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In the last few years, we have witnessed an explosive growth of fake content on the
Internet which has significantly affected the veracity of information on many social
platforms. Much of this disruption has been caused by the proliferation of advanced
machine and deep learning methods. In turn, social platforms have been using the
same technological methods in order to detect fake content. However, there is
understanding of the strengths and weaknesses of these detection methods. In this
article, we describe examples of machine and deep learning approaches that can be
used to detect different types of fake content. We also discuss the characteristics
and the potential for adversarial attacks on these methods that could reduce the
accuracy of fake content detection. Finally, we identify and discuss some future
research challenges in this area.

Fake content is being created with the sole inten-
tion of misinforming, deceiving, and manipulat-
ing a targeted audience. It is multimodal and

takes the form of videos, photos, news, reviews, and
even Facebook likes. A more concrete example would
be the forgery of a video that contains an important per-
sonality. The forgery could be minor such as changing
their clothing ormore substantial such as changing their
face or speech. Advances in technology are making it
easier to generate such fake content that is realistic in
appearance. As such, there is a potential to have amajor
impact on business and society through influencing
people’s beliefs and decisions. A single fake news article
could easily sway people’s opinions on various topics.

One such case of fake content shaping a commun-
ity’s beliefs would be the mass distribution and con-
sumption of fake tweets during Hurricane Sandy. One
example of the fake content distributed during that
time were pictures of sharks swimming in the residen-
tial areas hit by Hurricane Sandy. These drastically
modified images caused even more panic throughout

various communities and those affected by Hurricane
Sandy.14 It is easy to generate fake content on the
Internet especially when using simpler forms of con-
tent such as news and reviews. During Hurricane
Sandy, there was a deluge of fake photos on Twitter.
An analysis of this event discovered that 10 215 users
posted 10 350 unique tweets that contained some form
of fake content. Thirty (30%) of users were responsible
for the distribution of 90% of the content.14

Current fake content detection methods are capa-
ble of detecting trivial cases such as blatant fake
posts but lack the capability to detect more sophisti-
cated attacks. In recent years, detection techniques
have shifted away from rule-based techniques to sta-
tistical approaches that use machine learning in order
to become more effective in detecting fake content.
However, with the proliferation of advanced comput-
ing technology and software, adversaries are becom-
ing better at not only bypassing these detection
methods, but also altering their intended function
through the use of adversarial attacks.

In this article, we present machine learning fake
content detection methods for different forms of con-
tent and we evaluate their strengths and weaknesses.
In particular, we focus on adversarial attacks on these
methods, and the challenges and opportunities for
fake content detection. The remainder of this article is
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organized follows. The “Fake Content Detection” sec-
tion describes the common machine and deep learn-
ing methods that are used in detecting fake content
for text, images, audio, and video. In the “Detection
Method Characteristics” section, identify some key
characteristics of these methods that influence their
accuracy and computational overhead. Based on
these characteristics, in the “Adversarial Attacks” sec-
tion, we further identify how these characteristics
minimize the risk of different types of adversarial
attacks. Finally, we provide some recommendations in
regards to the challenges and opportunities in fake
content detection in the “Challenges and Opportuni-
ties” section.

FAKE CONTENT DETECTION
Fake content detection is the process of analyzing
and classifying content as either real or fake. There
are several techniques for identifying fake content
and in recent years, the use of machine learning
and deep learning approaches has become more
common. These statistical detection techniques
offer both better autonomy as well as higher detec-
tion rates. We describe the different techniques
that are used for different types of content that
are observed on social media which include text,
image, audio, and video. These are not meant to be
exhaustive but representative of the current trends
in this research domain.

Supervised Machine Learning for Fake
Content Detection
Machine learning is one of the most popular methods
for detecting fake content due to its efficiency and
minimal need of human assistance. Machine learning
utilizes data analysis by “learning” from a set (or sets)
of data provided, and then makes a decision through
the identification of patterns. In the case of fake con-
tent, machine learning can be applied by training a
classifier on a sample set of both fake and real con-
tent in order to identify the similarities and differences
between the two and then have the classifier make a
decision on new content to determine whether or not
it is fake. Machine learning classifiers analyze features
within each piece of content. These features include
but are not limited to text-based features (spelling,
punctuation, random characters), web-based features
(domain name and links), and social-based features
(number of likes, shares, comments, and friends/
followers).

Fake Text:
Fake text refers to content that has been forged
through natural language such as news articles, social
media posts, and online reviews. This can be gener-
ated through humans or bots. Using machine learning,
fake text can be detected through the analysis of the
textual features. These features can be part of a social
media post, or additional web metadata such as titles
or keywords. Beyond these atomic features, additional
information can be extracted based on the relations
of terms within a text using natural language process-
ing approaches such as tokenization and Term Fre-
quency-Inverse Document Frequency (TF-IDF). In turn,
the results from these processes are used to con-
struct features that establish a model that defines a
baseline between legitimate and deceptive texts.

One study that focused on news articles con-
structed a machine learning model that verified the
relevancy of a headline with the body of an article
based on word similarity patterns.19 The aim was to
establish a probability that the two are related and
detect articles that intentionally deceive with their
headlines in order to achieve better propagation
through online social networks. A similar work2 aimed
to classify fake Yelp reviews that are generated with
the purposes of promoting or suppressing a listing on
Yelp. Typically, recommendation algorithms promote
online shops with better reviews, and as such this
method can have ramifications on a business’s viabil-
ity. The study built supervised learning models that
leveraged behavioral user analysis techniques used by
the classifier in order to improve detection rates. The
final model uses a combination of textual features
found in each review as well as behavioral features
that were extracted from a user’s account. The behav-
ioral features included the frequency at which an
account posts reviews, account age, and the number
of positive reviews associated with an account. Using
these classification features, the authors obtained an
accuracy of 86.5% in detecting fake reviews.

Fake Images and Videos:
Fake content associated with graphics contain a vari-
ety of forged content such as fake images and fake
videos. Machine learning can be used to detect
images and videos that have been tampered with or
faked altogether. Detecting this type of fake content
requires a much deeper analysis of individual pixels,
their intensities, and how they relate to past and
future frames if the content is video. As such, training
these models becomes computationally expensive. To
mitigate the computational overhead, some methods
apply data reduction solutions. One approach8 for
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detecting fake or spoofed videos starts by removing
all unnecessary data from each frame leaving only the
key features and artifacts to be analyzed. Afterwards,
the authors create a visual rhythm of the video which
summarizes the entire video into a single frame. After
these two pieces of information are created, machine
learning is used to classify the patterns found in order
to determine if the video is valid or spoofed. A similar
study has demonstrated how it is possible to detect
fake videos by looking for improper head position
using support vector machines.23

Fake Audio:
Fake audio is an emerging type of fake content that
focuses in spoofing specific audio features to produce
a desired audio pattern. One main form of fake audio
is synthetic audio which is the generation of audio
patterns through text-to-speech and voice conversion
software. Text-to-speech creates the base audio by
generating audio patterns from text. In turn, voice
conversion takes those created patterns and
attempts to alter them to match a specified target.
This process creates a nearly perfect audio sample for
a target that did not produce that specific audio.20

One approach21 for detecting fake audio focuses
on detecting audio samples where the intonation
has been intentionally faked. The intonations used
in this study were normal, whisper, thick voice, thin
voice, and nasal. This approach uses a neural net-
work that does a subjective comparison of audio
pairs in order to determine if the audio sample con-
tained a faked intonation. This model took in pixels
of wavelet coherence and outputted a binary value
which represented if the current sample contained
the same speaker or a different speaker. At the end
of their experiments, they obtained an overall accu-
racy of 86.8% when classifying whether a speaker
was the same or different.

Unsupervised Machine Learning for
Fake Content Detection
Unsupervised machine learning allows for clustering
of data without requiring an extensively annotated
data set. This type of machine learning can be applied
to fake content detection in order to cluster data such
as news articles and tweets into groups that represent
fake and real content. This can be beneficial because
the approach has the potential of detecting previously
unseen fake content. However, these techniques have
not been extensively explored beyond the analysis of
fake text.

Fake Text:
Unsupervised machine learning has been used to
detect fake news on social media. The method22 con-
siders user credibility and truths of the news as latent
random variables. A user opinion about a piece of
news was proxied by measuring the amount of user
engagement (such as tweet, liking, forwarding, or
replying to a news tweet) with the news. Then, an anal-
ysis of these user opinions regarding the authenticity
of the news results was used as an estimate of the
authenticity of the news. The utilization of a probabi-
listic graphical model provides an unsupervised
approach for calculating each latent random variable’s
probability. This algorithm uses Gibbs sampling after
randomly initializing the latent random variables.
Using several iterations of Gibbs sampling, estima-
tions of the random variables are calculated and
updated using a Bayesian update function. The final
estimation of the authenticity of the news is calcu-
lated based on the average sampling values. Another
approach has demonstrated fake news detection on
Twitter using unsupervised clustering methods.9

Deep Learning for Fake Content
Detection
Deep learning models attempt to imitate the decisions
that humans make through an artificial neural network
with numerous hidden layers. These layers allow deep
learning models to not require the use of identified
features but can use abstract data instead. In practice
this means that the number of features and sample
size tend to be substantially larger than in machine
learning models. However, the proliferation of tools
that use deep learning has also radically changed the
abilities of adversaries to create fake content. As
such, deep learning has become a mechanism for
both creating fake content and detecting fake
content.

Fake Images:
Deep learning can be used to detect artifacts in fake
images and more advanced types of image forgery. An
example of the latter is deepfake images, which are
often the result of having facial features from one
face mapped to another or having an entire face
swapped with another using deep learning. For exam-
ple, a study has shown that it is possible to detect
fake images without using any of the image metadata
as indicators of their fakeness18. Similar methods for
detecting these types of forgeries compare the face
and facial features with the background of the image
and then evaluate the difference in quality. By looking
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at the difference between the two, the model1 can
determine if the qualities are vastly different in which
case the image is most likely to have been forged.
Such differences exist in forged images as a result of
inserting an object (e.g., a face) from one image into
another image. This processing, involves an encoder
that reduces the dimension (size) of the face in the
image resulting in a reduced number of features. The
reduction of features when used in generating images
leads to a lower quality and hence the image’s “blurri-
ness” is detectable.

Fake Videos:
Fake videos can also be detected using deep learning
approaches. For example, we can use deep learning
against other deep learning models used by attackers
that can record facial expressions one of a person’s
face and then map them onto another person’s face.
Similar to deepfake images, deepfake videos often
map facial features or entire faces from one person to
another with the key difference being an added layer
of complexity dealing with frames as opposed to a sin-
gle image. Deepfake videos require more attention to
detail as it is harder to make a convincing fake video
than an image. Videos require that the facial features
that are being mapped are continuously changing in
order to match the position and orientation of the
original face. A deep learning model described by
Guera and Delp13 detects these types of fake videos
by looking at the features of each individual frame in
the video. It then calculates a probability of how it fits
within the profile of known fakes, and repeats this pro-
cess for every frame in the video. The combined prob-
abilities for each frame becomes the model which
then makes the final decision on whether the video is
fake. A shortcoming of many detection methods in
this area is that they focus on detecting fake videos
through inconsistencies that are produced by the fake
video generation tools.16 As such, these detection
methods are likely to be inadequate as fake video gen-
eration tools improve.

DETECTIONMETHOD
CHARACTERISTICS

Fake content detection methods vary in terms of the
modeling algorithm used (supervised versus unsuper-
vised) as well as the approach of data collection and
the features used. As such, this variance creates vari-
able detection rates. In fact, the detection accuracy
produced through an experiment may yield unex-
pected results in real-world scenarios. As such, under-
standing the characteristics of method leads to a

better understanding of the method’s performance in
real-world applications.

Here, we present the following detection method
characteristics that we have identified from related
works.

� Algorithmic complexity.
� Feature complexity.
� Data sanitization.
� Training sampling.

Algorithmic Complexity
Algorithmic complexity refers to the complexity of the
detection system or classifier’s detection technique.
In other words, how difficult it will be for an adversary
to reverse engineer the system. One such factor that
contributes to this difficulty in reverse engineering is
the incorporation of mechanisms that relate to the
probability of having nondeterministic components.

Several effective types of attack against machine
learning models focus on the exploitation of the mod-
el’s complexity or decision boundary (the threshold
beyond which the content is classified as fake). In
these attacks, an adversary needs to gain knowledge
about the model’s training data or classification fea-
tures in order to be able to determine the decision
boundary. Once the decision boundary has been
determined, the adversary can then send content to
be incorrectly classified by the model.4

Feature Complexity
Some methods utilize easily obtainable features (e.g.,
keywords in a text) but others construct complex fea-
tures from underlying simple variables. The result of
the amount of postprocessing performed on gathered
data can transform these variables in ways that are
seemingly detached from the original dataset. For
example, one can calculate the frequency of words
and then apply the Gini coefficient (a statistical mea-
sure of distribution) to obtain a single number
between 0 and 1 that determines how evenly distrib-
uted these word frequencies are.

A recent example6 on the topic of adversarial styl-
ometry combines various complex static and dynamic
feature sets in order to determine the success rates of
author stylometry recognition compared to adversar-
ial stylometry. Stylometry is the statistical analysis of
variations in literary style among various writers. The
technique combines the use of a static feature set,
which is independent of the documents being classi-
fied, and a dynamic feature set that is dependent on
the documents being classified. Some of the observed

76 IEEE Internet Computing March/April 2021

CYBER SOCIAL HEALTH



results from using translation technologies (e.g., Bing
Microsoft Translator, Google Translate) on a text pas-
sage reduce the precision of author recognition sys-
tems anywhere from 10% to 60% depending on the
number of times the passage was translated.

Data Sanitization
Data sanitization is the process of removing outliers
and unnecessary data from a dataset. This limits the
amount of data that needs to be processed and
removes unwanted data. A properly sanitized training
dataset can lead to models that yield higher detection
accuracy. However, improper sanitization can intro-
duce biases in detection models. For example, an
overly “clean” dataset can have experimental detec-
tion accuracy that is high but underperform in real-
world problems. For example, Cretu et al.7 describe an
approach that utilizes data sanitization as a defense
technique against adversarial attacks. The general
approach aims to classify and remove outlying data
points. The outliers are those classified as being too
different from neighboring data points. This is done by
using a score function that considers some data
points and returns a real-value that represents how
anomalous the point is with respect to predefined
neighbors. If the value exceeds the defined threshold,
the point is then removed from the set. Once this pro-
cess is completed, the resulting dataset is then the
sanitized set and can be used for training.

Training Sampling
Training sampling is the specific selection of a subset
of data from the training dataset. This subset of data
is then used to retrain the classifier instead of using
the entire dataset. Due to the use of a smaller subset,
training sampling allows faster training but with some
tradeoff on the detection accuracy. For example, train-
ing sampling can mitigate imbalance in training sets.3

This can occur due to some extreme outlier cases in
the data that may otherwise skew the detection accu-
racy of the machine learning model. There are two
main approaches for training sampling: under sam-
pling and over sampling. Under sampling refers to the
technique of removing examples from the majority
class in order to balance the class distribution. Over
sampling refers to the technique of adding copies of
examples to the minor class in order to reduce skew-
ness. Results from experiments conducted by Baran-
dela et al.3 found that under sampling techniques
reduce the imbalance in the set and increase the over-
all performance of the classifier.

ADVERSARIAL ATTACKS
Adversarial attacks refer to a variety of data extrac-
tion and data manipulation techniques that are used
against supervised and unsupervised models. In the
context of fake content, adversarial attacks usually
aim to exploit or circumvent classifiers in order to
avoid detection. The effectiveness of such attacks lies
in the assumptions that researchers make about their
models that involve the model itself (e.g., algorithm
used and parameters) as well as the data that is often
derived from a closed set that is curated for laboratory
experiments. Most adversarial attacks can be catego-
rized into one of the following types.

� Causative: Attacks that mainly manipulate the
training data in order to influence the training
process.
– Training data poisoning: Attacks that focus

on polluting the training data in order to
skew a model’s classification of good and
bad data.

– Testing data poisoning: Attacks that abuse
feedback systems attempting to manipulate
a model’s classification.

� Exploratory: Attacks that probe the system in
order to learn the features the classifier uses.
– Black-box probing: Attacks that attempt to

reverse engineer the classifier’s training data,
features, and algorithmused for classification.

– Adversarial inputs: Data that has been spe-
cifically crafted in order to be misclassified
and avoid detection.

The aforementioned attack vectors (also shown in
Figure 1) for machine learning model will yield different
results based on the detection methods’ characteris-
tics associated with them. Put simply, some detec-
tion methods are more resilient against adversarial
attacks. As such determining the resilience of a
method can lead to more realistic expectations on its
fake content detection accuracy. Next, we present an
analysis that compares these attacks against the
characteristics of the detection methods.

Table 1 summarizes the impact these attacks have
on various detection methods’ characteristics. In
the following sections, we elaborate on adversarial
attacks and their effect on the accuracy of detection
methods.

Training Data Poisoning
Training data poisoning is the process of manipulating
a classifier’s training data in order to influence the
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training process.17 This is done through an adversary
gaining control over some portion of the training set
and then influencing the classifier for future exploita-
tion. The training dataset is a crucial component in
training a fake content detection model that utilizes
some form of machine or deep learning as the base on
which the model is being built.

The data poisoning process involves an attacker
injecting carefully crafted data into a training set in
order for the classifier to be retrained using this poi-
soned data. Once the classifier is retrained with the
poisoned data, similarly crafted packets sent by the
adversary could avoid detection.

For example, if the content contains a set of
specific keywords (e.g., “real”) is tagged as fake, an
attacker can populate the system with legitimate
content that uses these keywords. After some
period of time, when the classifier is retrained by
an online platform using more recent data, these
keywords will not be flagged and associate the con-
tent as fake anymore.

Causative type attacks are effective against
defensive techniques that focus on classification
because they target the classifier’s training data. If
the training data can be manipulated, well-crafted

data can then evade classification of these defen-
sive techniques.

Algorithmic Complexity:
The degree of algorithmic complexity for a detection
method does not influence the effectiveness of train-
ing data poisoning attacks. Put simply, no matter how
complex a classifying algorithm is, if it is trained on poi-
soned data then the classifier will still learn incorrectly.

Feature Complexity:
Feature complexity can potentially mitigate the effect
of training data poisoning but not the action of tam-
pering with the training data itself. In turn the poi-
soned data will become part of the classifier but in an
unpredictable way. The mitigating effect exists due to
the information asymmetry between the attacker
and the defender because feature complexity obfus-
cates the process through which fake content is
detected. Put simply, if the original variables that
make up a feature are substantially processed, then
the poisoning of these original variables may not have
a predictable effect on the classifier from the perspec-
tive of an attacker that lacks the knowledge about
what the constructed features are.

FIGURE 1. Overview of a typical machine learning workflow and how adversarial attacks impact different aspects of that system.

TABLE 1. Risk reduction of adversarial attacks based on fake content detection methods’ characteristics.

Sub-category Algorithmic complexity Feature complexity Data sanitization Training sampling

Causative Training data poisoning Low Medium High High
Testing data poisoning Low Medium High Medium/High

Exploratory Black-Box probing High High Low Low/Medium
Adversarial inputs High High Medium Low
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Data Sanitization:
Training data poisoning can have a lower impact on
models where data sanitization is applied. Even if the
training data is poisoned, data sanitization will likely
remove the “tainted” data from the training data
before retraining the classifier. Manual data sanitiza-
tion is more effective than an automated solution.
When the classifier is retrained, the risk of an adver-
sary’s influence on the classifier decreases.

Training Sampling:
Training data poisoning is not effective against
machine learning models that use training sampling
techniques. This is due to the fact that training sam-
pling trains the classifier using only a portion of the
training data and not the entire set. The process of
training the classifier with a subset of the training
data lowers the chances of the classifier being trained
on enough poisoned data which can result in incorrect
classifications.

Testing Data Poisoning
Similar to training data poisoning, testing data poi-
soning focuses on exploiting the system to gain
some control over the testing dataset. An attacker
has the potential to influence the testing data if
such data has been collected from public sources
(e.g., posts in a forum). The testing dataset is used
to evaluate a model’s validity and as such this
attack aims to weaken this process.10 As such, if an
attacker is able to influence this set, the engineers
of the machine learning model can overestimate a
fake content detection model’s accuracy. An exam-
ple of such an attack would be for an attacker to
generate easily detectable fake reviews at an elec-
tronic commerce website in order to influence the
model’s estimated accuracy. Defenders will assume
that the detector’s accuracy is high when in reality
the cases that it detects are trivial.

Algorithmic Complexity:
The algorithm’s complexity does not play a significant
role in testing data poisoning attacks. That is, the
model will still be evaluated on the poisoned testing
dataset. For example, with supervised models, a deci-
sion tree and an ensemble model will be evaluated the
same way based on the same poisoned testing data.
The problem persists even for models that are not
generated a priori such as unsupervised models
that are still evaluated for their accuracy against a
testing set.

Feature Complexity:
Complex features provide some mitigating effect on
testing data poisoning similar to training data poison-
ing attacks. The effect is unknown for both attacker
as well as defenders that build the detection model
because feature construction processes the original
data. In general, the more a feature has been proc-
essed the more unpredictable the effect of testing
data poisoning becomes.

Data Sanitization:
Data sanitization is effective against testing data poi-
soning attacks. Manual implementation of such an
approach on testing data is more feasible because the
testing data tends to be smaller and intentionally
including interesting outliers is advisable because it
provides a better benchmark for the limits of the
detection model.

Training Sampling:
Most of the literature described in section that used
training sampling did not use any samples from the
testing data. As such, poisoning attacks on testing
data will be effective for such machine learning mod-
els. An exception exists for models that apply sam-
pling on a dataset and then use the derived dataset in
techniques such as k-fold cross-validation, where effi-
cient training and testing of the data are derived from
the same sampled set. In this case, since sampling
occurred initially before any of the model testing, an
attacker’s poisoned data will have a lower impact
because not all “tainted” data are guaranteed to be
sampled.

Black-Box Probing
Black-box probing focuses on extracting the features
or performance metrics used in classification by a
detection system.15 The process of crafting data to be
incorrectly classified occurs after the attacker has
probed the classifier (see “Adversarial Inputs” section).
Once the attacker has found the classification fea-
tures used when identifying data, the attacker can
specifically craft his/her data to avoid detection on
those features. Furthermore, an attacker who is given
the ability to probe the system multiple times will be
more likely to succeed in reverse engineering the fake
content detection model based on the output and
derive the features that are used in fake content
detection.

Algorithmic Complexity:
Black-box probing attacks are not effective against
complex machine learning algorithms because they
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are more difficult to reverse engineer. Such systems
are difficult to reverse engineer by an attacker who
has limited interaction with the detection system. Typ-
ically, the use of ensemble methods and complex deep
learning models are more effective in mitigating black
box probing attempts.

Complex Features:
Black-box probing is not effective against systems
that use complex features. This is a by-product of the
amount of post processing that is performed on the
extracted features. As a result, it is more difficult for
an adversary to reverse engineer the features that
have been originally extracted.

Data Sanitization:
Data sanitization is an approach that aims to protect
training and potentially testing data for machine learn-
ing models. As such, it has no effect on an attacker
probing a model.

Training Sampling:
Sampling over the training set will have no effect on
the ability of an attacker to reverse engineer the
machine learning model. However, frequent training of
the machine learning model that uses sampling is
likely to cause the adversary to probe the detection
model frequently.

Adversarial Inputs
Adversarial inputs are an attack vector that aims to
violate a machine learning model’s policies or opera-
tional foundations. These types of attacks focus on
evading the detection of a classifier by exploiting blind
spots in what a classifier has learned. An attacker will
carefully craft his/her data in such a way that it is
incorrectly classified. The process of crafting data so
that it is incorrectly classified usually occurs after the
attacker has probed the classifier. As such, a protec-
tive measure that could determine the success of this
attack relies on the number of attempts that an
attacker has to probe a machine learning model. Once
the attacker has found the classification features
used to identify fake content, the attacker can specifi-
cally craft his/her data to avoid detection on those
features. An example of this approach relates to
image quality and processing with deep learning mod-
els to detect modification artifacts in fake images.
High fidelity images provide the detection model with
more information and as such the likelihood of detect-
ing artifacts indicative of a fake image.12 Thus, an
attacker can identify the image quality bounds for
which the deep learning model does not perform that

well in detecting fake content. Another recent exam-
ple described by Behzadan and Munir5 has shown that
such attacks are also viable for reinforcement learning
models. Attackers can train an attack model at a frac-
tion of a cost that it takes a defender to build a model
and confuse the defender’s model policies (behavior
rules).

Algorithmic Complexity:
Algorithmic complexity can minimize the adversarial
risk because black-box probing needs to be successful
first. However, it is worth noting that complexity can
also have an adverse effect and instead lead to secu-
rity theater (i.e., providing a false sense of security).
Seemingly complex models to humans can often be
easily reverse engineered by machines.11 As such,
increasing algorithmic complexity decreases the chan-
ces of successful adversary attacks for models that
have additional security measures such as limiting the
ability of an attacker to probe a system.

Feature Complexity:
Complex features, in general, can reduce the likeli-
hood for adversarial inputs to succeed. However, due
to the added complexity there could be borderline
cases that if discovered by an attacker, the model can
be exploited. In other words, the added complexity
obfuscates the degree of security for both the
defender and the attacker of a system. As such, sub-
stantial testing on adversarial inputs is recommended.

Data Sanitization:
Data sanitization provides a minimal mitigating effect
against adversarial inputs because the actions per-
formed on a dataset will not reduce the ability of an
attacker to reverse engineer a model’s inputs. Further-
more, if an attack is able to extract the features used
by the classifier, data sanitization will not help prevent
the incorrect classification of data. There is however a
benefit if data sanitization involves the intentional
injection of examples of adversarial inputs into the
model. In such a case, the outcomes could be a detec-
tion model that performs better against adversarial
inputs or a model with a more realistic estimation of
the real world accuracy in detecting fake content.

Training Sampling:
Similar to data sanitization, training sampling only
minimally reduces the risk against adversarial input
attacks. Training sampling is a technique that retrains
the classifier with a subset of the full training dataset
but will not prevent reverse engineering the classifier.
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CHALLENGES AND
OPPORTUNITIES

Based on the analysis that we have conducted in this
article, we recommend that a combination of charac-
teristics be used in order to lower the overall suscepti-
bility of a model against adversarial attacks. For
example, a model with high algorithmic complexity
that utilizes data sanitization techniques will have a
lower risk toward both causative and exploratory
adversarial attacks. While algorithmic complexity and
feature complexity are not inherent in all models, the
inclusion of such characteristics reduces susceptibil-
ity to various types of exploratory attacks.

Beyond this, the above findings on the existing
content detection methods that we have discussed
lead to several challenges and opportunities that we
have identified that can reduce the susceptibility of
fake content detection models to adversarial attacks.
These include the quasi-experimental evaluation of
classifiers, the distribution and use of open datasets,
and domain-specific fake content detection algo-
rithms focusing on anomaly detection.

Quasi-experimental evaluation of classifiers:
Maintaining best practices for testing and training
sets is crucial because several types of adversarial
attacks focus on poisoning both the testing and
training data. For example, an improvement on fake
content detection methods is to revise the updating
process for the classifier so that both the testing and
training data are re-evaluated against past and cur-
rent trends. This evaluation of the evolution of these
metrics in a quasi-experimental fashion should prove
beneficial because it provides a higher degree of con-
trol and security over the contents of the testing and
training datasets and will alert engineers in the event
that such data has been altered substantially. The
expectation is that user behavior can change due to
various factors such as revisions of a platform’s poli-
cies but these behavioral changes are not typically
radical.

Open datasets: Furthermore, the creation and
use of open datasets for evaluating fake content
detection models would provide a better foundation
for future work to be built on. In our survey, we have
identified that many of the models and derived data
are not released or cannot be released due to
license and privacy restrictions. The lack of univer-
sal datasets that can serve as a benchmark for fake
content detection leads to ambiguous accuracy for
published models. Open datasets will further foster
both academic and industry collaborations and lead
to the development of better fake content detection
models.

Domain-specific fake content detection algo-
rithms: Finally, although we have identified studies
that have used unsupervised modeling solutions, it is
important to highlight that these are not mutually
exclusive to supervised machine learning. Both unsu-
pervised and supervised machine learning solutions
are valid and they can be used together to secure an
online platform much like in network security these
two types of machine learning paradigms are used to
detect known but also zero-day attacks. There is cur-
rently a large number of studies that focus on super-
vised machine learning solutions and as such the
potential for adversarial attacks is higher. On the
other hand, many unsupervised machine learning
algorithms perform better in this context. However,
they are not necessarily designed for nondeterministic
data (human behavior often falls under this category).
For example, deep belief networks is an unsupervised
algorithm that is mainly designed to identify features
based on an unlabeled input, and then uses the identi-
fied features as labels for a supervised learning model
(e.g., neural network). Another unsupervised learning
model such as DBSCAN is built for robustness toward
outliers. However, in fake content detection, we often
have a lot of legitimate content and the fake content
appears as outliers, rendering these types of algo-
rithms to be of limited use in this domain. As such we
recommend further research into novel unsupervised
machine learning algorithms that focus on anomaly
detection especially for noisy data that can be
multidimensional.

CONCLUSION
In this article, we reviewed fake content detection
approaches that use machine learning techniques and
we have highlighted the strengths and weaknesses of
these techniques against adversarial attacks. We fur-
ther demonstrated that the detection model’s charac-
teristics affect the susceptibility of the fake content
detection model to adversarial attacks. Given that
fake content creation techniques are becoming more
advanced with various deep learning generation algo-
rithms the challenges for ensuring an asymmetrical
advantage for fake content detection models must
be addressed. As such, not only further research is
required in this domain but substantial progress in
data and algorithm communication is needed among
researchers involved in this field.
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