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Abstract: Large-scale IoT services such as health-
care, smart cities and marine monitoring are pervasive 
in Cyber-physical environments strongly supported 
by Internet technologies and Fog computing. 
Complex IoT services are increasingly composed of 
sensors, devices, and compute resources within Fog 
computing infrastructures. The orchestration of such 
applications can be leveraged to alleviate the 
difficulties of maintenance and enhance data security 
and system reliability. However, how to efficiently 
deal with dynamic variations and transient operational 
behavior is a crucial challenge within the context of 
choreographing complex services. Furthermore, with 
the rapid increase of the scale of IoT deployments, the 
heterogeneity, dynamicity, and uncertainty within Fog 
environments and increased computational 
complexity further dramatically aggravate this 
challenge. This article provides an overview of the 
core issues, challenges and future research directions 
in Fog-enabled orchestration for IoT services. 
Additionally, we present early experiences of an 
orchestration scenario, demonstrating the feasibility 
and initial results of using a distributed genetic 
algorithm in this context. 
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I. INTERNET OF THINGS AND FOG COMPUTING 

The proliferation of the Internet and increasing 
integration of physical objects including sensors, 
vehicles, and buildings have resulted in the formation 
of Cyber-physical environments that encompass both 
physical and virtual components. These objects are 
capable of interfacing and interacting with existing 
network infrastructure, allowing for computer-based 
systems to interact with the physical world, thereby 
enabling novel applications in areas such as smart 
cities, intelligent transportation, and autonomous 
vehicles. The explosive growth in data generation has 
led to a focus in research and industry on issues 
related to how insight can be effectively extracted 
from such data to assist the design of Cyber-physical 
systems. IoT services typically comprise of a set of 
software components running over different locations 
connected through networks (i.e. 4G, wireless LAN, 
Internet etc.) that exhibit dynamic behavior.  Systems 

such as datacenters and wireless sensor networks 
underpin the data storage and compute resources 
required for the operation of these components. 

A new computing paradigm - Fog computing -  
succeeds Cloud computing by placing greater 
emphasis of computation and data storage at the edge 
of the network, allowing for reduced latency and 
response delay jitter for applications [1, 14]. These 
characteristics are particularly important for latency-
sensitive applications such as gaming and video 
streaming. In the IoT environment, existing 
applications and massive physical devices can be 
leveraged as fundamental appliances and composed 
in a mash-up style to control development cost and 
maintenance pressure. Orchestration is a key concept 
within distributed systems, enabling the alignment of 
deployed applications with users’ business interests. 
The Fog orchestrator provides (a) the centralized 
arrangement of the resource pool, mapping 
applications with specific requests and providing an 
automated workflow to physical resources 
(deployment and scheduling); (b) workload execution 
management with runtime QoS control; and (c) time-
efficient directive generation to manipulate specific 
objects.  

II. SCENARIO AND APPLICATION 

A. Motivating Example 
Smart cities aim to enhance the quality of urban 

life by using technology to improve the efficiency of 
services to meet the needs of residents. To this end, 
multiple information and communication technology 
(ICT) systems need to be integrated in a secure, 
efficient and reliable way in order to manage city 
facilities effectively. Such systems consist of two 
major components: (1) sensors integrated with real-
time monitoring systems, and (2) applications 
integrated with the collected sensor (or device) data. 
Currently, IoT services are rudimentary in nature, and 
only integrate with specific sensor types. This is 
resultant of no existing universally agreed standards 
and protocols for IoT device communication, and 
represents a challenge towards achieving a global 
ecosystem of interconnected things.  

To address this problem, an alternative approach 
is the use of an IoT service orchestration system to 
determine and select the best IoT appliances for 



dynamic composition of holistic workflows for more 
complex functions. As shown in Figure 1, the 
proposed orchestrator manages all layers of an IoT 
ecosystem to integrate different standalone appliances 
or service modules into a complex topology. 

An appropriate combination of these standalone 
IoT appliances can be used to facilitate more 
advanced functionality, allowing for reduced cost and 
improved user experience. For example, mobile 
health systems are capable of remote monitoring, 
real-time data analysis, emergency warning, etc. Data 
collected from wearable sensors that monitor patient 
vitals can be continuously sent to data aggregators 
and, in the event of detection of abnormal behavior, 
hospital personnel can be immediately notified in 
order to take appropriate measures. 

While such functionality can be developed 
within a standalone application, this provides limited 
scalability and reliability. As concerns scaling 
capability, the implementation of new features leads 
to increased development efforts and risk of creating a 
monolithic application incapable of scaling effectively 
due to conflicting resource requirements for effective 
operation. For reliability, increased application 
complexity leads to tedious, time-consuming 
debugging. The use of orchestration allows for more 
flexible formation of application functionality to scale 

and it also decreases the probability of failure 
correlation between application components. 

 

B. Fog-enabled IoT Application 
Traditional Web-based service applications are 

deployed on servers within Cloud datacenters that are 
accessed by end devices such as tablets, smart phones 
and desktop PCs. In contrast, IoT applications 
deployed within Fog computing systems consist of 
the Cloud, Fog Node, and Things as shown Figure 1. 
In this context, a Fog node is defined as equipment or 
middleware and served as an agent that collects data 
from a set of sensors, and which is then transmitted to 
a centralized computing system that locally caches 
data and performs load balancing. Things are defined 
as networked devices including sensors and devices 
with built-in sensors. Similarly to Web-based service 
applications, the Cloud provisions centralized 
resource pools (compute, storage) in order to analyze 
collected data and automatically trigger subsequent 
decisions based on a pre-defined system logic. The 
most significant difference, however, is the use of 
Fog nodes that transmit data to Cloud datacenters. For 
example, most of wearable sensor data is collected 
and pre-processed by smart phones or adjacent 
workstations. This can either significantly reduce 

 
Figure 1.  An orchestration scenario for an eHealth service: different IoT appliances (diverse types of sensors and Fog nodes) are 
orchestrated as a workflow across all layers of Fog architecture. Several candidate objects can potentially provision similar 
functionality. The Fog orchestrator acts as a controller deployed on a workstation or Cloud datacenter and across all organization 
layers based on global information. Its primary responsibility is to select resources and deploy the overall service workflow 
according to data security, reliability, system efficiency requirements. It is noteworthy that the orchestrator is a centralized 
controller only at a conceptual level and might be implemented in a distributed and fault-tolerant fashion,without  introducing a 
single point of failure.   

 



transmission rates or improve their reliability. The 
main differences between Web-based and IoT 
applications can be summarized as follows: 

Message communication and scalability IoT 
communication is performed using a hybrid 
centralized-decentralized approach depending on 
context. The majority of messages exchanged from 
sensor to sensor (S2S) or sensor to Cloud (S2C) is 
performed through the use of Fog nodes. Purely 
centralized environments are ill-suited for 
applications that have soft and hard real-time 
requirements. For example, neighboring smart 
vehicles need to transfer data between other vehicles 
(V2V) and traffic infrastructure (V2I) in order to 
prevent collisions. Such a system was piloted in New 
York City using WiFi in order to enable real-time 
interaction to assist drivers in navigating congestion 
and to communicate with pedestrians or oncoming 
vehicles [2]. Furthermore, due to the huge number of 
connected devices, the data volume generated and 
exchanged over an IoT network is predicted to 
become many orders of magnitude greater than that of 
conventional Web-based services, resulting in 
significant scalability challenges. 

Interoperability In light of Software Defined 
Network (SDN) technologies, the advantages of a 
software defined approach is the de-coupling of the 
software control and the heterogeneous hardware 
operations. This approach provides an opportunity to 
dynamically achieve different quality levels for 
different IoT applications in heterogeneous 
environments [3]. Moreover, application-level 
interoperability benefits from Web technologies such 
as the RESTful architecture of Web, which provide a 
high level of interoperability. Using these 
technologies, an abundance of programming APIs can 
be distributed across entire Fog domains and can be 
utilized to increase the flexibility of loosely-coupled 
management [4]. Lightweight APIs, such as RESTful 
interfaces, result in agile development and simplified 
orchestration with enhanced scalability when 
composing complex distributed workflows. 

Reliability Physical systems make up a 
significant part of IoT applications, thus the 
assumptions that can be made regarding fault and 
failure modes are weaker than those for Web-based 
applications. IoT applications experience crash and 
timing failures stemming from low sensor battery 
power, high network latency, environmental damage, 
etc. Furthermore, the uncertainty of potentially 
unstable and mobile system components results in 
increased difficulties in predicting and capturing 
system operation. Therefore, the reliability of an IoT 
application workflow needs to be measured and 
enhanced in more elaborate ways. 

III. IOT APPLICATION ORCHESTRATION CHALLENGES 

We have demonstrated that existing IoT 
applications are very diverse in terms of reliability, 
scalability and security.  The diversity among Fog 
nodes is a key issue - location, configuration, and 
served functionalities of Fog nodes all dramatically 
increase this diversity. This raises an interesting 
research challenge, namely how to optimize the 
process of determining and selecting the best IoT 
appliances and Fog components to compose an 
application workflow whilst meeting non-functional 
requirements such as security, network latency, QoS, 
etc. We outline and elaborate on these specific 
challenges as follows: 

Scale and complexity With the increase of IoT 
manufacturers developing heterogeneous sensors and 
smart devices, selecting optimal components becomes 
increasingly complicated when considering 
customized hardware configurations and personalized 
requirements. For example, some applications can 
only operate with specific hardware architectures 
(e.g., ARM, Intel) or operating systems, while 
applications with high security requirements might 
require specific hardware and protocols to function. 
Not only does orchestration cater to such functional 
requirements, it must do so in the face of increasingly 
larger workflows that change dynamically. The 
orchestrator must determine whether the assembled 
systems comprising of Cloud resources, sensors, and 
Fog nodes coupled with geographic distributions and 
constraints are capable of provisioning complex 
services correctly and efficiently. In particular, the 
orchestrator must be able to automatically predict, 
detect, and resolve issues pertaining to scalability 
bottlenecks which may arise from increased 
application scale. 

Security criticality In the IoT environment, 
multiple sensors, computer chips, and communication 
devices are integrated to enable the overall 
communication. A specific service might be 
composed of a multitude of components, each 
deployed within different geographic locations, 
resulting in an increased attack vector of such objects. 
Fog nodes are the data and traffic gateway that is 
particularly vulnerable to such attacks. This is 
especially true in the context of network-enabled IoT 
systems, whose attack vectors can range from human-
caused sabotage of network infrastructure, malicious 
programs provoking data leakage, or even physical 
access to devices. A large body of research focuses on 
cryptography and authentication towards enhancing 
network security to protect against Cyber-attacks [5]. 
Furthermore, in systems comprising of hundreds of 
thousands electronic devices, how to effectively and 
accurately evaluate the security and measure its risks 



is critically important in order to present a holistic 
security and risk assessment [6]. This becomes 
challenging when workflows are capable of changing 
and adapting at runtime. For these reasons, we believe 
that approaches capable of dynamically evaluating the 
security of dynamic IoT application orchestration will 
become increasingly critical for secure data placement 
and processing. 

Dynamicity Another significant characteristic 
and challenge for IoT services is their ability to 
evolve and dynamically change their workflow 
composition. This is a particular problem in the 
context of software upgrades through Fog nodes or 
the frequent join-leave behavior of network objects 
which will change its internal properties and 
performance, potentially altering the overall workflow 
execution pattern. Moreover, handheld devices 
inevitably suffer from software and hardware aging, 
which will invariably result in changing workflow 
behavior and its properties (for example, low-battery 
devices will degrade the data transmission rate). 
Finally, the performance of applications will change 
due to their transient and/or short-lived behavior 
within the system, including spikes in resource 
consumption or data generation. This leads to a strong 
requirement for automatic and intelligent re-
configuration of the topological structure and 
assigned resources within the workflow, and 
importantly, that of Fog nodes. 

Fault diagnosis and tolerance The scale of a 
Fog system results in increased failure probability. 
Some rare-case software bugs or hardware faults 
which do not manifest at small-scale or testing 
environments such as stragglers [7] have a 
debilitating effect on system performance and 
reliability. At the scale, heterogeneity, and complexity 
we are anticipating, it is very likely that different 
types of fault combinations will occur [8]. To address 
these, redundant replications and user-transparent 
fault-tolerant deployment and execution techniques 
should be considered in orchestration design. 

IV. KEY RESEARCH DIRECTIONS  

     In this section, we discuss research directions that 
we believe are key to tackling the challenges outlined 
above. Within lifecycle management, these include 
the optimal selection and placement in the 
deployment stage; dynamic QoS monitoring and 
providing guarantees at runtime through incremental 
processing and re-planning; and big data driven 
analytics and optimization approaches that leverage 
data mining to improve orchestration quality and 
accelerate optimization for problem solving.  

A. Component Selection and Placement 
The recent trend in composing Cloud 

applications is driven by connecting heterogeneous 
services deployed across multiple datacenters. 
Similarly, such a distributed deployment aids in 
improving IoT application reliability and performance 
within Fog computing environments. As mentioned in 
Section III, it also exposes appliances to new security 
risks and network uncertainty. Ensuring high levels of 
dependability for such workflows composed by a 
multitude of systems is a considerable challenge. 
Numerous efforts [9,10] have focused on QoS-aware 
composition of native VM-based Cloud application 
components, but neglect the proliferation of uncertain 
execution and security risks among interactive and 
interdependent components within IoT services. 

Parallel computation algorithm Optimization 
algorithms or graph-based approaches are typically 
time- and resource-consuming when applied on a 
large-scale, and necessitate parallel approaches to 
accelerate the optimization process. Recent work [11] 
provides possible solutions to leverage an in-memory 
computing framework to execute tasks in a Cloud 
infrastructure in parallel. However, how to realize 
dynamic graph generation and partitioning at runtime 
to adapt to the shifting space of possible solutions 
stemming from the scale and dynamicity of IoT 
components remains an unsolved problem. 

Late calibration To ensure near-real-time 
intervention during IoT application development, a 
potential approach could be correction mechanisms 
that could be applied even when sub-optimal 
solutions are deployed initially. For example, in some 
cases, if the orchestrator finds a candidate solution 
that approximately satisfies the reliability and data 
transmission requirements, it can temporarily suspend 
the search for further optimal solutions. At runtime, 
the orchestrator can then continue the improvement of 
decision results with new information and a re-
evaluation of constraints, and make use of task and 
data migration approaches to realize workflow re-
deployment. 

B. Dynamic Orchestration with Runtime QoS 
Apart from the initial placement, all workflow 

components dynamically change due to internal 
transformations or abnormal system behavior. IoT 
applications are exposed to uncertain environments 
where variations in execution are commonplace. Due 
to the degradation of consumable devices and sensors, 
capabilities such as security and reliability that 
initially were guaranteed will vary accordingly, 
resulting in the initial workflow being no longer 
optimal or even totally invalid. Furthermore, the 
structural topology might change in accordance to the 
task execution progress (i.e. a computation task is 



finished or evicted) or will be affected by the 
evolution of the execution environment. 
Abnormalities might occur due to the variability of 
combinations of hardware and software crashes, or 
data skew across different management domains of 
devices due to abnormal data and request bursting. 
This will result in unbalanced data communication 
and subsequent reduction of application reliability. 
Therefore, it is essential to dynamically orchestrate 
task execution and resource reallocation. 
     QoS-aware control and monitoring To capture 
the dynamic evolution and variables (such as dynamic 
evolution, state transition, new operations of IoT, etc), 
we should predefine the quantitative criteria and 
measuring approach of dynamic QoS thresholds in 
terms of latency, availability, throughput, etc. These 
thresholds usually dictate upper and lower bounds on 
the metrics as desired at runtime. Complex QoS 
information processing methods such as hyper-scale 
matrix update and calculation would give rise to many 
scalability issues in our setting. 
   Event streaming and messaging Such 
performance metric variables or significant state 
transitions can be depicted as system events, and 
event streaming is processed in the orchestration 
framework through an event messaging bus, real-time 
publish-subscribe mechanism or high-throughput 
messaging systems (e.g., Apache Kafka), therefore 
significantly reducing the communication overheads 
and ensuring responsiveness. Subsequent actions 
could be automatically triggered and driven by Cloud 
engine (e.g., Amazon Lambda service). 

C. Incremental Computation in Orchestration 
IoT services can often be choreographed through 

workflow or task graphs to assemble different IoT 
applications. In some domains, the orchestration is 
supplied with a plethora of candidate devices with 
different geographical locations and attributes. In 
some cases, orchestration would be typically 
considered too computationally intensive, as it is 
extremely time-consuming to perform operations 
including pre-filtering, candidate selection, and 
combination calculation while considering all 
specified constraints and objectives. Static models 
and methods become viable when the application 
workload and parallel tasks are known at design time. 
In contrast, in the presence of variations and 
disturbances, orchestration methods typically rely on 
incremental scheduling at runtime (rather than 
straightforward complete re-calculation by re-running 
static methods) to decrease unnecessary computation 
and minimize schedule makespan. 
     Proactive recognition Localized regions of self-
updates become ubiquitous within Fog environments. 
The orchestrator should record staged states and data 

produced by Fog components periodically or in an 
event-based manner. This information will form a set 
of time series of graphs and facilitate the analysis and 
proactive recognition of anomalous events to 
dynamically determine such hotspots [12]. The data 
and event streams should be efficiently transmitted 
among Fog components, so that system outage, 
appliance failure, or load spikes will rapidly feedback 
to the central orchestrator for decision making. 
    Incremental design and implementation Based 
on the time series of graphs, the similarities and 
dependencies between successive graph snapshots 
should be comprehensively studied to determine the 
feasibility of incremental computation. Approaches 
such as memorization, self-adjusting computation, 
and semantic analysis could cache and reuse portions 
of dynamic dependency graphs to avoid unnecessary 
re-computation in the event of input changes. 
Intermediate data or results should be inherited as far 
as possible, and the allocated resources that have been 
allocated to the tasks should also be reused rather than 
be requested repeatedly. Through graph analysis, 
operators can determine which sub-graphs changes 
within the whole topology by using sub-graph 
partitioning and matching as an automated process 
that can significantly reduce overall execution time. 

D. Systematic Data-driven Optimization 
   IoT applications include a very large number of 
geographically distributed devices which produce 
multi-dimensional, high-volume data that requires 
different levels of real-time analytics and data 
aggregation. Therefore, data-driven optimization and 
planning should be considered in the orchestration of 
complex IoT services.  
    Holistic cross-layer optimization As applications 
are selected and distributed across different layers in 
the Fog environment, attention should be brought to 
the optimization of all overlapping, inter-connected 
layers. The orchestrator has a global view of all 
resource abstractions, from “edge” resources on the 
mobile side to compute and storage resources on the 
Cloud datacenter side. It would be possible to pipeline 
the stream of data processing and the database 
services within the same network domain to reduce 
data transmission. Similar to the data-locality 
principle, we can also distribute or reschedule 
computation tasks of Fog nodes close to the sensors 
rather than frequently moving data, thereby reducing 
latency. Another potential optimization is to 
customize data-relevant parameters such as data 
generation rate or data compression ratio to adapt to 
the performance and assigned resources so as to strike 
a balance between data quality and specified 
response-time targets. 



    Online tuning and History-Based Optimization 
(HBO) A major challenge is that the aforementioned 
decision operators are still computationally time-
consuming. To tackle this problem, online machine 
learning is capable of provisioning several online 
training (such as classification and clustering) and 
prediction models to capture the constant evolutionary 
behavior of each element in the system, producing 
time series of trends to intelligently predict the 
required system resource usage, failure occurrence, 
and straggler compute tasks - all of which can be 
learnt from historical data and an HBO procedure. 
These smart techniques should be investigated, with 
corresponding heuristics applied in an existing 
decision-making framework to create a continuous 
feedback loop. Cloud machine learning offers analysts 
a set of data exploration tools and a variety of choices 
for using machine learning models and algorithms 
[13]. 

V. EARLY EXPERIENCE AND INITIAL RESULTS 

Based on the design philosophy and methods 
discussed, we propose a framework that can 
efficiently orchestrate Fog computing environments. 
As demonstrated in Figure 2, in order to enable 
planning and adaptive optimization, a preliminary 
attempt was made to manage the composition of 
applications in parallel under a broad range of 
constraints. We implement a novel parallel genetic 
algorithm based framework (GA-Par) on Spark to 

handle orchestration scenarios where a large set of 
IoT applications are composed. More specifically, in 
our GA-based algorithm, each chromosome 
represents a solution of the composed workflow and 
the gene segments of each chromosome represent the 
IoT applications. We normalize the utility of security 
and network QoS of IoT appliances into an objective 
fitness function within GA-Par to minimize the 
security risks and performance degradation. 

Specifically, to strike a balance between 
accuracy and time efficiency, we separate the total 
individual population into parallel compute partitions 
dispersed over different compute nodes. In order to 
maximize parallelism, we set up and adjust the 
partition configuration dynamically to make partitions 
fully parallelized whilst considering data shuffling 
and communication cost with the topology change. To 
guarantee optimal results can be gradually obtained, 
we dynamically merge several partitions into a single 
partition and then re-partition it based on runtime 
status and monitored QoS. Furthermore, the quality of 
each solution generation can be also maintained by 
applying an “elitist” method, where the local elite 
results of each partition will be collected and 
synthesized into a global elite. The centralized GA-
Par master will aggregate the full information at the 
end of each iteration, and then broadcasts the list to 
all partitions to increase the probability of finding a 
globally optimal solution. To address data skew 
issues, we also conduct a joint data-compute 
optimization to repartition the data and reschedule 

 

 
Figure 1: Main functional elements in our Fog Orchestrator: planning is responsible for selection and placement, runtime 
monitoring and control during execution, and data-driven decision optimization. We propose a parallel GA solver to accelerate the 
handling of optimization issues raised in the planning and optimization phase. Initial results demonstrate the proposed approach 
can outperform a standalone genetic algorithm in terms of both time and quality aspects. 

 



computation tasks. We perform some initial 
experiments on 30 servers hosted on Amazon Web 
Services (AWS) as the Cloud datacenter for the Fog 
environment. Each server is hosted as an r3.2xlarge 
instance with 2.5GHz Intel Xeon E5-2670v2 CPUs, 
61GB RAM, and 160GB disk storage. We use 
simulated data below to illustrate the effectiveness of 
composition given IoT requirements. For this, we 
randomly select four types of orchestration graphs 
with 50, 100, 150, and 200 workflow nodes, 
respectively.  For each node within a workflow, we 
stochastically prepare 100 available IoT appliances as 
simulated agents. The security levels and network 
QoS levels are randomly assigned to each candidate 
agent. We compare our GA-Par with a standalone 
genetic algorithm (SGA). The metrics quality, 
execution time and fitness score (with lower values 
indicating better results) are used to evaluate SGA and 
GA-Par. As can be observed in Figure 2, GA-Par 
outperforms SGA. The time consumption of GA-Par 
has been significantly reduced to nearly 50% of that 
of SGA, while the quality of appliance selection in 
GA-Par is always at least 30% higher than that of 
SGA. However, the scalability of our current 
approach is still slightly affected by increasing 
numbers of components and requests, indicating that 
we still need to explore opportunities for incremental 
re-planning and on-line tuning to improve both time-
efficiency and effectiveness of IoT orchestration. 

VI. CONCLUSION 

Most recent research related to Fog computing 
explores architectures within massive infrastructures 
[14]. Although such work advances our understanding 
of the possible computing architectures and 
challenges of new computing paradigms, there are 
presently no studies of composability and concrete 
methodologies for developing orchestration systems 
that support composition in the development of novel 
IoT applications. In this paper, we have outlined and 
numerous difficulties and challenges to develop an 
orchestration framework across all layers within the 
Fog resource stack, and have described a prototypical 
orchestration system that makes use of some of the 
most promising mechanisms to tackle these 
challenges. 
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