

Edinburgh Research Explorer

TURP: Managing Trust for Regulating Privacy in Internet of
Things

Citation for published version:
Kokciyan, N & Yolum, P 2020, 'TURP: Managing Trust for Regulating Privacy in Internet of Things', IEEE
Internet Computing, vol. 24, no. 6, pp. 9-16. https://doi.org/10.1109/MIC.2020.3020006

Digital Object Identifier (DOI):
10.1109/MIC.2020.3020006

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Internet Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1109/MIC.2020.3020006
https://doi.org/10.1109/MIC.2020.3020006
https://www.research.ed.ac.uk/en/publications/d14a3dde-bb21-44e7-b66d-77cf02eade6f

Digital Trust: Trust Management in the Cyberspace
Editors: Elena Ferrari and Bhavani Thuraisingham, ic5-2020@computer.org

TURP: Managing Trust for
Regulating Privacy in Internet
of Things

Nadin Kökciyan
University of Edinburgh

Pınar Yolum
Utrecht University

Abstract—Internet of Things [IoT] applications, such as smart home or ambient assisted living
systems, promise useful services to end users. Most of these services rely heavily on sharing
and aggregating information among devices; many times raising privacy concerns. Contrary to
traditional systems, where privacy of each user is managed through well-defined policies, the
scale, dynamism, and heterogeneity of the IoT systems make it impossible to specify privacy
policies for all possible situations. Alternatively, this paper argues that handling of privacy has to
be reasoned by the IoT devices, depending on the norms, context, as well as the trust among
entities. We present a technique, where an IoT device collects information from others, evaluates
the trustworthiness of the information sources to decide the suitability of sharing information
with others. We demonstrate the applicability of the technique over an IoT pilot study.

INTERNET OF THINGS is emerging as an
area where privacy is crucial but pose different
challenges than of Web systems [1]. In Web
systems, often users first log in using their cre-
dentials, get authenticated, and then their privacy
settings are in effect. The privacy settings are
frequently understood and exercised as informed
consent as in General Data Privacy Regulation.
Put simply, a website user gives consent as to
which of her personal data will be collected and
shared. The main assumption behind this is that
the user herself is capable of thinking through

every possible occasion, under different contexts
and knows specifically the effect of sharing a
piece of information with certain others. With
IoT systems, this is rarely the case. A human
walking on the street will not be aware of the
cameras around her, whether they are recording
at the time, whom the footage is being shared
with, and what possible effects this can bring [2].
This makes it both impractical and ineffective
to regulate privacy using privacy policies that
specify informed consent.

A different formulation of privacy is contex-

Internet Computing Published by the IEEE Computer Society c© 2020 IEEE 1

TURP

tual integrity [3], which understands privacy in
a social context, by defining norms that govern
appropriate information flows. Depending on the
context of the user, some information is appro-
priate to share. A typical example is that in a
medical context, it would be appropriate to share
a patient’s information with medical staff even if
explicit consents were not given for each medical
staff. Contextual integrity as a theory is powerful
to be applied even in situations where context
as well as individual players change frequently,
as it advocates reasoning on contexts rather than
putting users responsible for specifying the cor-
rect behavior for each possible case.

To clearly determine the context in an IoT
application, it is usually necessary to factor in
information from different entities, who would
know different aspects of context such as location,
participants, or activity. With each new informa-
tion that is received from other IoT devices, an
IoT device can interpret the context better and
make a sharing decision accordingly.

TRUST FOR PRIVACY
Many of IoT devices will have varying ca-

pabilities and be possibly managed by different
principals. Hence, when an IoT device reports on
a piece of information, the quality and accuracy
of that information may vary significantly. For
example, a particular sensor might not detect
objects after the night comes down, whereas a
home security camera can even perform face
recognition. This requires information from dif-
ferent IoT devices as well as humans to be treated
and trusted differently [1].

Running example: Is Alice missing?
Alice works for a firm. When she comes and

leaves work, she uses her ID card to log her hours.
On November 30th, Alice’s boss cannot reach
her. Alice’s phone is on her desk in the office,
but Alice is not there. Her boss does not have
the credentials to see Alice’s emergency contacts
so her boss requests access to see them. Alice’s
phone can gather information from other devices,
such as the motion sensor at Alice’s home and
the CCTV camera near her home. Under normal
circumstances, Alice’s phone should not reveal
the emergency contacts, but if Alice is missing,
it might be to Alice’s benefit that the information

is indeed revealed. How can the phone decide on
the context autonomously and make a decision
to reveal information about Alice’s emergency
contacts?

In order to make this decision, first the nec-
essary physical and network IoT layers should
be in place to facilitate communication among
entities; e.g. the phone should be able to gather
information from other IoT devices that it sees
fit. However, it could easily be the case that
these IoT devices themselves are not confident
about the information they provide. Either they
are not willing to share information, or that the
phone knows from previous experience that cer-
tain information sources are not trustworthy. For
example, the motion sensor at home might itself
be confident with the measurements it provides,
however the phone might not trust the motion
sensor as much, since the sensor may have limited
access to the area.

This calls for a trust management system for
decision making in IoT systems such that a device
that receives information from others will assess
the trustworthiness of the information it receives.
In order to ensure that the gathered information
is aggregated correctly, the trust management
system should receive feedback when appropriate
from end users so that assessed trustworthiness of
entities can be updated appropriately.

Accessing trust in IoT
Modeling and managing trust has been studied

widely especially in the context of e-commerce
in multiagent systems to find trustworthy service
providers to carry transactions with. Each con-
sumer agent maintains a trust value for some
of the service providers in the system. When
a consumer is in need of a service, it selects
a service provider by considering its trust and
possible others’ trust in the service provider. After
service provisioning, the consumer agent updates
its trust in the service provider based on the
quality and outcome of the service [4].

While the above procedure provides intuitive
points to design a trust management system for
IoT systems, building and maintaining trust in IoT
applications exhibit properties that are not appar-
ent in e-commerce systems [5]. First, while in
service dealings, there are many service providers
to choose from in IoT applications, there could be

2 Internet Computing

a single device, which you are obliged to use.
Second, e-commerce service providers provide
services mostly in the same context. Thus, after
frequent transactions with a service provider, it
is possible to have an accurate estimation of
trustworthiness of the provider. However, IoT
entities may collect information from previously
unknown entities and make dynamic aggregations
on data that were not present before. Hence,
judging the trustworthiness of an entity is dif-
ficult. Finally, in e-commerce, after one service
provider provides the service, its trust value is
updated based on its performance. Whereas in
IoT applications, a decision is reached based on
information collected from many devices. Hence,
it is not easy to identify whose trustworthiness to
update and to what extent.

TURP
We start with the model of Kökciyan and

Yolum [6], where IoT entities and users of the
system are represented as software agents. Each
agent has information about its environment as
well as some of the other agents around it.
Agents can request and provide information to
each other; however it is possible that an agent
might decline to provide information. When an
agent provides information to another agent, it
associates a confidence value, c-value, (the higher
the value is, better the confidence is). Further,
each agent maintains a trust value for another
agent, both in the range of 0 to 100. When an
agent needs to make a privacy decision, it uses its
own knowledge as well as information collected
from other agents, factoring in the confidence as
well as the trust value to decide on the trustwor-
thiness of the information.

Reasoning on context
TURP uses a disjunctive logic programming

language, Disjunctive Datalog [7], extended with
true negation to represent and reason on infor-
mation collected from other agents. This lan-
guage supports non-monotonic reasoning; hence,
an agent can reason with conflicting information
in its knowledge base [KB], which consists of
facts as well as rules. This is important because
information collected from devices might easily
conflict.

Rules. Rules can serve different purposes such
as inferring more information (e.g. context), or
representing contextual norms that define the
appropriateness of sharing some information. A
rule consists of a head and a body. The body
of the rule is a conjunction of predicates from
a logical language, and the head of the rule can
be a disjunction of predicates. All the predicates
include a c-value, V , to show the confidence of
a piece of information. Negations are allowed
both in the body and the head of a rule (e.g.,
-share details predicate).

In Table 1, the example rules of the phone
agent are shown as Disjunctive Datalog rules.
Our example contains five agents (phone , sensor ,
cctv, boss and punch) and two contexts: work
and emergency (em). All the predicates in the
language are in italic text, and each rule is de-
noted as Ri. When a user is missing, this may
imply that the user is in emergency context (R5).
R3 represents a contextual norm that states if a
user is in emergency context, it is appropriate for
the reasoning agent (i.e. phone) to share details of
the user. The default context Cd dictates that the
user’s details should not be shared with a c-value
of 50, a value that can be set by the agent (R0

and R1). The work context stops the agent from
revealing the user’s details (R4 and R2). When
a rule body includes more than one predicate;
the c-value of the inferred information, predicate
in the head of the rule, is the minimum c-value
among all the predicates. Hence, the agent adopts
a cautious stance while making an inference. R6

is an example of this; if an agent is not on leave
or not home on a work day, that agent may be
missing with a c-value equal to the minimum of
other predicates’ c-values.

The reasoning agent computes a c-value for
each information that it receives from other
agents (R7). For this, it multiplies the trust value
of the other agent, TR, by the c-value associated
with the received information, CV, and normal-
izes it to 100, which gives the final c-value of
the received information.

Context computation. Using the information
that it has collected and by applying suitable
rules, a reasoning agent can find out different con-
texts that an agent can be in. Because of the way
the reasoning and the rules are set up, it can easily

September/October 2020 3

TURP

Table 1: Example rules of phone as Disjunctive Datalog rules.

R0 : in context(A, Cd, T, 50) ⇐ agent(A), time(T).

R1 : -share details(A, T, V) ⇐ in context(A, Cd, T, V).

R2 : -share details(A, T, V) ⇐ in context(A, work , T, V).

R3 : share details(A, T, V) ⇐ in context(A, em , T, V).

R4 : in context(A2, work , T, V) ⇐ keep(A1, info(at work (A2, T)), V).

R5 : in context(A2, em , T, V) ⇐ keep(A1, info(missing(A2, T)), V).

R6 : keep(phone ,info(missing(A, T)), V) ⇐ keep(, info(not on leave(A, T)), V1), keep(, info(workday(T)), V2),
keep(, info(not at home(A, T)), V3), minimum(V1, V2, V3, V).

R7 : keep(A, info(X), V2) :- trust(A, TR), says(A, X, CV), V1 = TR*CV, /(V1,100,V2).

be the case that the agent might consider an agent
to be in more than one context. This is a desirable
property as a situation can belong to multiple
contexts. Note that because the information is
recorded with c-values, the agent will also com-
pute a c-value with each inferred context. We call
each possible interpretation for a context a model.
Each model has one decision predicate (share or
-share), which represents a privacy decision of
the model with a certain c-value, which follows
from the contextual norms (e.g. R1, R2, and R3).
The agent computes all possible models, finds the
model with the highest c-value, and performs the
decision associated with the context of the model.
We categorize the models as share and -share
models, based on their outcome. Figure 1 depicts
all models for the running example, where agents
with different trust values provide information
with various c-values.

Trust update
The trust values of the agents are updated

after the user gives a dichotomous feedback as to
whether the decision was correct or not. In many
models, the sharing decision does not depend on a
single-agent but multiple agents; these agents are
the relevant agents to make a sharing decision
in that model. Notice that this aspect of trust
update is an important difference compared to the
trust updates in e-commerce setting, where after
a service engagement, a negative feedback is only
related to the actual service provider that deliv-
ered the service. Here, however the decision is
taken based on information from multiple entities
and thus all relevant agents have to be considered.

If based on the feedback, the share decision
is deemed wrong, then the trust values of the
entities should be updated in such a way that the

user’s details would not be revealed again if the
same decision was being taken now. There are
two consequences of this: (1) The contexts that
yielded the share decision at a higher c-value than
the -share decision were not correctly identified.
This, in return, means that the entities that pro-
vided information that led to this decision should
have been trusted less. (2) At least one of the
contexts that would lead to a -share decision
should have received a higher c-value so that
it would have been identified as the winning
context.

To make the proper updates, first, the agent
identifies the share model and -share model with
the highest c-value. Next, it computes an average
c-value of these two models, the θ value. θ will
be a threshold to find relevant agents to update
(decrease or increase) their current trust values;
ta denotes the trust value of the agent a. Trust
value updates guarantee a -share model to infer
the winning context while updating trust values
of the relevant agents.

Decreasing Trust. The trust update will be
applied to the relevant agents involved in a
share model with a c-value greater than θ (i.e.
CV (m) > θ). The reasoning agent will set the
trust value of agent a in model m, (tma), as the
maximal trust value that would change the sharing
decision, considering the c-value provided by
the agent a while sharing information (CV m

a).
Equation (1) shows this calculation, where λ is
the penalty factor that is a value between 0 and
1. If the reasoning agent chooses a lower λ value,
an agent that provides misleading information is
trusted less. This equation ensures that the agent
gets a trust value to compute a share decision
model with a c-value lower than θ. Note that an

4 Internet Computing

agent can be involved in more than one model in
this step. The minimum trust value of an agent
is computed according to Equation (2), where
[dec]ta denotes the trust value of an agent in the
decreasing step.

tma = λ× max
0≤T≤100

(T <
θ × 100

CV m
a

), CV (m) > θ.

(1)

[dec]ta = min ({tma |CV (m) > θ}). (2)

Increasing Trust. It is necessary to increase
the trust values of agents who provided some
information to support a -share decision. In other
words, if these agents had been trusted more, the
right sharing decision would have been reached.
Since trust should be difficult to build up, the
reasoning agent will only minimally increase trust
values of agents who are involved in the best
-share models. Equation (3) computes nshare
value which is the highest c-value in -share mod-
els (M−). Equation (4) ensures that the agent
obtains the minimal trust value to compute a
-share decision model with a c-value greater than
θ. Note that multiple best -share models can
exist. Equation (5) ensures that the minimum trust
value is assigned to an agent, which is denoted
as [inc]ta.

nshare = max ({CV (m)|m ∈M−}). (3)

tma = min
0≤T≤100

(T >
θ × 100

CV m
a

), CV (m) = nshare.

(4)

[inc]ta = min ({tma |CV (m) = nshare}). (5)

The final trust values of the agents will be
assigned after the decreasing and increasing steps
as shown in Equation (6). If the agent was not
involved in the given model, its trust stays the
same.

ta =


[inc]ta, if [inc]ta exists;
[dec]ta, if [inc]ta does not exist,

and [dec]ta exists;
ta, otherwise.

(6)

EVALUATION
We implemented TURP1 to run on user

agents in an IoT setting using DLV reasoner [8]
and conducted a pilot study. Our implementation
is a graph-based approach using Python, where
we apply depth-first search algorithm to identify
the relevant agents in the computed models.

To share or not to share?
We first revisit the running example. When

boss requests access to see Alice’s emergency
contacts, it provides information about Alice be-
ing missing (i.e., missing(alice , nov30)). phone
infers the em context by applying R5, and it
contacts sensor and cctv to collect more informa-
tion about Alice. Similarly, work is an inferred
context (R4) since punch provides information
about Alice being at work (i.e., at work (alice ,
nov30)).

Once phone finishes collecting information
from other agents, it computes all models accord-
ing to its KB (Figure 1). Figure 1a depicts the
best -share and share models with c-values 52 and
72, respectively. In the best share model, cctv,
which has a trust value of 85, is the only agent
providing information about Alice being missing
with a c-value of 85. This information is kept in
KB with a c-value of 72 (R7). The em context is
inferred (R5), which is used to conclude Alice’s
details should be shared (R3). Since this is the
model with the highest c-value, phone decides to
share emergency contacts of Alice.

Alice considers this to be the wrong decision
and thus gives negative feedback. Now, phone
will update the trust values of the relevant agents.
First, it gets all the share models with a c-value
above θ that is 62, the average of c-values of
the best share and -share models. For each such
model, it finds all the relevant agents and updates
trust values according to Equation (1), with λ
set to 0.7. m(c), m(bs) and m(b) are the share
models to be considered (m(x) denotes a model
where x is the set of relevant agents, only initial
letters are used). In m(bs), boss and sensor are
two agents providing information. According to
Equation (1), tm(bs)

sensor and t
m(bs)
boss are computed

as 60 and 50, respectively. Similarly, tm(c)
cctv and

t
m(b)
boss become 50 and 48. boss is the only agent

1https://git.ecdf.ed.ac.uk/nkokciya/turp

September/October 2020 5

https://git.ecdf.ed.ac.uk/nkokciya/turp

TURP

rule(2,[alice,nov30,52])

-share_details(alice,nov30,52)

rule(7,[cctv,missing(alice,nov30),72,85,85])

keep(cctv,info(missing(alice,nov30)),72)

rule(5,[alice,nov30,72,cctv])

in_context(alice,em,nov30,72)

rule(3,[alice,nov30,72])

rule(1,[alice,nov30,50])

-share_details(alice,nov30,50)in_context(alice,work,nov30,52)

rule(0,[alice,nov30])

in_context(alice,default,nov30,50)

time(nov30)says(cctv,missing(alice,nov30),85)

share_details(alice,nov30,72)

rule(4,[alice,nov30,52,punch])

rule(7,[punch,at_work(alice,nov30),52,65,80])

keep(punch,info(at_work(alice,nov30)),52)

says(punch,at_work(alice,nov30),80) agent(alice)trust(cctv,85)trust(punch,65)

(a) The best -share , the best share and the default -share models.

rule(6,[alice,nov30,63,boss,63,phone,100,sensor,64])

keep(phone,info(missing(alice,nov30)),63)

rule(5,[alice,nov30,63,phone])

in_context(alice,em,nov30,63)

rule(3,[alice,nov30,63])

keep(sensor,info(not_at_home(alice,nov30)),64) keep(boss,info(not_on_leave(alice,nov30)),63)

share_details(alice,nov30,63)

rule(7,[sensor,not_at_home(alice,nov30),64,90,72])

trust(sensor,90)

rule(7,[boss,not_on_leave(alice,nov30),63,75,85])

rule(3,[alice,nov30,67])

share_details(alice,nov30,67)

rule(7,[boss,missing(alice,nov30),67,75,90])

keep(boss,info(missing(alice,nov30)),67)

rule(5,[alice,nov30,67,boss])

in_context(alice,em,nov30,67)

says(boss,missing(alice,nov30),90)

keep(phone,info(workday(nov30)),100)

trust(boss,75)says(sensor,not_at_home(alice,nov30),72) says(boss,not_on_leave(alice,nov30),85)

(b) Remaining share models.

Figure 1: All the models generated by the phone agent. The rules are depicted as orange boxes, while all other predicates are
depicted as black boxes. An arrow from a black box to an orange box shows inputs to a rule, and an arrow from an orange
box to a black box means that the rule was applied to conclude the target predicate.

that appears in two models: m(bs) and m(b)
(Figure 1b). The minimum trust value is the
one computed in m(b), the trust value of boss
is updated as 48.

The -share model with the highest c-value
(52) is m(p). Since the only agent providing
some information is punch , it will be rewarded
according to Equation (4), yielding 78 for tm(p)

punch.
punch is not involved in any other share model,
therefore its trust value is set to 78.

Running the same scenario with the updated
trust values yields a c-value of 43 for the best
share model and 62 for the best -share model

(Figure 2b). Hence, phone would decide not to
share Alice’s details.

Pilot study
To conduct a pilot study, we use an existing

dataset collected from users, containing interac-
tions with sensors and users’ privacy expectations
in different IoT scenarios [2]. Each scenario in the
dataset contains features such as data collected by
a particular device, the purpose and the location.
Each user is given 14 scenarios, where in each
scenario the user interacts with a single device
and labels it with Allow or Deny.

6 Internet Computing

:sensor (90)
:cctv (85)

:boss (75)
:punch (65)

emergency work

:phone

share_details [72] -share_details [52]

(a) phone decides to share Alice’s details in the initial case.

:sensor (60)
:cctv (50)

:boss (48)
:punch (78)

emergency work

:phone

share_details [43] -share_details [62]

(b) phone decides not to share Alice’s details after trust updates.

Figure 2: The best models generated by the phone agent after consulting agents with different trust values, belonging to
contexts (emergency and work). (a) depicts the best models computed in the initial case, and (b) depicts the best models
computed after the trust update phase. After these updates, the privacy decision of phone would become not sharing her
details if the same decision was being taken again. The dashed arrows show the information flow, and the solid arrows depict
the control flow. The numbers in parentheses are the trust values of agents, and each decision predicate is followed by a
confidence value shown in brackets.

In order to capture the rules governing these
scenarios, we ran the apriori association rule
learning algorithm [9] on scenarios labelled by
775 users, with a minimum support value of 0.1
and a minimum confidence value of 0.6. We
then selected 20 rules with a high confidence
value that contain either Allow or Deny labels
in the head equally. Each association rule [AR]
was automatically transformed into a Disjunctive
Datalog rule. The antecedent of each AR was
used to generate a context rule such that the
conjunction of features implies a context. The
context information was then used to generate a
contextual norm regarding Allow or Deny label,
yielding a total of 40 Disjunctive Datalog rules.

We then use different 14 scenarios, where
there are overall eight IoT devices, and a user
interacts with four IoT devices more than once.
Each scenario includes one IoT device, so each
share or -share model includes one agent. In each
scenario, features are considered as information
pieces provided by the IoT device and are asso-
ciated with a random confidence value between
0 and 100. For each scenario, the user’s agent
makes an automated decision to share or not to
share using TURP. We use the label provided by
the user in the dataset as the user feedback for our
model. In case of a negative feedback, the trust
value of the IoT device is updated accordingly.

We run our experiments with a different range
of trust values changing between 40–100. The
confidence values of features are generated once
and assigned to each IoT device. We initialize all

IoT devices with the same trust value and then the
trust values are updated after the user feedback.
We observe that even under various unknowns as
described above, the agent by employing TURP
can model the trustworthiness of the other agents
and can update its trust values to correct its
reasoning after feedback. Based on our qualitative
analysis of the scenarios, we identify the follow-
ing points as important to use TURP in a realistic
IoT setting. First, the set of Disjunctive Datalog
rules are important in ensuring that the agent can
generate adequate models. If the selected share
model receives negative feedback from the user,
the system should ensure that there are some
-share models to update. Validation of this at
the time of setup is useful. Second, initial values
for trust determines how conservative the agent
will act, where low trust values reinforce Deny
decisions. Allowing the user to configure this
value and making it compatible with the default
context enables realistic outcomes. Finally, if the
sensors vary in the quality of information they
provide, the confidence values need to be set to
reflect that to increase the accuracy of the models.

RELATED WORK
Privacy in online social networks have been

studied in depth. A group of approaches predict
the privacy labels of content that are about to
be shared online [10]. Those approaches assume
that the privacy of content does not change based
on the context. Barth et al. present a logical
framework where a privacy policy is a set of

September/October 2020 7

TURP

distribution norms represented as temporal for-
mulas [11]. In their work, users are assumed to
be active in a single context, which is provided to
the model as an input. On the contrary, here we
accommodate multiple contexts and compute the
contexts based on the trustworthiness of devices
in the system. Another important model is due to
Criado and Such, where an agent can learn im-
plicit contexts, relationships and appropriateness
norms to prevent privacy violations [12]. While
that work has support for multiple contexts, the
trustworthiness of devices has not been dealt with
as we do here.

CONCLUSION
TURP enables IoT entities to make context-

based privacy decisions, where the context is
identified based on information provided from
trusted others. TURP enables correct decisions
to be taken over time as each entity updates its
trust in others after wrong decisions are taken. We
conducted a qualitative analysis of IoT scenarios
by using TURP. An interesting future direction
to consider is sharing of content that belongs to
multiple users [13], [14]; such as group footage,
where sharing it for one user might be appropriate
but not for the other as they might be in different
contexts.

REFERENCES
1. S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini,

“Security, privacy and trust in Internet of Things: The

road ahead,” Computer Networks, vol. 76, pp. 146 –

164, 2015.

2. P. E. Naeini, S. Bhagavatula, H. Habib, M. Degeling,

L. Bauer, L. F. Cranor, and N. Sadeh, “Privacy expec-

tations and preferences in an iot world,” in Thirteenth

Symposium on Usable Privacy and Security (SOUPS),

pp. 399–412, 2017.

3. H. Nissenbaum, “Privacy as contextual integrity,” Wash-

ington Law Review, vol. 79, p. 119, 2004.

4. M. Şensoy, J. Zhang, P. Yolum, and R. Cohen,

“Poyraz: Context-aware service selection under decep-

tion,” Computational Intelligence, vol. 25, no. 4, pp. 335–

366, 2009.

5. C. Fernandez-Gago, F. Moyano, and J. Lopez, “Mod-

elling trust dynamics in the internet of things,” Informa-

tion Sciences, vol. 396, pp. 72–82, 2017.

6. N. Kökciyan and P. Yolum, “Context-based reasoning

on privacy in internet of things,” in Proceedings of the

Twenty-Sixth International Joint Conference on Artificial

Intelligence (IJCAI), pp. 4738–4744, 2017.

7. T. Eiter, G. Gottlob, and H. Mannila, “Disjunctive data-

log,” ACM Transactions on Database Systems (TODS),

vol. 22, no. 3, pp. 364–418, 1997.

8. “Dlvsystem.” [Online]. Available:

http://www.dlvsystem.com/.

9. R. Agrawal and R. Srikant, “Fast algorithms for mining

association rules in large databases,” in Proceedings of

the 20th International Conference on Very Large Data

Bases, p. 487–499, Morgan Kaufmann Publishers Inc.,

1994.

10. A. Squicciarini, C. Caragea, and R. Balakavi, “Toward

automated online photo privacy,” ACM Transactions on

the Web (TWEB), vol. 11, no. 1, pp. 1–29, 2017.

11. A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum,

“Privacy and contextual integrity: Framework and appli-

cations,” in IEEE Symposium on Security and Privacy,

pp. 184–198, 2006.

12. N. Criado and J. M. Such, “Implicit contextual integrity

in online social networks,” Information Sciences: An

International Journal, vol. 325, pp. 48–69, 2015.

13. N. Kökciyan, N. Yaglikci, and P. Yolum, “An argumen-

tation approach for resolving privacy disputes in online

social networks,” ACM Transactions on Internet Tech-

nology (TOIT), vol. 17, no. 3, pp. 27:1–27:22, 2017.

14. R. L. Fogues, P. K. Murukannaiah, J. M. Such, and M. P.

Singh, “Sosharp: Recommending sharing policies in

multiuser privacy scenarios,” IEEE Internet Computing,

vol. 21, no. 6, pp. 28–36, 2017.

Nadin Kökciyan is a Lecturer in Artificial Intelli-
gence in the School of Informatics at University of
Edinburgh; and a Visiting Research Fellow in the
Department of Informatics at King’s College London.
Her research focuses on developing AI techniques to
support decision-making in multi-agent systems while
preserving privacy. Nadin received her PhD degree
in Computer Engineering from Bogazici University.
Contact her at nadin.kokciyan@ed.ac.uk.

Pınar Yolum is a faculty member at Utrecht Uni-
versity, Department of Information and Computing
Sciences. She holds a PhD from North Carolina State
University. She serves on the Editorial Boards of Jour-
nal of Autonomous Agents and Multiagent Systems,
ACM Transactions on Internet Technology, and IEEE
Internet Computing. Contact her at p.yolum@uu.nl.

8 Internet Computing

	TRUST FOR PRIVACY
	Running example: Is Alice missing?
	Accessing trust in IoT

	TURP
	Reasoning on context
	Rules.
	Context computation.

	Trust update
	Decreasing Trust.
	Increasing Trust.

	EVALUATION
	To share or not to share?
	Pilot study

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	Nadin Kökciyan
	Pınar Yolum

