today’s available cloud APIs and interfaces.
From there, OCCI underwent many develop-
ment efforts from numerous contributors, which
eventually led to real-world implementations
and deployments.

Alongside these implementations, the OCCI
working group continues to drive and extend
the specification. This includes not only work on
interoperability test suites and verification mech-
anisms but also collaborations with other stan-
dards organizations working on cloud-related
specifications.

The working group is developing the OCCI
specification around the ideas of integration,
innovation, portability, and, at the core, interop-
erability. OCCI’s modular approach allows for
extensibility, flexibility, and the discovery of
capabilities. Although it focuses on provid-
ing interoperable infrastructures, OCCI can be
adopted into many cloud-related setups.2

As a unified, extensible API, OCCI is uniquely
positioned in the area of cloud standardiza-
tion, and the open and community-led effort
operates similarly to the IETF: it not only
uses the same open-minded concepts but
also adopts many IETF-driven technologies,
mainly surrounding the HTTP specification
suite.

Architecture
OCCI is a boundary API that uses HTTP and the
REST architectural style. It creates a standard-
ized API for all kinds of service offerings and
delivers an interoperable interface for many
different services (see Figure 1).

Because OCCI lives on the boundary, service
consumers must be able to discover what service
providers offer. So, the working group designed
the specification with three main goals:

•	 Discoverability. Service consumers can query
the service provider to find out what capa-
bilities are available. The information is
self-describing and complete. If the service
consumer is a broker, it can request that
multiple service providers describe what’s
offered and then choose from among
them.

IC-16-04-Papa.indd 16 6/5/12 5:23 PM

Toward an Open Cloud Standard

JULY/AUGUST 2012� 17

•	 Extensibility. Because cloud computing spans
a broad set of offerings, from infrastructure
to software as a service (IaaS to SaaS), the
OCCI specification must be extensible. Cur-
rently, it specifies one extension for the IaaS
domain, but the working group can add
others, as can providers themselves. Ser-
vice consumers must be able to discover the
extensions available.

•	 Modularity. Because of its extensibility,
OCCI must be modular. Indeed, even the
OCCI specification itself is split into three
documents: the first describes the core
model, which serves as the foundation; the
second describes an extension to this model
for the IaaS domain; and the third describes
a simple text-based HTTP RESTful render-
ing. Each document can be used individu-
ally, ignored, or replaced as the situation
requires.

With these design constraints in mind, let’s
look at how the OCCI model is constructed and
then relayed to and from a client.

Models
OCCI’s foundation is the core model, which
gives OCCI its self-description and extensibil-
ity features. Because the core model is constant,
all extensions can build on it. Extensions can
even be transitive (that is, extend other exten-
sions), as long as the hierarchy has the core
model at its root. Figure 2 shows OCCI’s modu-
lar approach.

Figure 1. The Open Cloud Computing Interface (OCCI). As a boundary protocol, it helps decouple
the proprietary resource management interface from the consumer side, introducing standard
mechanisms for interaction over the HTTP protocol. OCCI is designed to coexist with proprietary
APIs, yet expose them via standardized means as part of the protocol.

RMF-speci�c
communications
and mapping

Service provider
domain

Resource
management
framework

Resources

OCCI

Most
interoperable

Least
 interoperable

Proprietary
API

Service
consumer

HTTP
communications

Internal
communications

Figure 2. The Open Cloud Computing Interface
(OCCI) model. OCCI takes a modular approach,
allowing for self-description and extensibility.

Monitoring and
agreements

Core

IaaS PaaS

RESTful
renderingrendering
RESTful

JSON/OVF

IC-16-04-Papa.indd 17 6/5/12 5:23 PM

Programmatic Web Interfaces

18	 www.computer.org/internet/� IEEE INTERNET COMPUTING

OCCI seeks to cleanly separate its model
from the model’s rendering (we use the term
“rendering” in the sense of serialization here).
Because the renderings provide a way to render
extensions as well as the core model, service
providers don’t need to write new render-
ings when extensions are added or removed.
Although OCCI initially focused on the IaaS
domain, extensions have been written against
the core model to represent grid computing,
monitor agreements, and describe platform as a
service (PaaS) domains.2 These extensions don’t
affect the core model or the renderings.

Core. The core model’s main objective is to
introduce a type system through what OCCI
calls categories: each resource in the OCCI
namespace has a type that defines its capabili-
ties (attributes, actions, and so on).3 Categories
are freely definable and uniquely identifiable
using a scheme. They can relate to each other
and thereby define a hierarchy.

Categories define only the type of resource.
Extensions (such as the infrastructure extension
described later) thus define subcategories that
extend from the main categories themselves.

First, each resource instance will have one
kind that's defined by a category in the OCCI
model. This kind is immutable and specifies
a resource’s basic set of characteristics. This
includes its location in the hierarchy, attributes,
and applicable actions.

The action category defines an action and
its parameters. An action is a specific operation
that can be executed on a resource.

A mixin is a way of dynamically adding or
removing a resource instance’s capabilities. We
can think of mixins as a way to inherit addi-
tional capabilities by composition (OCCI uses
the composite pattern to realize mixins). They
are similar to the concept many modern pro-
gramming languages incorporate that allows
for bundling reusable features. Object-oriented
programming languages, such as Scala and
Ruby, support this concept out of the box. Each
OCCI resource can have zero or more mixins.
An OCCI mixin also has a set of capabilities
such as a location in the URI hierarchy, appli-
cable actions, and attributes. This means that a
resource instance’s capabilities can be altered
over time. OCCI also leverages mixins as a tem-
plating mechanism. It defines templates as mix-
ins that can be applied to resource instances,

which then assume the template’s characteris-
tics. Last but not least, OCCI uses mixins to tag
resource instances and so enable folksonomic
organization.

Complementing the category class is the
entity class, which represents a type’s instances;
entities can be either resources or links. Figure 3
shows all these elements and how they relate to
each other.

The resource entity represents resources
that are exposed to the service consumer. The
resources that each entity represents can be
abstractions from what the service provider
exposes through his or her underlying resource
management framework. Links create an asso-
ciation between resource entities. A link is a
directed association between two resources,
but because it derives from an entity, it’s also a
resource itself and, as such, is exposed as a URI
in a RESTful interface. Each entity is of a cer-
tain kind and can be assigned multiple mixins.
The kinds, mixins, and actions of a resource are
all exposed through their category definitions.

Some might view setting up a type system
with categories as a remake of MIME media
types. However, they are in fact orthogonal to
them, because the main difference lies in their
purpose: MIME media types indicate how the
data delivered is being rendered, whereas cat-
egories indicate what data is being rendered.
(Remember that in OCCI, the model is decoupled
from the rendering. Other renderings might not
have MIME media types.) In fact, categories
don’t attempt to replace MIME media types, but
rather complement them and broaden the usage
model.

The category type system is more feature-
rich than a system using MIME media types
alone: categories are self-descriptive, discover-
able through a query interface, and self-sufficient.
A resource in the OCCI model can have multi
ple categories assigned, exposing several fac-
ets simultaneously. In combination with MIME
media types, categories deliver a powerful system
for resource metadata exposure that supports
different renderings of the same information for
any given resource type.

Within the query interface, service con-
sumers can find all categories that are usable
in a service provider’s namespace. The query
interface exposes all registered categories and
their corresponding hierarchy and describes
how each individual category is composed

IC-16-04-Papa.indd 18 6/5/12 5:23 PM

Toward an Open Cloud Standard

JULY/AUGUST 2012� 19

(such as its capabilities and so on). Categories in
the query interface can of course be filtered and
searched for.

Infrastructure. The infrastructure model4 is an
extension to the core model that models entities
in the IaaS domain. In the context of the core
model, it describes a set of resources with their
capabilities and how to link those resources
together if required.

Through categories, the infrastructure spec-
ification describes three kinds, which can be
used to create the resource instances of com-
pute, storage, and network. When instantiated,
any of the three will be accessible through the
RESTful interface as URIs. Figure 4 shows how
these entities relate to their corresponding parts
in the core model.

The extension also further specifies links
between resources. Links are necessary to rep-
resent associations between resources, such as
a compute instance that links to an OSI layer 2
network device router or a storage resource —
for example, a database, block device, or Cloud
Data Management Interface (CDMI) end point.
OCCI accomplishes interoperability with CDMI,
for instance, through the linking mechanism.

Service consumers can apply mixins to
some of the described infrastructural entities.
Commonly, the infrastructural model’s mixins
are applied — especially in the case of ser-
vice providers — to network-related entities
to give them layer 3 and 4 networking capa-
bilities. Otherwise, such entities would repre-
sent only layer 2 networking entities, which
aren’t particularly useful for internetworking.

Figure 3. Different elements of the Open Cloud Computing Interface core model. Note the separation into core and
meta models. The former describe the foundation of the OCCI type system, introducing the base Entity resource,
whereas the latter comprises the descriptive part of the model that allows introspection into model instances.

-entity_type:Entity

+ id:URI
+ title
 :String[0..1]

+ summary :String[0..1]

+ scheme :URI
+ term :String
+ title :String[0..1]
+ attributes :Set<String>

1

target

1

+ source

*

links

0..1 *

actions

1 category

*

1

kind

*

*

mixins

0..1*

actions *

*

related

0..1

*

related

IC-16-04-Papa.indd 19 6/5/12 5:23 PM

Programmatic Web Interfaces

20	 www.computer.org/internet/� IEEE INTERNET COMPUTING

Figure 5 illustrates this concept. By dynami-
cally adding an IPNetwork mixin to the Network
resource, extra capabilities are added to the
resource instance. Note that multiple mixins
can be bound to a resource and that because
links are themselves entities, we can add mix-
ins to links as well.

The categories hierarchy ensures that only
mixins relevant to the resource instance in
question can be added. This way, service con-
sumers and providers are limited to adding a
mixin to a resource instance that’s in the mix-
in’s hierarchy. This means that applying net-
working mixins to a StorageLink isn’t possible.
Because the hierarchy itself isn’t limited, mix-
ins can build on other mixins.

Figure 6 describes a simple portal service
users access to run a MapReduce application.
This application has also been used to explore
interoperability in the cloud with regard to
integrating OCCI, the Open Virtualization For-
mat (OVF), and CDMI.5 The service is described
using OCCI’s infrastructure extension model.

Service consumers can access all entities
illustrated in Figure 6 through their own URIs.
The l inks, compute, and network resource
instances would be in the same provider’s
namespace (but aren’t required to be), whereas

the storage entities could be hosted through
a CDMI-compatible interface. Note that the
links are essential to the core model’s ability to
express associations.

Figure 7 shows a request for creating the
virtual machine that represents the portal.

When creating the instance using HTTP
POST, a category for the virtual machine’s kind
is present alongside the network association.
This tells the service provider to connect the
virtual machine to a certain service-provider-
managed network.

Where OCCI Differs Architecturally
OCCI sits on the boundary between the resource
management framework and the service con-
sumer. It isn’t a “Web-API-to-Web-API” proxy
pattern, such as those used in DeltaCloud and
libcloud. Although a proxy pattern offers more
f lexibility, it also affects latency and man-
ageability: the proxy pattern is another level
of indirection, so requests to or from a client
incur an additional delay. Moreover, the soft-
ware implementing the proxy pattern is another
entity to manage and maintain. A proxy pat-
tern implements support for various providers
through drivers. If one provider changes its
interface, the driver within the implementing

Figure 4. UML model of the infrastructure components in the Open Cloud Computing Interface. On the left side, the
types denote a service provider’s physical resources (such as a compute resource instance); on the right, ephemeral
entities are described (for example, a storage mount point).

(from occi::core)(from occi::core)

+ summary
 :String[0..1]

+ occi.storagelink.deviceid
 :String
+ occi.storagelink.mountpoint
 :String[0..1]
+ occi.storagelink.state
 :Enum

+ occi.storage.size
 :int
+ occi.storage.state
 :Enum

+ occi.networkinterface.
 interface:String
+ occi.networkinterface.
 mac:String
+ occi.networkinterface.
 state:Enum

+ occi.network.vlan
 :Integer[0..1]
+ occi.network.label
 :Token[0..1]
+ occi.network.state
 :Enum

+ occi.compute.architecture
 :Enum[0..1]
+ occi.compute.cores
 :Integer[0..1]
+ occi.compute.hostname
 :String[0..1]
+ occi.compute.speed
 :Float[0..1]
+ occi.compute.memory
 :Float[0..1]
+ occi.compute.state
 :Enum

target

+ source

*

links

IC-16-04-Papa.indd 20 6/5/12 5:23 PM

Toward an Open Cloud Standard

JULY/AUGUST 2012� 21

proxy software must also be updated. If support
for multiple providers is present, the mainte-
nance requirement again increases.

Using OCCI as the interface to the resource
management framework removes the need for
proxies, drivers, and even multiple drivers (see
Figure 8). We should thus view proxies as a tem-
porary solution to support cloud operators wish-
ing to expose proprietary, legacy interfaces.

OCCI enables resource management through
a standardized API that directly targets a
resource management framework-specific API;
this is quite different in intent from proxy-
style frameworks. Also, using OCCI reduces the
amount of indirection and abstraction required
to get to the final target resource management
framework.

Overall, OCCI enables system architecture
optimization by bringing the API closer to the
managed resources. It avoids additional depen-
dencies and inefficiencies, and reduces the over-
all management and maintenance of system
components. Given that proxies hold information
about ongoing interactions, avoiding them fur-
ther reduces additional state management.

How OCCI Uses the Web
The OCCI HTTP specification6 details how the
core model and its extensions can be trans-
ported over the wire. When implemented and
deployed, OCCI uses many of today’s available
HTTP features. It builds on the Resource Ori-
ented Architecture (ROA) paradigm and uses
REST to handle client and service interactions.
Additionally, it defines some simple ways to fil-
ter and query the service provider.

Each entity (that is, resources and links) is
exposed through URIs. Service consumers can
use the normal set of HTTP verbs (POST, PUT,
GET, and DELETE) to manage these resources, and
can alter resource instances by updating their
representation.

In this context, Tim Bray notes the idea of
controller functions (see www.tbray.org/ongoing/
When/200x/2009/03/20/Rest-Casuistry): although
a RESTful approach would be to change a
resource instance’s attributes to initiate a state
change, this doesn’t always make sense. Like all
requests that reflect an update of a resource
instance using HTTP PUT, updating a resource
should be idempotent. This means that repeated
requests against a resource will always have the
identical output result and effect on the system.

Triggering operations such as shutdown, however,
might lead to halting, killing, or suspending.
Naturally, the result of the operation can’t be
identical to the request in such a case, due to
the transition in state.

OCCI adopts this viewpoint through the
notion of actions, triggered by the HTTP POST
verb. Much like pushing a button that triggers
a process in the background, an action leads to
different state changes in a life cycle.

Actions within the OCCI model can have
parameters and, as detailed in the core model,
are exposed using a category definition. They are
therefore discoverable and, as Figure 9 shows,
can be associated with resource instances. Ser-
vice consumers would use the request in Figure 9
to retrieve a service provider’s single category
(through the filtering mechanism) using the
query interface.

The current OCCI HTTP specification lever-
ages several IETF recommendations, especially
the core HTTP RFC 2616. Other important
specifications include URIs that can identify

Figure 5. Relationships between different mixins. The upper
resource, net1, depicts a physical network without layer 3
capabilities. The lower resource, net2, attaches an IPNetwork
mixin that adds these capabilities – in this case, a network address
and a gateway.

occi.network.vlan = 431
occi.network.label = private
occi.network.state = active
occi.network.address = 192.168.1.1/24
occi.network.gateway = 192.168.1.1
occi.network.allocation = dynamic

occi.network.vlan = 332
occi.network.label = dmz
occi.network.state = active

Without
mixin

With
mixin

term = ipnetwork
scheme = http://schemas.ogf.org/occi/
infrastructure/network#
title = "An IP Network Mixin"

IC-16-04-Papa.indd 21 6/5/12 5:23 PM

Programmatic Web Interfaces

22	 www.computer.org/internet/� IEEE INTERNET COMPUTING

and handle resources (RFC 3986), well-known
URIs that clearly define the query interface’s
entry point (RFC 5785), and HTTP Authenti-
cation (RFC 2617) to deal with authentication
mechanisms.

Although OCCI is built on these specifi-
cations, service providers might choose to
leverage other RFCs (RFCs 3280 and 5246 for
security, for example) to offer clients an even
richer API.

Ongoing efforts would give OCCI a more
structured rendering, instead of the simple text
rendering that evolved during the standard’s
creation, and the working group is attempting
to reach consensus on these topics. A current
draft describes how JavaScript Object Notation
(JSON) can be used as a drop-in replacement
(without needing to modify the core or infra-
structure model) for the current rendering that
the OCCI models and their extensions use.

The OCCI working group is currently inves-
tigating asynchronous behaviors associated
with service offerings. This is useful for fea-
tures such as notifying service consumers when
monitoring is being used, and providing a con-
stant stream of up-to-date information. A mon-
itoring and agreement negotiation extension for

> POST /compute/ HTTP/1.1#
> User-Agent: curl/7.21.1 (i386-pc-solaris2.11) libcurl/7.21.1 OpenSSL/

0.9.8o zlib/1.2.3 libidn/1.9
> Host: localhost:8888
> Accept: */*
> Content-type: text/occi
> Category: compute; scheme="http://schemas.ogf.org/occi/infrastructure"
> X-OCCI-Attribute: occi.compute.speed=2
> Link: </network/123>; rel="http://schemas.ogf.org/occi/infrastructure#network";
 category="http://schemas.ogf.org/occi/infrastructure#networkinterface";
 occi.networkinterface.interface="eth0";
 occi.networkinterface.mac="00:11:22:33:44:55"
>

< HTTP/1.1 201 OK
< Content-Length: 2
< Content-Type: text/plain; charset=UTF-8
< Location: http://localhost:8888/compute/40675abc-c4ca-e6dd-ac7e-fa057cd5b164
< Server: pyssf OCCI/1.1
<

Figure 7. A compute resource instantiation over the Open Cloud Computing Interface using the HTTP
rendering. All information is provided inline, such that the service provider can infer missing data and
start up the corresponding machine with the requested properties.

Figure 6. Possible Open Cloud Computing Interface application
areas. Users can access this simple portal service to run a
MapReduce application.

Hadoop service

Portal
(compute)

Network
private
c-class

Public Internet
(service end

user)

uses

uses

link

link

link

Storage
database

Hadoop
node

(compute)

Hadoop
(master)

(compute)

Storage
database

link

link

Statically assigned
private IP addresses

link

D
yn

am
ic

al
ly

 a
ss

ig
ne

d
pu

bl
ic

 IP
 a

dd
re

ss

IC-16-04-Papa.indd 22 6/5/12 5:23 PM

Toward an Open Cloud Standard

JULY/AUGUST 2012� 23

Figure 8. Open Cloud Computing Interface as a replacement for proxy-based API approaches. Here,
we see the overhead of an additional software (or even middleware) layer in the process, adding
overall latency and, more importantly, maintenance costs per additional driver.

Service provider
domain

Resource
management
framework

Resources

Service
consumer

Proprietary
API

Driver
X

Driver
Y

Driver
Z

P
ro

xy

Is this needed?
When this has

a standard
(OCCI)?

This is:
• More indirection (another brick in the ˝ ivory tower˝)
• Less efficient (think latency)
• More management (additional component to maintain)

Pr
ox

y
cl

ie
nt

> GET /.well-known/org/ogf/occi/ HTTP/1.1
> User-Agent: curl/7.21.1 (i386-pc-solaris2.11) libcurl/7.21.1 OpenSSL/0.9.8o zlib/1.2.3 libidn/1.9
> Host: localhost:8888
> Accept: */*
> Content-type: text/occi
> Category: compute;scheme="http://schemas.ogf.org/occi/infrastructure"
>

< HTTP/1.1 200 OK
< Content-Length: 592
< Etag: "1fb0432a8222fb441a6cbf5e6acb02b701a2ed94"
< Content-Type: text/plain
< Server: pyssf OCCI/1.1
Category: compute; scheme="http://schemas.ogf.org/occi/infrastructure#"; class="kind";
 title="A compute instance"; rel="http://schemas.ogf.org/occi/core#resource";
 location=/compute/;
 attributes="occi.compute.architecture occi.compute.cores occi.compute.hostname
 occi.compute.speed occi.compute.memory occi.compute.state";
 actions="http://schemas.ogf.org/occi/infrastructure/compute/action#start
 http://schemas.ogf.org/occi/infrastructure/compute/action#stop
 http://schemas.ogf.org/occi/infrastructure/compute/action#restart
 http://schemas.ogf.org/occi/infrastructure/compute/action#suspend"
<

Figure 9. Filtering resources through the query interface. A service consumer would use this request to retrieve
a service provider’s single category (here, compute) to discover its capabilities and f ind the location of its
instances.

IC-16-04-Papa.indd 23 6/5/12 5:23 PM

Programmatic Web Interfaces

24	 www.computer.org/internet/� IEEE INTERNET COMPUTING

OCCI is also under development so that service
providers can offer service-level agreements
(SLAs) to their customers.

Impact and Implementations
To be successful, standards must both be grounded
in reality, taking their requirements from real-
world use cases, and respect core tenets of suc-
cessful standardization activities. One such
activity, the Advanced Message Queuing Pro-
tocol (AMQP),7 defined a successful standard to
be a collective effort and a fully defined, open,
royalty-free, unpatented specification that enables
anyone to implement a compatible service; be
cited in an organization that can protect these
features; and have real-world implementations
and live deployments.

The OCCI working group is a collective of
stakeholders from industry and academia. All
members work together under the intellectual
property rights protection that the OGF offers.
OCCI is clearly defined, royalty free, and lets
anyone implement the service. Numerous OCCI
implementations — many of them open source —
are available, including Eucalyptus (www.
eucalyptus.com), OpenNebula (http://opennebula.
org), OpenStack (http://openstack.org), and lib-
virt (http://libvirt.org). Other OCCI-related soft-
ware is also available to the community.

Various deployments hosting live systems use
OCCI. For example, SARA’s HPC Cloud system
(www.sara.nl/services/cloud-computing) offers
high-performance computing resources to sci-
entists from areas such as geography, ecology
bio-informatics, and computer science. Currently,
the system comprises 608 cores and 4.75 Tbytes
of RAM distr ibuted so that each node has
10 Tbytes of local storage.

The OpenStack infrastructure management
framework shares several of OCCI’s ideals and
has many early adopters (including Dell, Rack-
space, AT&T, and Hewlett-Packard). OCCI can
provide interoperability for not only the various
OpenStack deployments but also deployments
of other infrastructure management frame-
works, such as OpenNebula. A superb example
is the European Grid Infrastructure (EGI) feder-
ated environment (more than 1,400 cores), which
uses multiple infrastructure and management
frameworks but harmonizes them using OCCI.
Another interesting use of OCCI that impres-
sively demonstrates its flexibility is within the
CompatibleOne project (www.compatibleone.org),

which uses OCCI as the core of its architec-
ture, not only to provision IaaS-type instances
but also to broker between many service
providers.

In addition to fulfilling the four key points
required for a successful standard, many global,
coordinating standards activities have expressed
interest in OCCI:

•	 The US National Institute of Standards and
Technology (NIST) has listed and noted OCCI
in its cloud computing program strategic
efforts, particularly in the area of Standards
Acceleration to Jumpstart Adoption of Cloud
Computing (SAJACC).

•	 The Standards and Interoperability for
e-Infrastructure Implementation Initiative
(SIENA) has named OCCI a key recommenda-
tion for cloud standards in its “European Road-
map on Grid and Cloud Standards for eScience
and e-Government” (www.sienainitiative.
eu/Repository/Filescaricati/8ee3587a-f255-
4e5c-aed4-9c2dc7b626f6.pdf). Integrating
OCCI with CDMI and OVF has been recommended
for future eScience and e-government
platforms.

•	 The UK government’s G-Cloud initiative
came out of the UK’s cabinet off ice in
response to the growing interest in cloud
computing within the government. Sev-
eral reports, among them the Technical
Architecture Workstrand Report, recommend
using OCCI (www.cabinetoff ice.gov.uk/
s i t e s /d e f au l t / f i l e s / r e s ou r c e s /0 8 - G -
CLOUD-TechnicalArchitectureWorkstrand-
Report.pdf).

•	 The German Federal Ministry of Econom-
ics and Technology has identified OCCI as
the leading standard for cloud comput-
ing in terms of both maturity and impact
in its recently published report, “The Stan-
dardization Environment for Cloud Com-
puting” (www.bmwi.de/English/Navigation/
Service/publications,did=476736.html).

•	 As the major stakeholder for e-infrastructure
for the European research area, EGI has
adopted OCCI as the flagship standard for
infrastructure management within its over-
all eScience platform vision. To this end, EGI
integrates OCCI with other standards toward
a federated IaaS ecosystem profile. Comple-
menting this activity in the US, FutureGrid
is also considering the using OCCI.

IC-16-04-Papa.indd 24 6/5/12 5:23 PM

Toward an Open Cloud Standard

JULY/AUGUST 2012� 25

O CCI is one of the first and most mature
efforts to bring standardized protocols and

interfaces to the cloud. It can evolve and co-
exist with all open and proprietary APIs, and
it encompasses an evolving world of cloud
resources. Furthermore, the OCCI team has
actively collaborated with other open standards
initiatives such as the Distributed Management
Task Force (DMTF) and the Storage Networking
Industry Association (SNIA). The output of these
collaborations is critical to forging ahead in the
world of cloud standards and demonstrating
that enough intersecting and complementary
standards exist to realize a standards-based,
open, and interoperable cloud.

The OCCI community offers an API and code
that implements that API along with compliance
and verification testing suites, but the adjoining
communities are providing real implementa-
tions for different infrastructure management
frameworks backing the API. Work is under
way to define additional extensions and refine-
ments to the specification, with a focus on
business-related requirements such as audit and
billing. Along with this work are other efforts
(such as FI-ware; www.fi-ware.eu) that use the
specification to expose service differentiators.

OCCI isn’t just a specification — it represents
a collective effort to create one of the first stan-
dards in the cloud space. OCCI’s extensibility fea-
tures offered through its core model, extensions,
and mixins can be added to other kinds of inter-
faces and in general be useful for other Internet
standards. Thus, we believe the future is bright for
broadly interoperable cloud computing.�

Acknowledgments
We thank all past and present contributors of the Open

Cloud Computing Interface working group. Special thanks

to John Kennedy (Intel Labs Europe), Winston Bumpus

(VMware), and the IEEE Internet Computing reviewers for

their valuable insights.

References
1.	 R. Fielding, “Architectural Styles and the Design of

Network-Based Software Architectures,” doctoral dis-

sertation, Univ. of California, Irvine, 2000.

2.	 A. Edmonds, T. Metsch, and A. Papaspyrou, “Open

Cloud Computing Interface in Data Management-

Related Setups,” Grid and Cloud Database Manage-

ment, vol. 1, Springer, 2011, pp. 23–48.

3.	 M. Behrens et al., “Open Cloud Computing Interface —

Core,” OGF Document Series, A. Edmonds et al., eds.,

recommendation track no. 183, Open Grid Forum,

June 2011.

4.	 M. Behrens et al., “Open Cloud Computing Interface —

Infrastructure,” OGF Document Series, T. Metsch and

A. Edmonds, eds., recommendation track no. 184, Open

Grid Forum, June 2011.

5.	 A. Edmonds, T. Metsch, and E. Luster, “An Open,

Interoperable Cloud,” InfoQ, July 2011, www.infoq.

com/articles/open-interoperable-cloud.

6.	 M. Behrens et al., “Open Cloud Computing Interface —

RESTful HTTP Rendering,” OGF Document Series,

T. Metsch and A. Edmonds, eds., recommendation track

no. 185, Open Grid Forum, June 2011.

7.	 J. O’Hara, “Toward a Commodity Enterprise Middle-

ware,” ACM Queue, vol. 5, no. 4, 2007, pp. 48–55.

Andy Edmonds is an applied researcher in the Intel Inno-

vation Open Lab and Cloud Services Lab. His research

interests include distributed and system architectures,

virtualization, service-oriented architectures, and

cloud computing. Edmonds has a research master’s

degree in distributed systems from Trinity College

Dublin. He currently cochairs the Open Grid Forum’s

Open Cloud Computing Interface working group.

Contact him at andy@edmonds.be.

Thijs Metsch is a senior technical consultant at Platform

Computing. His work has given him a deep knowledge of

distributed systems design, grid, and cloud computing

technologies. Metsch is a graduate engineer in Infor-

mation Technology from the University of Cooperative

Education Mannheim, Germany. He cofounded and

currently cochairs the Open Grid Forum’s Open Cloud

Computing Interface working group. Contact him at

tmetsch@gmail.com.

Alexander Papaspyrou is a researcher in computer science

at Technische Universität Dortmund, Germany. His

interests are in infrastructure capacity planning, adap-

tive resource management, mobile applications, and

standardization. Papaspyrou has an MS in computer

science from Technische Universität Dortmund. He cur-

rently cochairs the DCI Federation Working Group,

which develops profiles for federation use cases in on-

demand infrastructures. Contact him at alexander@

papaspyrou.name.

Alexis Richardson is a senior director for the VMware Cloud

Application Platform. He cochairs the Open Cloud

Computing Interface working group and helped create

the Advanced Message Queuing Protocol (AMQP). Prior

to joining VMware, he founded several companies, includ-

ing RabbitMQ. Contact him at arichardson@vmware.com.

IC-16-04-Papa.indd 25 6/5/12 5:23 PM

