

Edinburgh Research Explorer

Fog Orchestration for Internet of Things Services

Citation for published version:
Wen, Z, Yang, R, Garraghan, P, Lin, T, Xu, J & Rovatsos, M 2017, 'Fog Orchestration for Internet of Things
Services', IEEE Internet Computing, vol. 21, no. 2, pp. 16-24. https://doi.org/10.1109/MIC.2017.36

Digital Object Identifier (DOI):
10.1109/MIC.2017.36

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Internet Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2024

https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://www.research.ed.ac.uk/en/publications/fb004141-a391-4628-82e3-33c45305c7e6

Fog Orchestration for IoT Services: Issues, Challenges
and Directions

Zhenyu Wen, Renyu Yang*, Peter Garraghan, Tao Lin, Jie Xu, and Michael Rovatsos
*The corresponding author: yangry@act.buaa.edu.cn

Abstract: Large-scale IoT services such as health-
care, smart cities and marine monitoring are pervasive
in Cyber-physical environments strongly supported
by Internet technologies and Fog computing.
Complex IoT services are increasingly composed of
sensors, devices, and compute resources within Fog
computing infrastructures. The orchestration of such
applications can be leveraged to alleviate the
difficulties of maintenance and enhance data security
and system reliability. However, how to efficiently
deal with dynamic variations and transient operational
behavior is a crucial challenge within the context of
choreographing complex services. Furthermore, with
the rapid increase of the scale of IoT deployments, the
heterogeneity, dynamicity, and uncertainty within Fog
environments and increased computational
complexity further dramatically aggravate this
challenge. This article provides an overview of the
core issues, challenges and future research directions
in Fog-enabled orchestration for IoT services.
Additionally, we present early experiences of an
orchestration scenario, demonstrating the feasibility
and initial results of using a distributed genetic
algorithm in this context.

Key words: Internet of Things, Fog computing,
orchestration, distributed systems

I. INTERNET OF THINGS AND FOG COMPUTING

The proliferation of the Internet and increasing
integration of physical objects including sensors,
vehicles, and buildings have resulted in the formation
of Cyber-physical environments that encompass both
physical and virtual components. These objects are
capable of interfacing and interacting with existing
network infrastructure, allowing for computer-based
systems to interact with the physical world, thereby
enabling novel applications in areas such as smart
cities, intelligent transportation, and autonomous
vehicles. The explosive growth in data generation has
led to a focus in research and industry on issues
related to how insight can be effectively extracted
from such data to assist the design of Cyber-physical
systems. IoT services typically comprise of a set of
software components running over different locations
connected through networks (i.e. 4G, wireless LAN,
Internet etc.) that exhibit dynamic behavior. Systems

such as datacenters and wireless sensor networks
underpin the data storage and compute resources
required for the operation of these components.

A new computing paradigm - Fog computing -
succeeds Cloud computing by placing greater
emphasis of computation and data storage at the edge
of the network, allowing for reduced latency and
response delay jitter for applications [1, 14]. These
characteristics are particularly important for latency-
sensitive applications such as gaming and video
streaming. In the IoT environment, existing
applications and massive physical devices can be
leveraged as fundamental appliances and composed
in a mash-up style to control development cost and
maintenance pressure. Orchestration is a key concept
within distributed systems, enabling the alignment of
deployed applications with users’ business interests.
The Fog orchestrator provides (a) the centralized
arrangement of the resource pool, mapping
applications with specific requests and providing an
automated workflow to physical resources
(deployment and scheduling); (b) workload execution
management with runtime QoS control; and (c) time-
efficient directive generation to manipulate specific
objects.

II. SCENARIO AND APPLICATION

A. Motivating Example
Smart cities aim to enhance the quality of urban

life by using technology to improve the efficiency of
services to meet the needs of residents. To this end,
multiple information and communication technology
(ICT) systems need to be integrated in a secure,
efficient and reliable way in order to manage city
facilities effectively. Such systems consist of two
major components: (1) sensors integrated with real-
time monitoring systems, and (2) applications
integrated with the collected sensor (or device) data.
Currently, IoT services are rudimentary in nature, and
only integrate with specific sensor types. This is
resultant of no existing universally agreed standards
and protocols for IoT device communication, and
represents a challenge towards achieving a global
ecosystem of interconnected things.

To address this problem, an alternative approach
is the use of an IoT service orchestration system to
determine and select the best IoT appliances for

dynamic composition of holistic workflows for more
complex functions. As shown in Figure 1, the
proposed orchestrator manages all layers of an IoT
ecosystem to integrate different standalone appliances
or service modules into a complex topology.

An appropriate combination of these standalone
IoT appliances can be used to facilitate more
advanced functionality, allowing for reduced cost and
improved user experience. For example, mobile
health systems are capable of remote monitoring,
real-time data analysis, emergency warning, etc. Data
collected from wearable sensors that monitor patient
vitals can be continuously sent to data aggregators
and, in the event of detection of abnormal behavior,
hospital personnel can be immediately notified in
order to take appropriate measures.

While such functionality can be developed
within a standalone application, this provides limited
scalability and reliability. As concerns scaling
capability, the implementation of new features leads
to increased development efforts and risk of creating a
monolithic application incapable of scaling effectively
due to conflicting resource requirements for effective
operation. For reliability, increased application
complexity leads to tedious, time-consuming
debugging. The use of orchestration allows for more
flexible formation of application functionality to scale

and it also decreases the probability of failure
correlation between application components.

B. Fog-enabled IoT Application
Traditional Web-based service applications are

deployed on servers within Cloud datacenters that are
accessed by end devices such as tablets, smart phones
and desktop PCs. In contrast, IoT applications
deployed within Fog computing systems consist of
the Cloud, Fog Node, and Things as shown Figure 1.
In this context, a Fog node is defined as equipment or
middleware and served as an agent that collects data
from a set of sensors, and which is then transmitted to
a centralized computing system that locally caches
data and performs load balancing. Things are defined
as networked devices including sensors and devices
with built-in sensors. Similarly to Web-based service
applications, the Cloud provisions centralized
resource pools (compute, storage) in order to analyze
collected data and automatically trigger subsequent
decisions based on a pre-defined system logic. The
most significant difference, however, is the use of
Fog nodes that transmit data to Cloud datacenters. For
example, most of wearable sensor data is collected
and pre-processed by smart phones or adjacent
workstations. This can either significantly reduce

Figure 1. An orchestration scenario for an eHealth service: different IoT appliances (diverse types of sensors and Fog nodes) are
orchestrated as a workflow across all layers of Fog architecture. Several candidate objects can potentially provision similar
functionality. The Fog orchestrator acts as a controller deployed on a workstation or Cloud datacenter and across all organization
layers based on global information. Its primary responsibility is to select resources and deploy the overall service workflow
according to data security, reliability, system efficiency requirements. It is noteworthy that the orchestrator is a centralized
controller only at a conceptual level and might be implemented in a distributed and fault-tolerant fashion,without introducing a
single point of failure.

transmission rates or improve their reliability. The
main differences between Web-based and IoT
applications can be summarized as follows:

Message communication and scalability IoT
communication is performed using a hybrid
centralized-decentralized approach depending on
context. The majority of messages exchanged from
sensor to sensor (S2S) or sensor to Cloud (S2C) is
performed through the use of Fog nodes. Purely
centralized environments are ill-suited for
applications that have soft and hard real-time
requirements. For example, neighboring smart
vehicles need to transfer data between other vehicles
(V2V) and traffic infrastructure (V2I) in order to
prevent collisions. Such a system was piloted in New
York City using WiFi in order to enable real-time
interaction to assist drivers in navigating congestion
and to communicate with pedestrians or oncoming
vehicles [2]. Furthermore, due to the huge number of
connected devices, the data volume generated and
exchanged over an IoT network is predicted to
become many orders of magnitude greater than that of
conventional Web-based services, resulting in
significant scalability challenges.

Interoperability In light of Software Defined
Network (SDN) technologies, the advantages of a
software defined approach is the de-coupling of the
software control and the heterogeneous hardware
operations. This approach provides an opportunity to
dynamically achieve different quality levels for
different IoT applications in heterogeneous
environments [3]. Moreover, application-level
interoperability benefits from Web technologies such
as the RESTful architecture of Web, which provide a
high level of interoperability. Using these
technologies, an abundance of programming APIs can
be distributed across entire Fog domains and can be
utilized to increase the flexibility of loosely-coupled
management [4]. Lightweight APIs, such as RESTful
interfaces, result in agile development and simplified
orchestration with enhanced scalability when
composing complex distributed workflows.

Reliability Physical systems make up a
significant part of IoT applications, thus the
assumptions that can be made regarding fault and
failure modes are weaker than those for Web-based
applications. IoT applications experience crash and
timing failures stemming from low sensor battery
power, high network latency, environmental damage,
etc. Furthermore, the uncertainty of potentially
unstable and mobile system components results in
increased difficulties in predicting and capturing
system operation. Therefore, the reliability of an IoT
application workflow needs to be measured and
enhanced in more elaborate ways.

III. IOT APPLICATION ORCHESTRATION CHALLENGES

We have demonstrated that existing IoT
applications are very diverse in terms of reliability,
scalability and security. The diversity among Fog
nodes is a key issue - location, configuration, and
served functionalities of Fog nodes all dramatically
increase this diversity. This raises an interesting
research challenge, namely how to optimize the
process of determining and selecting the best IoT
appliances and Fog components to compose an
application workflow whilst meeting non-functional
requirements such as security, network latency, QoS,
etc. We outline and elaborate on these specific
challenges as follows:

Scale and complexity With the increase of IoT
manufacturers developing heterogeneous sensors and
smart devices, selecting optimal components becomes
increasingly complicated when considering
customized hardware configurations and personalized
requirements. For example, some applications can
only operate with specific hardware architectures
(e.g., ARM, Intel) or operating systems, while
applications with high security requirements might
require specific hardware and protocols to function.
Not only does orchestration cater to such functional
requirements, it must do so in the face of increasingly
larger workflows that change dynamically. The
orchestrator must determine whether the assembled
systems comprising of Cloud resources, sensors, and
Fog nodes coupled with geographic distributions and
constraints are capable of provisioning complex
services correctly and efficiently. In particular, the
orchestrator must be able to automatically predict,
detect, and resolve issues pertaining to scalability
bottlenecks which may arise from increased
application scale.

Security criticality In the IoT environment,
multiple sensors, computer chips, and communication
devices are integrated to enable the overall
communication. A specific service might be
composed of a multitude of components, each
deployed within different geographic locations,
resulting in an increased attack vector of such objects.
Fog nodes are the data and traffic gateway that is
particularly vulnerable to such attacks. This is
especially true in the context of network-enabled IoT
systems, whose attack vectors can range from human-
caused sabotage of network infrastructure, malicious
programs provoking data leakage, or even physical
access to devices. A large body of research focuses on
cryptography and authentication towards enhancing
network security to protect against Cyber-attacks [5].
Furthermore, in systems comprising of hundreds of
thousands electronic devices, how to effectively and
accurately evaluate the security and measure its risks

is critically important in order to present a holistic
security and risk assessment [6]. This becomes
challenging when workflows are capable of changing
and adapting at runtime. For these reasons, we believe
that approaches capable of dynamically evaluating the
security of dynamic IoT application orchestration will
become increasingly critical for secure data placement
and processing.

Dynamicity Another significant characteristic
and challenge for IoT services is their ability to
evolve and dynamically change their workflow
composition. This is a particular problem in the
context of software upgrades through Fog nodes or
the frequent join-leave behavior of network objects
which will change its internal properties and
performance, potentially altering the overall workflow
execution pattern. Moreover, handheld devices
inevitably suffer from software and hardware aging,
which will invariably result in changing workflow
behavior and its properties (for example, low-battery
devices will degrade the data transmission rate).
Finally, the performance of applications will change
due to their transient and/or short-lived behavior
within the system, including spikes in resource
consumption or data generation. This leads to a strong
requirement for automatic and intelligent re-
configuration of the topological structure and
assigned resources within the workflow, and
importantly, that of Fog nodes.

Fault diagnosis and tolerance The scale of a
Fog system results in increased failure probability.
Some rare-case software bugs or hardware faults
which do not manifest at small-scale or testing
environments such as stragglers [7] have a
debilitating effect on system performance and
reliability. At the scale, heterogeneity, and complexity
we are anticipating, it is very likely that different
types of fault combinations will occur [8]. To address
these, redundant replications and user-transparent
fault-tolerant deployment and execution techniques
should be considered in orchestration design.

IV. KEY RESEARCH DIRECTIONS

 In this section, we discuss research directions that
we believe are key to tackling the challenges outlined
above. Within lifecycle management, these include
the optimal selection and placement in the
deployment stage; dynamic QoS monitoring and
providing guarantees at runtime through incremental
processing and re-planning; and big data driven
analytics and optimization approaches that leverage
data mining to improve orchestration quality and
accelerate optimization for problem solving.

A. Component Selection and Placement
The recent trend in composing Cloud

applications is driven by connecting heterogeneous
services deployed across multiple datacenters.
Similarly, such a distributed deployment aids in
improving IoT application reliability and performance
within Fog computing environments. As mentioned in
Section III, it also exposes appliances to new security
risks and network uncertainty. Ensuring high levels of
dependability for such workflows composed by a
multitude of systems is a considerable challenge.
Numerous efforts [9,10] have focused on QoS-aware
composition of native VM-based Cloud application
components, but neglect the proliferation of uncertain
execution and security risks among interactive and
interdependent components within IoT services.

Parallel computation algorithm Optimization
algorithms or graph-based approaches are typically
time- and resource-consuming when applied on a
large-scale, and necessitate parallel approaches to
accelerate the optimization process. Recent work [11]
provides possible solutions to leverage an in-memory
computing framework to execute tasks in a Cloud
infrastructure in parallel. However, how to realize
dynamic graph generation and partitioning at runtime
to adapt to the shifting space of possible solutions
stemming from the scale and dynamicity of IoT
components remains an unsolved problem.

Late calibration To ensure near-real-time
intervention during IoT application development, a
potential approach could be correction mechanisms
that could be applied even when sub-optimal
solutions are deployed initially. For example, in some
cases, if the orchestrator finds a candidate solution
that approximately satisfies the reliability and data
transmission requirements, it can temporarily suspend
the search for further optimal solutions. At runtime,
the orchestrator can then continue the improvement of
decision results with new information and a re-
evaluation of constraints, and make use of task and
data migration approaches to realize workflow re-
deployment.

B. Dynamic Orchestration with Runtime QoS
Apart from the initial placement, all workflow

components dynamically change due to internal
transformations or abnormal system behavior. IoT
applications are exposed to uncertain environments
where variations in execution are commonplace. Due
to the degradation of consumable devices and sensors,
capabilities such as security and reliability that
initially were guaranteed will vary accordingly,
resulting in the initial workflow being no longer
optimal or even totally invalid. Furthermore, the
structural topology might change in accordance to the
task execution progress (i.e. a computation task is

finished or evicted) or will be affected by the
evolution of the execution environment.
Abnormalities might occur due to the variability of
combinations of hardware and software crashes, or
data skew across different management domains of
devices due to abnormal data and request bursting.
This will result in unbalanced data communication
and subsequent reduction of application reliability.
Therefore, it is essential to dynamically orchestrate
task execution and resource reallocation.
 QoS-aware control and monitoring To capture
the dynamic evolution and variables (such as dynamic
evolution, state transition, new operations of IoT, etc),
we should predefine the quantitative criteria and
measuring approach of dynamic QoS thresholds in
terms of latency, availability, throughput, etc. These
thresholds usually dictate upper and lower bounds on
the metrics as desired at runtime. Complex QoS
information processing methods such as hyper-scale
matrix update and calculation would give rise to many
scalability issues in our setting.
 Event streaming and messaging Such
performance metric variables or significant state
transitions can be depicted as system events, and
event streaming is processed in the orchestration
framework through an event messaging bus, real-time
publish-subscribe mechanism or high-throughput
messaging systems (e.g., Apache Kafka), therefore
significantly reducing the communication overheads
and ensuring responsiveness. Subsequent actions
could be automatically triggered and driven by Cloud
engine (e.g., Amazon Lambda service).

C. Incremental Computation in Orchestration
IoT services can often be choreographed through

workflow or task graphs to assemble different IoT
applications. In some domains, the orchestration is
supplied with a plethora of candidate devices with
different geographical locations and attributes. In
some cases, orchestration would be typically
considered too computationally intensive, as it is
extremely time-consuming to perform operations
including pre-filtering, candidate selection, and
combination calculation while considering all
specified constraints and objectives. Static models
and methods become viable when the application
workload and parallel tasks are known at design time.
In contrast, in the presence of variations and
disturbances, orchestration methods typically rely on
incremental scheduling at runtime (rather than
straightforward complete re-calculation by re-running
static methods) to decrease unnecessary computation
and minimize schedule makespan.
 Proactive recognition Localized regions of self-
updates become ubiquitous within Fog environments.
The orchestrator should record staged states and data

produced by Fog components periodically or in an
event-based manner. This information will form a set
of time series of graphs and facilitate the analysis and
proactive recognition of anomalous events to
dynamically determine such hotspots [12]. The data
and event streams should be efficiently transmitted
among Fog components, so that system outage,
appliance failure, or load spikes will rapidly feedback
to the central orchestrator for decision making.
 Incremental design and implementation Based
on the time series of graphs, the similarities and
dependencies between successive graph snapshots
should be comprehensively studied to determine the
feasibility of incremental computation. Approaches
such as memorization, self-adjusting computation,
and semantic analysis could cache and reuse portions
of dynamic dependency graphs to avoid unnecessary
re-computation in the event of input changes.
Intermediate data or results should be inherited as far
as possible, and the allocated resources that have been
allocated to the tasks should also be reused rather than
be requested repeatedly. Through graph analysis,
operators can determine which sub-graphs changes
within the whole topology by using sub-graph
partitioning and matching as an automated process
that can significantly reduce overall execution time.

D. Systematic Data-driven Optimization
 IoT applications include a very large number of
geographically distributed devices which produce
multi-dimensional, high-volume data that requires
different levels of real-time analytics and data
aggregation. Therefore, data-driven optimization and
planning should be considered in the orchestration of
complex IoT services.
 Holistic cross-layer optimization As applications
are selected and distributed across different layers in
the Fog environment, attention should be brought to
the optimization of all overlapping, inter-connected
layers. The orchestrator has a global view of all
resource abstractions, from “edge” resources on the
mobile side to compute and storage resources on the
Cloud datacenter side. It would be possible to pipeline
the stream of data processing and the database
services within the same network domain to reduce
data transmission. Similar to the data-locality
principle, we can also distribute or reschedule
computation tasks of Fog nodes close to the sensors
rather than frequently moving data, thereby reducing
latency. Another potential optimization is to
customize data-relevant parameters such as data
generation rate or data compression ratio to adapt to
the performance and assigned resources so as to strike
a balance between data quality and specified
response-time targets.

 Online tuning and History-Based Optimization
(HBO) A major challenge is that the aforementioned
decision operators are still computationally time-
consuming. To tackle this problem, online machine
learning is capable of provisioning several online
training (such as classification and clustering) and
prediction models to capture the constant evolutionary
behavior of each element in the system, producing
time series of trends to intelligently predict the
required system resource usage, failure occurrence,
and straggler compute tasks - all of which can be
learnt from historical data and an HBO procedure.
These smart techniques should be investigated, with
corresponding heuristics applied in an existing
decision-making framework to create a continuous
feedback loop. Cloud machine learning offers analysts
a set of data exploration tools and a variety of choices
for using machine learning models and algorithms
[13].

V. EARLY EXPERIENCE AND INITIAL RESULTS

Based on the design philosophy and methods
discussed, we propose a framework that can
efficiently orchestrate Fog computing environments.
As demonstrated in Figure 2, in order to enable
planning and adaptive optimization, a preliminary
attempt was made to manage the composition of
applications in parallel under a broad range of
constraints. We implement a novel parallel genetic
algorithm based framework (GA-Par) on Spark to

handle orchestration scenarios where a large set of
IoT applications are composed. More specifically, in
our GA-based algorithm, each chromosome
represents a solution of the composed workflow and
the gene segments of each chromosome represent the
IoT applications. We normalize the utility of security
and network QoS of IoT appliances into an objective
fitness function within GA-Par to minimize the
security risks and performance degradation.

Specifically, to strike a balance between
accuracy and time efficiency, we separate the total
individual population into parallel compute partitions
dispersed over different compute nodes. In order to
maximize parallelism, we set up and adjust the
partition configuration dynamically to make partitions
fully parallelized whilst considering data shuffling
and communication cost with the topology change. To
guarantee optimal results can be gradually obtained,
we dynamically merge several partitions into a single
partition and then re-partition it based on runtime
status and monitored QoS. Furthermore, the quality of
each solution generation can be also maintained by
applying an “elitist” method, where the local elite
results of each partition will be collected and
synthesized into a global elite. The centralized GA-
Par master will aggregate the full information at the
end of each iteration, and then broadcasts the list to
all partitions to increase the probability of finding a
globally optimal solution. To address data skew
issues, we also conduct a joint data-compute
optimization to repartition the data and reschedule

Figure 1: Main functional elements in our Fog Orchestrator: planning is responsible for selection and placement, runtime
monitoring and control during execution, and data-driven decision optimization. We propose a parallel GA solver to accelerate the
handling of optimization issues raised in the planning and optimization phase. Initial results demonstrate the proposed approach
can outperform a standalone genetic algorithm in terms of both time and quality aspects.

computation tasks. We perform some initial
experiments on 30 servers hosted on Amazon Web
Services (AWS) as the Cloud datacenter for the Fog
environment. Each server is hosted as an r3.2xlarge
instance with 2.5GHz Intel Xeon E5-2670v2 CPUs,
61GB RAM, and 160GB disk storage. We use
simulated data below to illustrate the effectiveness of
composition given IoT requirements. For this, we
randomly select four types of orchestration graphs
with 50, 100, 150, and 200 workflow nodes,
respectively. For each node within a workflow, we
stochastically prepare 100 available IoT appliances as
simulated agents. The security levels and network
QoS levels are randomly assigned to each candidate
agent. We compare our GA-Par with a standalone
genetic algorithm (SGA). The metrics quality,
execution time and fitness score (with lower values
indicating better results) are used to evaluate SGA and
GA-Par. As can be observed in Figure 2, GA-Par
outperforms SGA. The time consumption of GA-Par
has been significantly reduced to nearly 50% of that
of SGA, while the quality of appliance selection in
GA-Par is always at least 30% higher than that of
SGA. However, the scalability of our current
approach is still slightly affected by increasing
numbers of components and requests, indicating that
we still need to explore opportunities for incremental
re-planning and on-line tuning to improve both time-
efficiency and effectiveness of IoT orchestration.

VI. CONCLUSION

Most recent research related to Fog computing
explores architectures within massive infrastructures
[14]. Although such work advances our understanding
of the possible computing architectures and
challenges of new computing paradigms, there are
presently no studies of composability and concrete
methodologies for developing orchestration systems
that support composition in the development of novel
IoT applications. In this paper, we have outlined and
numerous difficulties and challenges to develop an
orchestration framework across all layers within the
Fog resource stack, and have described a prototypical
orchestration system that makes use of some of the
most promising mechanisms to tackle these
challenges.

Acknowledgment
This work is supported by China NKR&D Program
(2016YFB1000103), National 863 Program (2015AA01A202),
NSFC (No. 61421003), and the European Commission’s FP7
Programme (FP7/2007-2013) (Grant No. 600854).

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing

and its role in the internet of things,” in ACM MCC, 2012, pp.
13–16.

[2] Kim M. D. Dikaiakos, A. Florides, T. Nadeem, and L. Iftode,
“Locationaware services over vehicular ad-hoc networks using
car-to-car communication,” in IEEE JSAC, vol. 25, no. 8, pp.
1590–1602, 2007.

[3] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N.
Venkatasubramanian, “A software defined networking
architecture for the internet-ofthings,” in IEEE NOMS, 2014, pp.
1–9.

[4] S. Nastic, S. Sehic, D. H. Le, H. L. Truong, and S. Dustdar,
“Provisioning software-defined iot cloud systems,” in IEEE
FiCloud, 2014, pp. 288–295.

[5] R. Roman, P. Najera, and J. Lopez, “Securing the internet of
things,” in IEEE Computer, vol. 44, no. 9, pp. 51–58, 2011.

[6] A. Riahi, Y. Challal, E. Natalizio, Z. Chtourou, and A.
Bouabdallah, “A systemic approach for iot security,” in IEEE
ICDCSS, 2013, pp. 351–355.

[7] P. Garraghan, X. Ouyang, R. Yang, D.Mckee, and J. Xu,
“Straggler root-cause and impact analysis for massive-scale
virtualized cloud datacenters,” [Online] in IEEE TSC, vol. PP,
no. 99, pp. 1–1, 2016.

[8] R. Yang, Y. Zhang, P. Garraghan, Y. Feng, J. Ouyang, J. Xu, Z.
Zhang and C. Li, “Reliable computing service in massive-scale
systems through rapid low-cost failover,” [Online] in IEEE TSC,
vol. PP, no. 99, pp. 1–1, 2016.

[9] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating qos of real-
world web services,” in IEEE TSC, vol. 7, no. 1, pp. 32–39, Jan
2014.

[10] Z. Wen, J. Cala, P. Watson, and A. Romanovsky, “Cost effective,
reliable and secure workflow deployment over federated
clouds,” [Online] in IEEE TSC, vol. PP, no. 99, pp. 1–1, 2016.

[11] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica, “Graphx: Graph processing in a
distributed dataflow framework,” in USENIX OSDI, 2014, pp.
599–613.

[12] K. Yamanishi and J. ichi Takeuchi, “A unifying framework for
detecting outliers and change points from non-stationary time
series data,” in ACM SIGKDD, 2002, pp. 676–681.

[13] Cloud machine learning. [Online]. Available:
http://www.infoworld.com/article/3068519/artificialintellegence
/review-6-machine-learning-clouds.html

[14] S.Yi, C.Li, and Q.Li. A Survey of Fog Computing: Concepts,
Applications, and Issues. In ACM MBDW, 2015, pp. 37-42

Biographies

Zhenyu Wen is currently a postdoctoral researcher at University of
Edinburgh, UK. His research interests include multi-objective
optimization, AI and Cloud computing. Email: zwen@inf.ed.ac.uk

Renyu Yang is currently a researcher at Beihang University, China. His
research interests are dependable distributed systems and Cloud
computing. Corresponding Email: yangry@act.buaa.edu.cn

Peter Garraghan is a Lecturer at University of Lancaster, UK. His
research interests include distributed systems and large-scale cloud
datacenters. Email: P.Garraghan@lancaster.ac.uk

Tao Lin is currently a master student at EPFL, Switzerland. His
research interests include scalable machine learning and cloud
computing. Email: tao.lin@epfl.ch

Jie Xu is a Chair Professor of Computing at University of Leeds, UK.
His research interests include large-scale distributed computing and
dependability. Email: j.xu@leeds.ac.uk

Michael Rovatsos is a Senior Lecturer at University of Edinburgh, UK.
His research is in multiagent systems, distributed AI, and social
computation. Email: mrovatso@inf.ed.ac.uk

http://www.infoworld.com/article/3068519/artificialintellegence/review-6-machine-learning-clouds.html
http://www.infoworld.com/article/3068519/artificialintellegence/review-6-machine-learning-clouds.html
https://mail.act.buaa.edu.cn/owa/?ae=Item&t=IPM.Note&a=New&to=zwen%40inf.ed.ac.uk&nm=zwen%40inf.ed.ac.uk
mailto:yangry@act.buaa.edu.cn
https://mail.act.buaa.edu.cn/owa/?ae=Item&t=IPM.Note&a=New&to=P.Garraghan%40lancaster.ac.uk&nm=P.Garraghan%40lancaster.ac.uk
https://mail.act.buaa.edu.cn/owa/?ae=Item&t=IPM.Note&a=New&to=tao.lin%40epfl.ch&nm=tao.lin%40epfl.ch
https://mail.act.buaa.edu.cn/owa/?ae=Item&t=IPM.Note&a=New&to=j.xu%40leeds.ac.uk&nm=j.xu%40leeds.ac.uk
https://mail.act.buaa.edu.cn/owa/?ae=Item&t=IPM.Note&a=New&to=mrovatso%40inf.ed.ac.uk&nm=mrovatso%40inf.ed.ac.uk

