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Abstract: 

Recently, the US Department of Transportation’s Federal Aviation Administration and other 

international organizations have proposed a set of requirements for small unmanned aerial vehicles 

(UAVs) to operate for nonrecreational purposes. However, existing UAV architectures fulfill only some 

of the established requirements, and not all in one solution. This article presents an event-driven service-

oriented architecture that allows autonomous UAVs to satisfy all these requirements and to detect critical 

situations, performing real-time decision making. 
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1. Introduction 

Unmanned aerial vehicles (UAVs) –also called drones– are currently playing a prominent role. 

While regulations may still hinder their broader adoption, some technological advances are fueling their 

use: 

• electronic improvements for the miniaturization of multiple sensory I/O devices; 

• the appearance of multiple wireless-communication mechanisms; 

• the possibility of transporting significant computational resources for processing and 

storing edge data, and 

• the consolidation of cloud computing for providing software as a service as well as 

storing and sharing data. 

Nowadays, UAVs are finding not only military uses but also civilian ones: environmental 

control, cattle raising and farming, and rescue in catastrophes, just to name a few. 

While UAV functionality is increasing, there are other features such as adaptability, autonomy, 

efficiency, reliability, safety, and usability that must be improved. 

The real-time decision-making process in autonomous UAVs is at the heart of many of the 

aforementioned features, and it is one of the main challenges to be addressed in most of the emergent 

application fields. Indeed, the lack of appropriate real-time decision-making strategies is the cause of 

many accidents involving UAVs.1 Nevertheless, the fact is that the basic architecture of UAVs presents 

several limitations (e.g., limited onboard computing) to deal with these kinds of decisions.2 

The main goal of this article is to provide an unprecedented UAV architecture extension for 

supporting onboard real-time decision making in autonomous UAVs. The core of this architecture is 

based on the use of complex event processing (CEP) onboard. The results obtained involve advances in 

terms of the number of events processed per second, response time, ease of use for nontechnological 

users, and code reconfiguration before or during the UAV flight. These results have been validated by 

implementing the architecture. 

 

2. UAV Architecture Design for Autonomy: Requirements and Related Work 

Real-time decision making in autonomous UAVs usually leads to an alteration of flight plans. 

These alterations are based on events that can be broadly grouped into three main categories, depending 

on the concern they are related to:3 

• Data acquisition or processing. Onboard data acquisition and processing analysis may 

lead to changes in the navigation plan. For example, consider an eolic park (wind farm) that is 

formed by one or more electric substations. Each substation is formed by a set of wind turbines. 



 

 

Damage to one of these turbines may affect a planned route and may require either acquiring new 

data on other substation or carefully reviewing the damaged turbine.4 

• Health management. UAV health management addresses monitoring and sensing 

strategies for enhancing the UAV’s useful life and mitigating potential catastrophic events.5 For 

instance, the onboard prediction of the remaining useful life of UAV components (e.g., the battery) 

or data obtained from onboard sensors (e.g., wind speed or rain) may lead to changes in the 

navigation plan in order to take the appropriate corrective actions (e.g., return-to-home operation). 

• Regulations. Reliability and safety are critical concerns in UAVs. The safe integration 

of a UAV into a common airspace requires UAV autonomous behavior to comply with current legal 

regulations. For example, operating higher than 400 feet is illegal for a drone.5 

There might also be simultaneous events related to the previous categories that conflict each 

other. For example, changes in the navigation plan may conflict with battery life, or the pilot’s intent or 

commands may conflict with legal issues, and so on. For those cases, a prioritization of the events 

belonging to the aforementioned categories must be established. 

2.1 Requirements 

Since the number of incidents or accidents involving UAVs has dramatically increased in past 

years,1 the US Department of Transportation’s Federal Aviation Administration (FAA) has proposed a 

set of 33 requirements for small UAVs to operate for nonhobby or nonrecreational purposes. These are 

grouped into four main categories: operational limitations, operator certification and responsibilities, 

aircraft requirements, and model aircraft. 

Operational limitations are the set of requirements needed for real-time decision making in 

autonomous UAVs, since these limitations cover the UAV event categories previously mentioned: data 

acquisition or processing, health management, and legal issues. Considering these requirements together 

with the ones proposed by Clarke3 and by Evertsz and colleagues,6 the complete list of requirements for 

onboard real-time decision making can be established as follows: 

1. data collection or acquisition from heterogeneous sources and different domains; 

2. onboard processing, analyzing, and correlating of a continuously arriving huge amount 

of fine-grained data; 

3. automated detection of relevant events; 

4. dealing with multiple priorities among events that conflict with each other and event 

hierarchies in which some events depend on others; 

5. real-time triggering of appropriate actions, notifying both users and the UAV itself, as 

a result of the decision-making process; 

6. supporting flexible configuration at both design time and runtime; and 

7. providing a friendly automated interface and conflict resolution between the UAV and 

the domain experts. This interface must facilitate the graphical modeling of event patterns 



 

 

(conditions to be met and actions to be carried out) and automatically transform them into their 

implementation code. 

2.2 Related Work 

UAV architectures can be classified mainly into two types, depending on the way in which data 

can be processed: off-board and onboard processing. 

Off-board processing requires data transmission between the UAV and the server, which is 

responsible for processing the incoming data and then sending the response back to the UAV.7 All this 

process may be affected by communication overhead or even communication failure, involving a delay 

that, in many cases, is excessive and can jeopardize the integrity of the UAV. Thus, off-board processing 

architectures do not fulfill the second, third, and fifth established requirements. 

Onboard processing facilitates data capture, processing, and the decision-making process almost 

immediately. Nevertheless, several onboard architectures are closed,8–9 thus not allowing the 

modification and the inclusion of new sensors or actuators. This impedes modification of existing action 

rules or even the addition of new ones. So, these UAVs are proposed and implemented for a particular 

application domain, contrary to the first requirement. Moreover, decision-making rules are usually 

simple and without temporal restrictions, and they do not support event prioritization or an event 

hierarchy in which some events depend on others,10 thus not satisfying the fourth requirement. 

Additionally, there are onboard architectures similar to the one proposed in this article,11 but 

with the difference that these make use of specific methods or algorithms for particular tasks without 

the capability of modifying the flight plan or allowing UAVs to self-manage themselves. Therefore, 

these architectures do not fulfill the sixth requirement. Remarkably, most of these methods are inherently 

computationally complex or inefficient in UAV real-time mode.12 

Both off-board and onboard architectures require domain experts to have a somewhat advanced 

knowledge of programming languages and environments in order to program a UAV mission and to 

define the situations of interest and actions to be taken. For example, knowledge of Matlab Simulink 

may be needed.13 So, the seventh requirement is not completely fulfilled. 

Therefore, existing architectures for decision making in UAVs fulfill only some of the 

established requirements, and not all in one solution, unlike the architecture proposed in this article. 

 

3. An Autonomous-UAV Architecture 

An autonomous-UAV architecture for remote sensing and intelligent decision making is 

proposed in this section. This proposal is based on the integration of CEP technology with an event-

driven service-oriented architecture (SOA 2.0). 



 

 

CEP allows the processing, analyzing, and correlating of a huge amount of data in the form of 

events, with the aim of detecting critical situations in real time.14 The use of this technology enables the 

architecture to satisfy the second to fourth requirements. By integrating CEP with SOA 2.0, this real-

time detection can be done using data coming from heterogeneous sources and different domains, and 

the execution of appropriate actions is supported. So, the first and fifth requirements are also fulfilled. 

Additionally, combining CEP-based SOA 2.0 with a model-driven approach, which facilitates the 

definition and automatic code generation of event patterns, permits satisfaction of the seventh 

requirement. Altogether, these software components therefore fulfill the sixth requirement. 

This autonomous UAV architecture incorporates both hardware and software components. 

Figure 1 illustrates these components, grouped into two tiers: the basic-architecture tier (A) and 

extended-architecture tier (B). The hardware components are orange; the software components are blue. 

 

Figure 1. An autonomous-UAV (unmanned aerial vehicle) architecture for remote sensing and intelligent 
decision making. The hardware components are orange; the software components are blue. ESB = enterprise 

service bus; CEP = complex event processing. 

 

The hardware components of the architecture are as follows. 

The I/OHub gathers the data received from the UAV itself (e.g., GPS, altitude, velocity, and 

optical-detector data) and from the onboard sensors (e.g., humidity, temperature, air pollution, and noise 

data). The I/OHub sends these data (“Input data” in Figure 1) to the CEP engine through an enterprise 

service bus (ESB) that transforms them into events. When any of the situations of interest (complex 

events) are detected by the CEP engine, the I/OHub could receive from the action trigger some actions 

(“Simple action” in Figure 1) to be performed by the drone (e.g., a command for the autopilot to change 

the route) or the onboard actuators (e.g., switching the LEDs on), with the purpose of addressing such 



 

 

detected situations. Thus, the I/OHub is crucial not only for heterogeneous data collection from sensors 

and the UAV itself but also for action distribution among actuators and the UAV. 

The OnBoardComputer is the architecture’s brain, responsible for the execution of the ESB, the 

CEP engine, and the action trigger at the same time. It adds the extra processing capabilities needed by 

a UAV. 

The software components of the architecture are as follows. 

The ESB is responsible for orchestrating the gathered heterogeneous data coming from multiple 

devices and in diverse formats. Several tasks take place at this component: 

1. Data reception. The ESB receives the input data from the I/OHub. 

2. Event transformation. All the input data are transformed into a common format to 

facilitate the event’s processing by the CEP engine. 

3. Event enrichment. Extra information (retrieved from a database, for example) can be 

added to these events. 

4. Domain dynamic generation. Before the ESB sends each event to the CEP engine, the 

event’s type will be analyzed to check if it is already recognized by the engine. If not, the new event 

type will be registered in the CEP engine. 

The CEP engine is the software used to match event patterns over continuous event streams and 

to raise alerts about complex events created when detecting such patterns. These patterns are 

implemented using specific languages developed for this purpose, known as event processing languages 

(EPLs). In this work, patterns can be categorized into three different groups, according to the 

classification previously given: data acquisition, health management, and regulations. A priority level 

is assigned to each kind of pattern: low, medium, or high, respectively. This priority will be used to 

solve conflicts when more than one pattern is detected at the same time. These patterns can be specified 

by the user before flying a UAV or even at runtime –if a communication channel is available. By 

analyzing the events generated by the ESB and depending on the defined patterns (e.g., batteryLevel < 

30%), the engine could create complex events (e.g., Return_To_Home). These complex events are 

received by the ESB and consumed by the action trigger. 

The action trigger contains the code for dealing with the different complex events detected in 

the CEP engine. The response to a complex event can be either a single action (e.g., activating LEDs) 

or a complex action (e.g., going to the next location). Complex actions are sent as events to the CEP 

engine, through the ESB, to check if these complex actions violate any restriction. This new cycle is 

performed because a complex action could lead to new complex events. Several cycles could be 

possible, but, finally, a simple action or a set of simple actions is triggered. The actions taken by the 

action trigger are defined as follows: WHEN (complex event) THEN Actions (Simple XOR Complex 

actions). The action trigger is connected to the I/OHub, in which simple actions are transformed into 

action data for specific actuators. 



 

 

The event pattern editor facilitates for any domain expert the graphical definition of UAV event 

patterns and their detection, using real-time information flowing through the proposed architecture. 

 

4. Architecture Implementation 

The architecture has been implemented using a DJI F-450 UAV chassis with 750-watt rotors 

and an ArduPilot APM 2.6 autopilot. The hardware components chosen for the proposed architecture 

are the following: 

• The I/OHub. An Arduino Uno microcontroller board was used. The programming of 

this microcontroller is simple, and it has libraries for a multitude of external components. It is 

connected by means of a USB port to the OnBoardComputer. 

• The OnBoardComputer. A Raspberry Pi 2 microcomputer board was chosen. The 

processing capacities of this board are enough to support the execution of the ESB, the CEP engine, 

and the action trigger at the same time. It is connected to the I/OHub through a USB port. 

• Data transmission between both components is done by using a Message Queue 

Telemetry Transport (MQTT) connector that supports the publish/subscribe ISO standard. 

The following software components were chosen: 

• The ESB. Mule was chosen because of its ability to integrate itself with cloud platforms 

as well as multiple tools and domain scenarios. 

• The CEP engine. Esper was chosen as one of the best-known and most widely used open 

source CEP engines because of its ability to process thousands of events per second. 

• The action trigger. The action trigger is implemented in DroneKit-Python, the most 

widely used software developer’s kit by the UAV developer community because of its ability to 

facilitate application communication with UAVs over MAVLink. 

• The event pattern editor. MEdit4CEP was used since it facilitates the definition and 

automatic code generation of event patterns (e.g., situations of interest to be detected in drones) 

through a graphical editor,14 hiding the implementation details necessary to define such patterns 

from domain experts. 

 

5. Application scenario 

An application scenario is presented with the aim of illustrating the UAV architecture’s 

functionality. 



 

 

5.1 Scenario Description 

Consider an area near an airport in which it is necessary to measure the environmental noise 

pollution produced by the takeoff and landing of aircraft. Since the measurement points can change from 

time to time, a solution based on UAVs (see Figure 2), instead of fixed sensors, is considered. 

 

Figure 2. A practical example of applying the UAV real-time decision-making approach. 

 

Each UAV is equipped with: 

• a quadcopter with autopilot and GPS (one-second latitude, longitude, and altitude 

measurements), 

• a sound meter, 

• a saveLiPo sensor (a LiPo [lithium polymer] battery voltage tester) that checks the 

battery level every 10 s, 



 

 

• light actuators, 

• an I/OHub, and 

• an OnBoardComputer executing the ESB, the CEP engine, and the action trigger. 

Five points located around the area are monitored (numbered 1 to 5 in Figure 2). Noise 

monitoring starts at point 1 at a predefined time, in which the UAV takes off from home. To take a 

measure, the UAV must have previously landed. 

If a noise level below 110 dB is detected, then the UAV waits. If the following measurement 

within 10 minutes at that location does not increase above 110 dB, then the UAV returns home. In 

contrast, if a measurement above 110 dB is detected, then it is necessary to monitor the related point. 

For the sake of clarity and to show the whole process in this example, the noise level is above 110 dB 

in all the considered points. 

The example illustrates not only how event patterns can be defined but also how the planned 

route of the UAV can be changed in an autonomous way owing to the appearance of events with different 

priorities and types (health management and regulations). 

5.2 Event Pattern Definition 

Before starting the route for noise monitoring, it is necessary to define: 

• the UAV parameters related to the available sensors and actuators, 

• the data and their types coming from sensors to be collected by the I/O Hub and sent to 

the ESB, 

• the event patterns, and 

• their associated actions. 

Since the main contribution of the proposed architecture extension is the use of the ESB and 

CEP engine, the example focuses on the event patterns and their associated actions. It is noteworthy that 

both the event patterns and their associated actions may be changed during the UAV flight, but, for 

simplicity, this is not illustrated in the example. 

Five event patterns (EPs) have been proposed for this application scenario. These have been 

grouped according to their priority level. 

Low priority: 

• EP1 (high noise level). WHEN(noise > 110 db) THEN Next_Location_Measurement 

• EP2 (low noise level). WHEN(noise <= 110 db) THEN Return_To_Home 

Medium priority: 

• EP3 (low battery level). WHEN(batteryLevel < 30%) THEN Return_To_Home 



 

 

High priority: 

• EP4 (restricted airspace). WHEN(NewRoute IS Restricted_Airspace) THEN 

Recalculate_Route 

• EP5 (low battery level). WHEN(Recalculate_Route) AND 

(batteryNeededForNewLocation>batteryLevel) THEN Landing 

The actions for the different complex events, created when detecting such patterns, are the 

following: 

• AT1. WHEN(Next_Location_Measurement) THEN goTo(nextLocation) 

[complexAction] → goTo(x, y) [simpleAction] 

• AT2. WHEN(Return_To_Home) THEN NewRoute(Home) [complexAction] → 

goTo(x,y) [simpleAction] AND LEDs(blue) [simpleAction] 

• AT3. WHEN(Recalculate_Route) THEN recalculateNewRoute [complexAction] → 

goTo(x,y) [simpleAction] 

• AT4. WHEN(Landing) THEN LandingUAV [simpleAction] AND LEDs(red) 

[simpleAction] 

 

6. Results and Discussion 

A video showing and explaining step by step the application scenario can be seen at 

http://qapps.unex.es/AutonomousUAV. The video makes use of an SITL (software in the loop) 

simulator to ease understanding. 

Since we are not allowed to operate UAVs near airports according to current legal regulations, 

the application scenario was tested by operating the UAV around a large manufacturing company, 

instead of near an airport. 

We obtained the following results, which can serve as a measure of the proposal’s suitability. 

6.1 The number of events generated per second 

As a result of the complete execution of the described application scenario, 997 events were 

produced in total. In particular, a GPS location (latitude, longitude, and altitude) event was generated 

every second, a battery level (saveLiPO) event was produced every 10 s, and a noise/sound meter 

(soundmeter) event was created at each of the waypoints marked in the flight plan. Since the test duration 

was 14 min and 50 s, 1.12 events/s were processed. 

The event-processing rate was noticeably much lower than the one supported by the Esper CEP 

engine: 500,000 events/s (www.espertech.com/esper). This high processing rate may be required in 

more complex scenarios –e.g., the Internet of drones.15 

http://qapps.unex.es/AutonomousUAV


 

 

Moreover, additional tests were conducted with other types of sensors (luminosity, water, UV 

index, carbon monoxide, formaldehyde, ultrasound, temperature, humidity, and pressure) for other 

application scenarios. These tests produced 40 events/s approximately, without delaying or altering the 

system because of the number of events produced. 

In the contexts in which the system can be used, the performance of the proposed architecture 

is adequate. The complete log file of the generated events is available at 

http://qapps.unex.es/AutonomousUAV. 

6.2 The response time for notifying detected patterns 

The pattern notification response time of the CEP engine, once the events were received and the 

conditions were fulfilled, was between 3 and 10 μs. Thus, it was insignificant, and this delay did not 

affect the performance expected from a UAV. 

6.3 Off-board vs. onboard processing 

The response delay for off-board processing was between 2 and 7 s, depending on the 

transmission size and the distance between the UAV and the ground control station.7 In contrast, the 

data reception and processing performed onboard the UAV allowed a response of less than 0.7 s. This 

was enough to allow autonomous UAVs to detect critical situations and to automatically execute the 

appropriate actions. 

6.4 Energy consumption 

Energy consumption is the price that must be paid. The UAV used in the application scenario, 

without the proposed architecture, weighs 785 g plus 390 g for a 4,000 mAh LiPo battery. This UAV 

has an average consumption of 950 mAh with an electric potential of 3.7 V. Thus, under normal wind 

conditions (less than 5 Km/h) and pressure (1,000 hPa), the battery can last approximately 27 min at a 

25 km/h constant speed. 

By integrating this UAV basic architecture with the extended architecture proposed in this 

article, the UAV weighs 1,374 g total, with an average consumption of 1,372 mAh and autonomy for 

approximately 18 minutes under the same conditions. This drawback could be removed by adding lighter 

and lower-consumption devices, at the price of making the prototype more expensive. 

 

7. Conclusion 

Real-time decision making has become a crucial task to be performed by autonomous UAVs in 

many application fields. However, the limited processing capabilities of current UAV architectures 

make it difficult to accomplish this task. A CEP-based extension of the UAV basic architecture has been 

http://qapps.unex.es/AutonomousUAV


 

 

proposed in this article. This approach satisfies the requirements for real-time decision making in 

autonomous UAVs proposed by international organizations, such as the FAA, as well as by the academic 

community. 

The approach’s benefits are as follows: 

• It supports onboard real-time decision making in an autonomous way. 

• The architecture facilitates for any nontechnological user the graphical definition of 

situations of interest to be detected and actions to be performed in UAVs, as well as their automatic 

code generation and deployment before or during the UAV flight. 

• The planned UAV route can be dynamically changed upon the detection of prioritized 

situations summarizing UAV health problems or regulation violations. 

To validate the approach’s feasibility, a multipurpose UAV for dealing with several real-world 

application scenarios was proposed and built. Furthermore, a practical example of applying this UAV 

for measuring the environmental noise pollution produced by the takeoff and landing of aircraft has been 

described in this article. 

Future work will include real-time decision making by coordinating several UAVs, which 

implies having a master UAV receiving events and distributing actions. This further work will be tested 

in the context of a project for fire detection and extinguishing control. 
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