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Abstract

Patient health data are often found spread across various sources. However, precision medicine and 

personalized care requires access to the complete medical records. The first step towards this is to 

enable the linkage of health records spread across different sites. Existing record linkage solutions 

assume that data is centralized with no privacy/security concerns restricting sharing. However, that 

is often untrue. Therefore, we design and implement a portable method for privacy-preserving 

record linkage based on garbled circuits to accurately and securely match records. We also develop 

a novel approximate matching mechanism that significantly improves efficiency.
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Introduction and Significance

Initiatives such as the Patient Centered Outcomes Research Institute’s Clinical Data 

Research Network [1], [2] and the National Institutes of Health eMERGE [3] share the 
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challenge that a single entity rarely holds all of the information necessary to conduct 

research or to provide clinical care. Patient health data are naturally spread across different 

sources due to visits at various clinics, hospitals, and pharmacies that often do not share the 

same information system (e.g. EHR implementations) or exchange data. Linking patient-

level data from various sources allows physicians and researchers to have more 

comprehensive data for clinical decision-making and research. However, due to valid data 

privacy concerns, health entities may be reluctant to exchange identifiers.

Creating a collection of patient-level records with geographically distributed and 

longitudinal data from multiple entities that can be used for research is a significant 

challenge. In recent years the importance of this problem has been realized resulting in 

innovative solutions. However, existing methods still suffer from security challenges. For 

example, Kho et al. [4] proposed a seeded hashing on pre-determined fields. Essentially, all 

parties convert the record fields used for linkage into corresponding random-looking strings 

that are then matched by a central party. This provides protection against external attackers, 

since the random-looking strings cannot be easily reversed into the actual record values. 

However, such solutions that rely on a third party (honest broker) are often not secure [5], 

[6]. If the trusted third party has access to hash data and the shared encryption key, the 

hashed value of the linkage variables would be susceptible to different types of attacks (e.g., 

dictionary attack, frequency analysis), especially if the domain of the information is small or 

well-known[7]. To address this issue, alternative methods using a semi-trusted third party [8] 

or commutative encryption [9] have also been proposed, but they still make weaker security 

assumptions. For example, Durham et al.[10] use Bloom filters and are robust to some well-

known attacks for Bloom filters such as frequency-based cryptanalysis, but a third party is 

often required for coordinating field weight and linkage. Vatsalan et al.[11] do not rely on a 

third party, but the framework requires optimizing some critical parameters, which are 

difficult in practice. Yakout et al.[12] propose a two-step linkage method that does not rely 

on a third party, however, some privacy may be leaked during the first step, which is used to 

get the approximate linkage.

In this work, we propose a completely secure deterministic record linkage method for two 

parties. Our method guarantees that no extra information is revealed to the two parties 

beyond the results of the matching, and no information is revealed to any other party (with 

80-bit security level). We provide a basic approach based on a classical implementation of 

garbled circuits and a computationally more efficient approach using a filtering strategy. 

Unlike methods requiring Honest Broker intermediaries, our approach does not require an 

external third party. The significance of this work is that it provides a proof of concept for 

secure two-party record linkage using state-of-the-art garbled circuit methods that can be 

readily adopted in small-to-medium scale linkage tasks with a strong security guarantee.

Adversary Model

We assume that the parties want to collaborate and will adhere to terms of use. This “honest-

but-curious” model assumes that one of the parties may inspect (or be unintentionally 

exposed to) private data, while carrying out agreed upon algorithms faithfully, i.e., parties 

are semi-honest, which is typical in healthcare settings. Individuals in this scenario should 
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be protected from accidental exposure to protected health information. On the other hand, if 

trust levels are low or data are posted publicly, assuming that both parties are malicious may 

be required to obtain desired levels of security. Our work can be extended to such settings 

too, though with much greater computation cost.

Related Methods

We follow the deterministic approach followed by Kho et al. [4] which has been shown to 

perform well in terms of both accuracy and efficiency with real data from 6 institutions in 

the Chicago metropolitan area. Kho’s method proceeds as follows: For two records (A and 

B) fromdifferent sites, the following four match criteria are used:

a. Seeded HashID of (First Name + Last Name + Date of Birth),

b. Seeded HashID of (Date of Birth + SSN),

c. Seeded HashID of (Last Name + SSN), or

d. Seeded HashID of (Three Letters First Name + Three Letters Last Name + 
Soundex[13] First Name + Soundex Last Name + Date of Birth + SSN).

For flexibility, each criterion is assigned a weight (Kho et al. use a weight of 1.01 for each 

criterion). If two records A and B provide the same output for the same rule, then this rule’s 

weight will be added to the matching score, i.e., s = ∑i = 1
4 ri(A) = = ri(B) wi, where the 

ri(·)is the i-th rule mapping function, and wi is the i-th weight. The matching score, s, is used 

to determine if A and B are a match based on the following criteria:

{s > T , match; s ≤ T , no match}

Here T is the given threshold (set to 1 by [4]). Note that in the actual implementation, the 

comparison of the rule outputs is done by an independent third party, with the seeded 

HashID provides security, except in the case of collusion.

Garbled Circuits

Garbled circuits (GC) [14] is a cryptographic technique that enables the computation of a 

function where the inputs are held by two different parties in a completely secure manner. It 

is a general technique that can be used to compute any function representable in the form of 

a circuit. Although restricted to two parties, it supports a rich class of operations.

The basic idea is to represent the function to be computed as a basic logic circuit, which is 

then interactively computed by the two parties. One party creates a garbled circuit 

corresponding to the original circuit taking into account all of the potential inputs of the 

other party, while the other party evaluates this garbled circuit using its actual input. Thus, 

the first party plays the role of the (circuit) generator, while the second plays the role of the 

(circuit) evaluator. Essentially, the generator designs a garbled circuit to compute the 

required function while encoding its input into the circuit itself. This is then sent to the 

evaluator, which first retrieves the evaluation key (garbled input) corresponding to its actual 

Chen et al. Page 3

IEEE Internet Comput. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



input from the generator and then evaluates the circuit using the retrieved keys. Figure 1 

depicts this process. Without loss of generality, we assume that Site 1 plays the role of the 

generator while Site 2 plays the role of the evaluator. We now explain this in more detail.

To securely compute a function f(x, y), where x is the input from the generator and y is the 

input from the evaluator, the generator will first translate the function f(x, y) into a Boolean 

circuit, which is composed of basic Boolean gates (e.g., AND/OR/XOR). For each input and 

output of each gate, the generator creates a pair of keys (garbled inputs), one to be used if 

the value of the input/output is 1 while the other to be used if the value of the input/output is 

0. Now, given the truth table (input/output relationship) for each gate, the generator creates a 

garbled truth table by using the appropriate input keys to encrypt the corresponding output 

key as per the truth table. This truth table is called garbled since it only contains encryptions 

for the output which cannot be used to determine the input. The generator can send all of the 

garbled truth tables along with its garbled inputs to the evaluator. However, the evaluator still 

needs to get the key (garbled input) corresponding to its actual input, without telling the 

generator what the input is. This can be done using a standard cryptographic primitive 

known as Oblivious Transfer (OT) [15], which allows a party (in this case the evaluator) to 

retrieve a single message (the corresponding key) from the other party (the generator) 

without revealing anything to the generator. Once the evaluator has retrieved its garbled 

inputs, it can then evaluate the circuit.

For example, assume that x and y are both a single bit (0 or 1) and the function f(x, y) 

returns 0 if the two are equal and 1 if they are not (i.e., f(x, y)= x^y). Such a function can be 

easily encoded as a single XOR gate since an XOR gate 1 only if its inputs are different. 

Figure 2(a) depicts this simple inequality circuit. Figure 2(b) shows the garbled inputs (keys) 

that are created by the generator for the XOR gate. As can be seen from its truth table (in 

Figure 2(c)), the XOR gate returns the correct output based on the comparison of its single 

bit inputs. Figure 2(d) gives the corresponding garbled truth table created.

Each row is simply the appropriate encryption of the corresponding output key. For example, 

if x and y were both 0, since the actual output should be 0, the corresponding row of the 

garbled truth table contains the output key corresponding to 0 (kz0) encrypted by the keys 

corresponding to its input (kx0 and ky0). Note that in actuality the rows of the garbled truth 

table are permuted to ensure that the evaluator cannot identify what inputs correspond to 

each row.

Now, as mentioned above, the generator transfers the garbled truth tables for all of the gates 

in the circuit to the evaluator, along with the generator’s garbled input (the keys 

corresponding to its input). For example, when the generator’s input (X) is 1, it sends the 

key kx1 to the evaluator. Note that since the keys kx0 and kx1 cannot be distinguished, the 

evaluator cannot figure out what the generator’s input is from the key it sees. The evaluator 

then retrieves its garbled input using Oblivious Transfer. Suppose the evaluator’s input (Y) is 

0. Then, the evaluator would obliviously retrieve the key ky0 from the generator.

Now, the evaluator uses the garbled inputs (keys) corresponding to the inputs of both the 

generator and the evaluator to evaluate the circuit. This is done by decrypting each row of 

Chen et al. Page 4

IEEE Internet Comput. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the garbled truth table – note that only one row will be correctly decrypted giving the key 

corresponding to the correct output, even though the evaluator does not know what the 

output is. Thus, in our example only the row corresponding to keys kx1 and ky0 is decrypted 

giving the key kz1. This continues for all of the gates with the outputs of the corresponding 

steps used to decode the following garbled truth tables until the evaluator receives the final 

output of the circuit. For the final gate, the generator also tells the evaluator what bits the 

output keys correspond to. Thus, for our simple inequality circuit above, the generator tells 

the evaluator that kz0 corresponds to 0, and kz1 corresponds to 1. With this information, the 

evaluator can now figure out the answer of the circuit. Thus, in the example above, since the 

evaluator receives kz1, it can figure out that the output of f(x, y)=1. The detailed proof of 

security can be found in the manuscript by Yao [14]. While this approach only works for the 

honest-but-curious model, there are refinements which allow it to work in the malicious 

model too.

Methods

We implemented and tested the garbled circuit approach2 by building a multi-bit circuit that 

encodes all of the 4 match criteria checked by Kho et al. There is no need to compute the 

seeded HashID since no data is externally visible. For each matching rule, we convert the 

required fields into sufficiently long bit strings, concatenate them, and build a corresponding 

bit length comparator circuit for matching. For example, the first rule checks if the 

combination of first name, last name, and date of birth are the same. The first name is 

encoded using 96 bits (sufficient for any name under 12 ascii characters). The last name is 

encoded using 88 bits (sufficient for any name with up to 11 characters). The date of birth is 

encoded using 64 bits (sufficient for 2-digit day, 2-digit month, and 4-digit year). This gives 

us a total of 248 bits, which was sufficient for testing, but could be adjusted based on the 

usage environment. Computationally, the smallest possible encoding is preferable since the 

comparison circuit cost increases on a per-bit basis. Now, a 248-bit inequality circuit is built, 

similar to the 2-bit inequality circuit shown in Figure 3. The real circuit includes 248 XOR 

gates to check for equality among the 248 bits and multiple OR gates to coalesce the result. 

Similarly, circuits are also built to check the remaining match criteria.

Finally, the output of the 4 circuits is coalesced to give a single equality/inequality result. 

Now, for each record from Party A, and each record from Party B, the entire garbled circuit 

will be generated and evaluated. The output of this tells the parties only if the two records 

match or not. Since every pair of records is independently compared, this process can be 

completely parallelized.

Approximate matching to improve computational efficiency

To improve the efficiency of the basic garbled circuit approach, we designed a simple but 

efficient approximation strategy which is motivated by the intuition that a record only has 

one other true match in any other database, and it is unnecessary to compare it against many 

other records (if they are obviously not going to match). Thus, most of the comparisons 

2The software can be found at: https://github.com/achenfengb/RecordLinkage.git
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between the pairs of records are unsuccessful – while there are ways to speed up 

comparisons by using other mechanisms such as stopping the comparison as soon as an 

inequality is detected, these typically compromise on security since the timing can lead to 

indications of what is the same or different across the records. Instead, what we want is a 

fully secure technique that still takes significantly less time than the basic garbled circuit 

strategy.

The key observation is as follows: if two records do not match on any of the 4 criteria 

mentioned above, they also will not match in terms of simpler predicates. For example, 

suppose the match parameters are simply the first and last name. Instead of directly checking 

these, we check if their length matches for both records, and select the matching records as 

potential candidates. Thus, for example, instead of directly matching “Emily Abbott” with 

“Barbara Mcklewski” we first check “56” with “79”. Since they do not match, there is no 

need to check the full names. The benefit of this is that the comparison is carried out over 

much smaller sizes (for example, 2 digits as opposed to over 20 characters). While there can 

be spurious matches in the first step (for example “Emily Abbott” and “Sofia Potter” which 

both give “66”), they will be likely to be filtered out when we consider other attributes. Even 

though this incurs a potential risk of introducing false positives (records do not actually 

match), the approximate comparison can be significantly faster than comparing the raw 

records in a pairwise manner. It is also possible to create a more complicated circuit that 

compares the potential matches to output only true matches.

Instead of using ad-hoc predicates such as length, the actual implementation uses hashing. 

First, the records are hashed using a SHA-256 hash. Next the first few bits of the hash are 

compared as the preliminary comparison step (small number of bits correspond to faster 

comparison but higher risks of introducing false positives).

Figure 4 illustrates how the whole predicate matching is converted into an approximate 

comparison based on their hashed values. Note that the use of a good hash function is 

critical. A good hash function will uniformly distribute all of the records, thus automatically 

giving us a reduction in potential records to match. For example, if we use only 3-bit of the 

hash, then each 3-bit pattern should have approximately 1/8th of the records. In general, if s 
bits of the hash are used, we expect to have approximately 1/2s of the records matching a 

particular pattern. Clearly, larger s is better to filter more records. However, larger s also 

results in more expensive calculation (and more memory cost), thus giving us a parameter 

that can be suitably tuned for optimum performance based on the dataset. While we do not 

provide bounds on the number of false positives, it may be possible to formally analyze this 

from a bloom filter perspective, which we plan to explore, in the future. As the experiments 

show, even using the initial s bits gives very good performance.

Note that the above filtering strategy does not negatively impact security, since the output for 

every pair of records is still only whether they match or not. When the records do not match, 

the computation is swift, however, it still does not leak any information regarding what part 

of the records do not match, etc., due to the use of the one-way hash function.
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Results and Conclusion

We implemented the proposed algorithms in Java in a two-party distributed setting. The code 

is completely portable and has been successfully tested on Windows, MacOS, and CentOS, 

with only some variations in performance (running time) due to different Java interpreter 

implementations. The results below are on a Windows 10 with Intel i7-6820HK 2.7 GHz 

CPU, a 48 GB memory, and 1.0 Gbps network adaptor. The synthetic datasets used were 

generated using the Mockaroo synthetic data generator3. The data in each field in these 

datasets were randomly corrupted (10% to 20%) to emulate basic typographical errors.

Note that the accuracy of the exact matching algorithm is exactly the same as that of [4]. 

Therefore, we compare the loss in accuracy due to the filtering strategy while showing the 

performance improvement. Figure 5(a) reports the total running time for several datasets of 

different sizes. For the cases of 5k × 5k and 10k × 10k, we cannot run the exact matching 

using one gigantic circuit due to memory limitations, and therefore, estimate the time (i.e., 

from multiple runs of single execution of 500 × 5k and 500 × 10k linkage). Note that the two 

parties do not need to have the same number of records. The figure clearly demonstrates the 

running time of using approximate matching based on the filtering mechanism is 

significantly faster (time is depicted in log-scale). Note that the improvement in computation 

time is as expected, since smaller input sizes for the comparison circuit automatically lead to 

smaller computation time. Indeed, the different hash sizes are somewhat comparable in 

efficiency, though they all provide over a 10-fold improvement in efficiency over the base 

method. However, the price paid is in terms of accuracy, since smaller hash sizes lead to 

more collisions (false positives in terms of the match), as discussed below.

Table 1 shows the linkage results. Using the full fields the same results are achieved as the 

underlying matching algorithm. Approximate matching is much faster but can introduce 

false positives (FP). It is clear that all of the algorithms obtain accurate results for the two 

smallest datasets. This is due to the fact that no hash collisions occur even for smaller hash 

sizes. However, for larger datasets, shorter hashes will result in more collisions thus leading 

to more false positives. For example, for 10,000 × 10,000 size, the 24-bit hashes input 

results in 26 FP cases beyond the baseline. If we increase the hash inputs just 4 bits to 28 

bits, only 1 additional FP arises. With 36-bit hashes, there are no additional FPs beyond the 

underlying method.

Figure 5(b) shows the maximum memory cost (MMC) of approximate matching. As 

expected, the MMC grows when the size of patient linkages increase. However, for the same 

linkage size, increasing hash bit length does not increase the MMC significantly. 

Furthermore, it can be seen that the base method (without the use of hashing) requires 

significantly larger memory. Indeed, for the two largest cases (5K × 5K and 10K × 10K), 

48GB was insufficient and therefore in order to get the running time, we had to carry out the 

experiment over partitions of the data instead of the entire dataset all at once. For the 

memory usage, we have estimated the exact memory that would be required if the entire 

dataset were to be used in a single pass. Again, this demonstrates the viability of the hash 

3Available at: www.mockaroo.com
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based filtering, since the memory usage is the primary constraint in carrying out such 

computation for larger dataset sizes.

To conclude, using garbled circuits provides perfect security, and when coupled with 

approximate matching can be reasonably efficient, though restricted to only two parties. In 

fact, multi-party matching can be implemented using a pairwise strategy, where comparisons 

are done in parallel using a binary tree, which will results in an additional log-scale factor on 

complexity, though we leave the analysis of this to future work.

In addition, the computational complexity of garbled circuit framework is much higher than 

that of the insecure plaintext method. For our laptop with 4 cores and 48 GB memory, to 

guarantee at least 80-bit security, the size 10K × 10K with 36-bit hash requires almost 3 

hours. Bigger data sizes require more memory or powerful workstations. Alternatively, a 

secure hardware based method such Intel SGX 4 can also be leveraged, which we plan to 

explore in the future.
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Figure 1. 
Overall process flow
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Figure 2. 
Garbled Circuit Example
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Figure 3. 
The inequality circuit

Chen et al. Page 14

IEEE Internet Comput. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Predicate matching through hashing
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Figure 5. 
Results for (a) computation time and (b) memory usage
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