
6 Published by the IEEE Computer Society 1089-7801/13/$31.00 © 2013 IEEE IEEE INTERNET COMPUTING

G
ue

st
 E

di
to

rs
’
In

tr
od

uc
ti

on

O ne of the most famous adages in
computer science is that “any
problem in computer science can

be solved by another level of indirec-
tion.” (This phrase, commonly attributed
to Roger Needham, was in fact attrib-
uted by Needham to David Wheeler.
Thus, it proves itself.) Increasingly, that
level of indirection takes the form of
virtualization, in which a resource’s
consumers are provided with a vir-
tual rather than physical version of
that resource. This layer of indirection
has helped address myriad problems,
including eff iciency, security, high
availability, elasticity, fault contain-
ment, mobility, and scalability.

Virtualization has been a part of
the computing landscape for nearly
half a century. In the 1960s and 1970s,
IBM developed the Control Program/
Cambridge Monitor System (CP/CMS)
which led into VM/370. These systems
let each user run what appeared to be
an isolated system, but all within one
timeshared computing environment.
Language-level v ir tual izat ion was
introduced around the 1980s to support
application-level portability and isola-
tion (Smalltalk-80, developed by Xerox
PARC, is probably the best example of
this). The Java Virtual Machine, intro-
duced by Sun in the 1990s, was in a

unique position: coming at the start of
the World Wide Web, it offered devel-
opers an opportunity to add executable
content to the Web in a portable and
secure manner. Although language-
level virtualization had a huge impact,
a significant gap exists between a VM
for a programming language runtime
environment and one for an entire
operating system. But once the chal-
lenges of vir tualizing modern com-
puter systems were addressed, the
march toward widespread adoption of
machine-level virtualization was rapid
and inexorable. The renaissance for
VMs can most likely be attributed to
Disco,1 a Stanford research project that
ultimately led to VMware.

Although VMs are the most obvi-
ous example of virtualization, others
include desktop sharing (Virtual Net-
work Computing), virtual networks, vir-
tual storage, and many more. All these
have an enormous impact on Internet
computing. Two personal anecdotes are
illustrative of how virtualization can
dramatically simplify problems.

Mobility
One of us (Fred Douglis) once worked
extensively on the problem of process
mobility (known as process migration).
Migrating workloads from one physical

Fred Douglis
EMC Backup Recovery Systems

Orran Krieger
Boston University

Virtualization

IC-17-02-GEI.indd 6 3/9/13 9:38 AM

Virtualization

MARCH/APRIL 2013 7

machine to another is important for balanc-
ing load, improving performance (for instance,
by colocating frequently communicating pro-
cesses), dealing with failures, and so on. The
work was successful in specialized systems
such as V,2 Accent,3 Sprite,4 Mach,5 and Mosix;6
however, migration was extremely fragile and
hard to maintain as a system evolved. In 2000,
Douglis coauthored a survey article on pro-
cess migration7 with a section discussing why
it had failed to achieve commercial acceptance.
While briefly acknowledging VMs’ potential to
facilitate process migration (as mentioned in the
Disco work), the article didn’t realize that vir-
tualization would be the key to making process
migration commercially practical.

In 2001, Peter Chen and Brian Noble pub-
lished a position paper, “When Virtual Is Better
Than Real,”8 arguing for the benefits of vir-
tual environment migration; in 2002, Stanford
researchers published “Optimizing the Migra-
tion of Virtual Computers”9 and ushered in the
new era of virtual migration. It turns out that
by encapsulating the state of the applications
you want to migrate as an autonomous VM, you
can solve many of the odd interprocess depen-
dencies that otherwise make process migration
so difficult and fragile.

Migration has now become ubiquitous and
a critical enabling technology, and is being
employed in production in ways the original
research didn’t envision. It has allowed the
industry to increase the use of data center serv-
ers by exploiting workload variability to host
more workloads on fewer machines. It allows
better failure models, for instance, by offload-
ing ongoing processes prior to upgrades or other
downtime. It’s critical to green computing, let-
ting hosts power off when demand is low. It’s
even being used today across data centers and —
experimentally, as described in one article in
this issue — between clouds. Without virtu-
alization, the promise of workload migration
would have gone unrealized.

Support for Games
Virtualization is normally thought to provide
benefits to enable individual VMs to achieve
larger goals, but at a cost in performance. How-
ever, one of us (Orran Krieger) first experienced
VMs in a very different context. When Sony
and IBM starting working together on the Cell/
Playstation 3, they faced an enormous technical

and cultural problem on how to develop soft-
ware for the platform. The fundamental prob-
lem was that the console game model, in which
the game gets total control of the hardware,
was incompatible with the platform’s expected
usage.

In previous generation consoles, games took
total control of the machine with no interven-
ing operating system. This is important for two
fundamental reasons. First, top game program-
mers were used to having absolute control of
the machine to achieve the best possible perfor-
mance. Second, without an underlying operating
system, a game that worked could be guaranteed
to work through a console’s entire lifetime. In
contrast, in the PC world, an OS upgrade would
frequently break or require upgrades to user
applications.

The game community felt that giving games
full control over the console was a critical
requirement needed on all future machines. On
the other hand, the Playstation 3 was expected
to have persistent storage and network connec-
tivity; it’s unacceptable that a single, poorly
designed game could corrupt a system. Many
felt that an operating system isolated from the
game was necessary for the platform.

In the end, the surprising solution for a 2006
consumer product was to adopt the 1960s main-
frame technology of virtualization. The devel-
opers created a hypervisor for the platform that
let games be deployed directly to virtualized
hardware with no underlying operating system.
Meanwhile, the network and persistent storage
were protected from a buggy application by an
operating system running on top of the same
hypervisor.

The Playstation 3 is one of the most success-
ful game consoles on the market. Virtualiza-
tion preserves all the best properties of previous
generation consoles while still allowing for
secure access to storage and the network.

In This Issue
These two examples illustrate how virtualiza-
tion’s level of indirection makes previously
intractable problems solvable. In the first, vir-
tualization helped a previously fragile technol-
ogy, workload migration, become commercially
viable. In the second, virtualization enabled
game deployment in a way that maximized
performance and isolated games from platform
upgrades.

IC-17-02-GEI.indd 7 3/9/13 9:38 AM

Guest Editors’ Introduction

8 www.computer.org/internet/ IEEE INTERNET COMPUTING

In this special issue, we consider three
other uses of virtualization; specif ically, we
include articles on language-level virtualization
exploited to automatically parallelize applica-
tions, network virtualization used to enable
tenant-specific network customization, and a
virtualization layer employed above existing
clouds to enable a multicloud grid.

The primary motivation for language-level
virtualization is to let programs be portable
across platforms. However, just as with other
forms of virtualization, once a well-defined
interface is enforced, the developer of the vir-
tualized service can innovate below that inter-
face. Developers of virtualized services have
provided security services, load balancing, and
scheduling guarantees, among other examples.

One of the greatest challenges facing soft-
ware today is how to exploit the parallelism
of modern processors. Although such proces-
sors have an ever-increasing number of cores,
most programmers have trouble writing code
that can exploit these machines. In our first
article, “Using Speculation to Enhance Java-
Script Performance in Web Applications,” Jan
Kasper Martinsen, Håkan Grahn, and Anders
Isberg use language-level virtualization to
automatically exploit multiple cores for Java-
Script applications. Even though JavaScript is
a sequential programming language, a great
deal of potential parallelism exists in many
Web applications. The authors’ approach gen-
erates new threads using method-level specu-
lation; if the speculation is wrong, the thread’s
effect is automatically undone, resulting in the
same functionality as the sequential program.
This approach improved performance for all the
Web applications studied and, in some cases,
achieved dramatic speedups.

Although virtualization is often associated
with processors, it’s exploited at all layers of the
computing stack. In the networking space, for
example, virtual LANs (VLANs) have been used
for decades to provide different isolated vir-
tual networks on a single physical network. In
the past few years, software-defined network-
ing (SDN)10 has introduced a major new use
for virtualization. Just as with machine virtu-
alization, SDN separates the control of virtual
networks from the services performed within
them. This enables various new services to be
embedded directly into the network and opens
up innovation at multiple levels.

Our second article, “Scalable Network Vir-
tualization in Software-Defined Networks,” by
Dmitry Drutskoy, Eric Keller, and Jennifer Rex-
ford, describes the FlowN architecture. FlowN
gives each tenant the illusion of its own virtual
network, including virtual network elements
(switches/routers/servers), ports, links, and its own
OpenFlow11 network controller. For efficiency, the
authors use a “container-based” approach to con-
troller virtualization in which multiple distinct
controller applications can share the same con-
troller. The separation of control into software lets
FlowN adopt a traditional relational database for
storing its metadata: the graph relationships of the
virtual networks and their mappings onto physi-
cal network links/switches. This approach both
greatly simplifies implementation and lets the
authors adopt existing relational database tech-
niques to achieve good scalability.

One of the most significant transformations
that virtualization has led to is infrastructure-
as-a-service (IaaS) cloud computing. Users can
access virtually unlimited computing power
whenever they need it, paying for only what
they use. Providers have the benefit of econo-
mies of scale and massively automated infra-
structure. The economics are so compelling that
many believe that all computing will eventually
move to the cloud, much like electric power’s
transition in the 1800s from individual elec-
tricity generators to electric utilities to today’s
electric grid. Virtualization is critical to the
cloud. It lets producers efficiently support many
tenants while strongly isolating them from each
other. Consumers are isolated from the specif-
ics of providers’ physical capacity, allowing, for
example, VMs to move between different com-
puters and even clouds.

In “Plug into the Supercloud,” Dan Williams,
Hani Jamjoom, and Hakim Weatherspoon focus
on using virtualization in cloud computing and
transitioning to a grid of clouds similar to the
electrical grid. Unfortunately, today’s clouds are
in many ways incompatible. Rather than relying
on standards, this article proposes recursively
applying virtualization to solve the problems
inherent to incompatible clouds. The authors
deploy their own hypervisor running within
VMs on each cloud, and then deploy (paravir-
tualized) operating systems to these VMs. They
demonstrate the ability to move VMs between
clouds and implement oversubscription on top
of today’s clouds.

IC-17-02-GEI.indd 8 3/9/13 9:38 AM

Virtualization

MARCH/APRIL 2013 9

T hese three articles demonstrate very differ-
ent approaches to virtualization, from pro-

gramming environments to networks to service
providers, each solving very different problems.
Looking forward, we expect virtualization to
have an ever-increasing impact on computing,
and we’ll undoubtedly revisit the topic many
times in the coming years.

References
1. E. Bugnion et al., “Disco: Running Commodity Oper-

ating Systems on Scalable Multiprocessors,” ACM

Trans. Computing Systems , vol. 15, no. 4, 1997,

pp. 412–447.

2. M.M. Theimer, K.A. Lantz, and D.R. Cheriton, “Pre-

emptable Remote Execution Facilities for the V-

System,” Proc. 10th ACM Symp. Operating Systems

Principles (SOSP 85), ACM, 1985, pp. 2–12.

3. E. Zayas, “Attacking the Process Migration Bottle-

neck,” SIGOPS Operating Systems Rev., vol. 21, no. 5,

1987, pp. 13–24.

4. F. Douglis and J. Ousterhout, “Transparent Process

Migration: Design Alternatives and the Sprite Imple-

mentation,” Software Practice and Experience, vol. 21,

no. 8, 1991, pp. 757–785.

5. D.S. Milojičić et al., “Task Migration on the Top of the

Mach Microkernel,” Proc. Usenix Mach III Symp., Usenix

Assoc., 1993, pp. 273–290.

6. A. Barak, S. Guday, and R.G. Wheeler, The MOSIX Dis-

tributed Operating System: Load Balancing for UNIX,

Springer, 1993.

7. D.S. Milojičić et al., “Process Migration,” ACM Comput-

ing Surveys, vol. 32, no. 3, 2000, pp. 241–299.

8. P.M. Chen and B.D. Noble, “When Virtual Is Better

than Real,” Proc. 8th Workshop Hot Topics in Operating

Systems (HOTOS 01), IEEE CS, 2001, p. 133.

9. C.P. Sapuntzakis et al., “Optimizing the Migration of

Virtual Computers,” Proc. 5th Symp. Operating Sys-

tems Design and Implementation (OSDI 02), ACM,

2002, pp. 377–390.

10. M. Casado et al., “Ethane: Taking Control of the Enter-

prise,” Proc. ACM SIGCOMM, ACM, 2007, pp. 1–12.

11. N. McKeown et al., “OpenFlow: Enabling Innovation in

Campus Networks,” ACM SIGCOMM Computer Com-

munication Rev., vol. 38, no. 2, 2008, pp. 69–74.

Fred Douglis is a consultant software engineer at EMC

Backup Recovery Systems. His research interests are

in storage, distributed systems, and Internet tools

and performance. Douglis has a PhD in computer

science from the University of California, Berkeley.

He’s a former editor in chief of IEEE Internet Com-

puting and is a senior member of IEEE and a mem-

ber of ACM and Usenix. Contact him at f.douglis@

computer.org.

Orran Krieger is a research professor and the director of

the Center for Cloud Innovation at Boston University.

His research interests include operating systems, par-

allel architecture and software, and cloud computing.

Krieger has a PhD in electrical and computer engi-

neering from the University of Toronto. He’s a mem-

ber of IEEE, ACM, and Usenix. Contact him at okrieg@

cs.bu.edu.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

• Hybrid journals known for their established impact factors

• New fully open access journals in many technical areas

• A multidisciplinary open access mega journal spanning all
 IEEE fields of interest

IEEE Open Access

IEEE offers a variety of open access (OA) publications:

Discover top-quality articles, chosen by the IEEE peer-review
standard of excellence.

Unrestricted access to today’s groundbreaking research

via the IEEE Xplore® digital library

Learn more about IEEE Open Access

www.ieee.org/open-access

12-TA-0424-Open Access 3.25x4.75 Final .indd 1 9/24/12 10:06 AM

IC-17-02-GEI.indd 9 3/9/13 9:38 AM

