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Abstract 

When we consider the application layer [1] of networked infrastructures, data and 

control flow are important concerns in distributed systems integration. Modularity is 

a fundamental principle in software design [2], in particular for distributed system 

architectures. Modularity emphasizes high cohesion of individual modules and low 

coupling between modules. Microservices are a recent modularization approach 

with the specific requirements of independent deployability and, in particular, de- 

centralized data management [3]. Cohesiveness of microservices goes hand-in- 

hand with loose coupling, making the development, deployment, and evolution of 

microservice architectures flexible and scalable [4]. However, in our experience with 

microservice architectures, interactions and flows among microservices are usually 

more complex than in traditional, monolithic enterprise systems, since services tend 

to be smaller and only have one responsibility, causing collaboration needs. We 

suggest that for loose coupling among microservices, explicit control-flow modeling 

and execution with central workflow engines should be avoided on the application in- 

tegration level. On the level of integrating microservices, data-flow modeling should 

be dominant. Control-flow should be secondary and preferably delegated to the mi- 

croservices. We discuss coupling in distributed systems integration and reflect the 

history of business process modeling with respect to data and control flow. To illus- 

trate our recommendations, we present some results for flow-based programming 

in our Industrial DevOps project Titan, where we employ flow-based programming 

for the Industrial Internet of Things. 
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Data flow is concerned about where data are routed through a program/system and what 

transformations are applied during that journey. Control flow is concerned about the possible 

order of operations. These two concepts are somehow linked to each other: E.g., the order of 

operations executed in a computer program can influence where the data go. Similar, specific 

data values may steer the control flow. The side box below discusses data vs. control flow in 

program analysis as an area related to this article. 

 
 

Data vs. Control Flow Program Analysis 
 
 

In programming, when calling a function, starting the function’s execution is control flow 

while passing the function’s parameters is data flow. In this context, control and data flow 

are tightly linked, thus it is not straight forward to separate them: 

• Control-flow analysis deconstructs the order of operations in a computer program. 

This could be, for example, determining execution paths, but also precedence con- 

straints between different operations. 

The dominant question is how the locus of control moves through the program. Data 

may accompany the control flow, but is not dominant. 

• Data-flow analysis gathers information about the possible set of values calculated at 

various locations in a computer program. 

The dominant question is how data moves through computations. As the data moves, 

control is activated. 

Control flow refers to the path the execution takes in a program, and sequential program- 

ming that focuses on explicit control flow using control structures like loops or conditional 

statements is called imperative programming. In an imperative model, data may follow 

the control flow, but the main question is about the order of execution. 

Dataflow abstracts over explicit control flow by placing the emphasis on the routing and 

transformation of data and is part of the declarative programming paradigm. In a dataflow 

model, control follows data and computations are executed implicitly based on data avail- 

ability. Concurrency control refers to the use of explicit mechanisms like locks to synchro- 

nize interdependent concurrent computations. It is a matter of emphasis – control flow 

schedules data movement, or data movement implies transfer of control. 
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Distributed Systems Integration 
 
File transfer, shared databases and Web resources, remote procedure calls, asynchronous 

messaging, and data streaming support different forms of dataflow and control flow across 

distributed integrated systems, with various degrees of coupling introduced in the integrated 

architecture [5]. 

Service Oriented Architecture (SOA) is an approach to developing enterprise systems by 

loosely coupling interoperable services from separate systems across different business do- 

mains. SOA emerged in the early 2000s, offering a way to develop new business services by 

reusing components from existing programs within the enterprise rather than writing functionally 

redundant code from scratch. 

A crucial aspect of SOA is service orchestration. Developers utilize service orchestration  to 

support the automation of business processes. Service orchestration is the coordination of 

multiple services exposed as a single aggregate service. In other words, service orchestration 

is the combination of service interactions to create higher-level business services. This is 

usually accomplished through the use of a central workflow engine and/or an enterprise service 

bus (ESB). However, such a central orchestration service causes problems in microservice 

architectures: 

• A team should have full-stack responsibility for its microsevices (Conway’s  Law).  With a 

central orchestration service comes a central workflow team, which has to coordinate 

with the microservices teams whose services are involved in the workflow. With microser- 

vice architectures you create at least one microservice per bounded context, according 

to domain-driven design [6]. One important goal of microservices is to improve scalability 

and speed of the software development itself [4]. Hence it is common sense that one 

microservice needs to be owned by exactly one development team (which may own mul- 

tiple microservices). Centrally managed ESBs do not fit into a microservices architecture. 

You may face a situation where you have to update your microservices in-sync with the 

central workflow model in case you make changes. This introduces a coupling between 

central and local control, that you do not want to have. However, inside a microservice, or 

if a team owns multiple microservices, a workflow engine may be appropriate within this 

context. 

• For independent scalability, microservices should manage their data themselves; thus, 

manage their bounded context. Long running workflows need to keep persistent state 

somehow. This may imply coupling between the central orchestration service and the 
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individual microservices. With microservices, workflows should only live inside service 

boundaries, if loose coupling is pursued. 

Thus, we observe a conflict between central control (via orchestration) and independent evo- 

lution of microserives. This is particularly the case in our application domain of industrial au- 

tomation, where for instance sensors and actuators are managed by third parties, with highly 

varying update cycles. 

Service choreography is also related to service orchestration, as both are employed to create 

composite services and applications in service oriented architectures; however, it is still worth 

pointing out the differences. A service choreography model works without a central orchestrator 

while a service orchestration model relies on a central controller to couple services. The mi- 

croservice architectural style has promoted the idea of event-driven architectures to decouple 

your services. Smart endpoints and dumb pipes are preferred even more now than in previous 

generations of service-oriented architectures. This has not always been followed in all SOA 

implementations, resulting in ESB misuse [7]. 

 

Control Flow Modeling 
 
The workflow concept has de-facto become the standard paradigm for process modeling in 

business process management systems. Workflows are typically looked from three perspec- 

tives: 1) the control perspective, describing the logical order of tasks; 2) the data perspective, 

describing the information exchange between tasks; and 3) the resource perspective, describ- 

ing the originators of tasks. Industry standards such as UML activity diagrams [8], the Business 

Process Model and Notation (BPMN) [9] and event-driven process chains [10] offer graphical 

notations for stepwise processes that include choice, iteration, and concurrent execution. How- 

ever, data flow and control flow in business workflows are not independent. The routing de- 

cisions in a workflow are typically based on data. The emphasis of these workflow modeling 

approaches is on control flow. 

BPMN [9], for instance, does support data objects and data stores, so it is possible to use  it 

to represent data flow, but control-flow modeling dominates BPMN models. Let’s take a look at 

an illustrative example from our Industrial DevOps project [11]. Figure 1 shows an example 

BPMN workflow for temperature control of engines in a production line. 

Timer events in BPMN are events which are triggered by a defined timer, in this example a 

temperature sensor that periodically measures the engine’s temperature. The engine control 

checks the temperature. If the temperature is too high or too low, the engine receives orders 
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Figure 1: An example BPMN diagram for engine temperature control in a production line. 
 

to decrease or increase the temperature, respectively. The measured temperatures are written 

to the time series database. Corresponding to the temperature check, appropriate messages 

are written to the log database. In case the temperature is too low or too high, the operator is 

alerted. The temperature is measured immediately after decelerating / accelerating the engine 

and periodically triggered by the timer event. 

Check Temperature is a data-based exclusive gateway [9]. BPMN offers several other gate- 

ways, including inclusive and parallel gateways. If, for instance, the temperature is too high, the 

production line receives the order to decrease the temperature, the corresponding log message 

is written, and the operator is alerted, all in parallel. 

The graphical, horizontal notation pools in Figure 1 depict the participants within the col- 

laboration. Each pool forms a container for some processes. States in BPMN are linked by 

sequence, exception or message flows; sequence flows can be either incoming to or outgoing 

from a state. While sequence flows are restricted to an individual pool, message flows repre- 

sent communications between pools. In Figure 1, alerting messages are exchanged between 

the Production Line and the Operator, depicted as a dashed arrow. In this example, no data 

objects are modeled, the emphasis is on control flow. 

It is not apparent how to map parts of this model to bounded contexts and microservices. 

According to Evans [6], when a significant process or transformation in the domain is not a 

natural responsibility of an entity or value object, you should add an operation to the model as 

interface declared as a domain service. For instance, checking the temperature could be 
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considered such a domain service. However, in Figure 1, this decision is modeled as control 

flow in the ‘central’ workflow. As discussed in the previous section, we get a conflict between 

central control (via orchestration) and independent evolution of microservices when modeling 

this control flow on the integration level. 

Our BPMN engine temperature control example is dominated by modeling the control flow. 

As an alternative approach, the JOpera Visual Composition Language [12] originates from the 

workflow area, but the JOpera approach emphasizes data flow. From the JOpera data flow 

graph, it is possible to derive the process’ control flow graph. JOpera includes a separate graph 

for modeling the control flow to specify control flow dependencies that cannot be automatically 

derived from the data flow. Before we take a look at such a combination of data and control 

flow, let’s take a look at pure data flow modeling in the following section. 

 

Data Flow Modeling 
 
A data flow diagram (DFD) is a modeling technique for describing and analyzing information 

flows. It illustrates the flow of information based on input and output data. DFDs support 

structured analysis and design. They have the purpose of clarifying system requirements and 

major data transformations. DFDs illustrate business processes with the help of external data 

stores, the data flowing from one process to another, and delivering the result data. A DFD is 

a way to visualize the flow of data of a process or a system that aims to be accessible to both 

software engineers and domain experts alike. A DFD has no control flow, there are no decision 

rules and no loops. 

Several DFD notations exist. We employ the Gane & Sarson notation [13]. To facilitate the 

understanding of DFDs, the example DFD for engine temperature control in Figure 2 displays 

the four basic elements Process, Data Store, Data Flow and External Entity, which are intro- 

duced as follows: 

• Processes refer to the activities that operate the data of the system. A process receives 

input data and produces output with a different content or form. Processes can be as 

simple as collecting input data, or it can be complex as producing a report containing 

monthly sales. A process is depicted as squares with rounded corners with a unique 

name in form of verb or verb phrase, for example, Send Temperature in Figure 2. It is 

optional to indicate the place at which the process is executed, ‘Engine Control’ in our 

example. 
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Figure 2: An example DFD for engine temperature control. Processes are depicted as squares 

with rounded corners, data store as open rectangles, external entities as closed rect- 

angles, and data flows as directed lines. 

 
• Data Stores represent the repository of data manipulated by processes, which can be 

databases or files (Time Series Database and Log Database in Figure 2). A data store is 

represented by an open rectangle in a DFD with a name in the form of noun or noun 

phrase. A data store is used to represent a situation when the system must retain data 

because one or more processes need to use the stored data in a later time. 

Note that such data stores could also be modeled with the BPMN. Our goal here is to 

explicitly illustrate the differences between control-flow modeling (with BPMN in Figure 1) 

and data-flow modeling (with DFD in Figure 2). 

• Data Flows are directed lines indicating the data flow from or to a process with the infor- 

mation on the line of a data flow. At least one end of a data flow is linked to a process. 

Note that data cannot move without a process. In other words, data cannot go to or come 

from a data store or an external entity without having a process pushing it or pulling it. 

Data stores are passive while processes and external entities are active. In Figure 2, the 

Engine sends the measured temperature to the Engine Control to Check the Temperature. 

• External entities are components outside of the boundaries of the modeled information 

system. They represent how the information system interacts with the outside world. 

Example external entities in Figure 2 are the Engine and the Operator. An external entity 

is depicted as a closed rectangle in DFDs. An external entity is a person, department, 

outside organization, or other information system that provides data to the system or 

receives outputs from the system. 

Note that the DFD in Figure 2 does not describe exactly the same information as the control- 

flow BPMN diagram in Figure 1. Several (control-flow) details are left out, such as the logic to 
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check the temperature. This decision is delegated to the appropriate domain service [6], for 

which a microservice will be responsible in a microservice architecture (this could be a domain 

service ‘Check Temperature’ for our engine control example). Such control-flow concerns are 

delegated from the integration layer to the individual microservices, to reduce the coupling. 

Please note that just such a simple rule-based decision as in our illustrative example would be 

somewhat too fine grained to constitute a microservice. 

 

Titan Flow-based Programming 
 
Titan is a software platform for integrating and monitoring industrial production environments, 

following our Industrial DevOps approach [11]. With the Industrial DevOps approach, we in- 

tend to introduce methods and culture of DevOps into industrial production environments. The 

fundamental concept of this approach is a continuous process of development, operation, and 

observation of the entire production environment. 

To achieve this, Titan applies the principles of flow-based programming. Flow-based pro- 

gramming is a programming paradigm, introduced by Morrison in the early 1970s [14]. Flow- 

based programming defines applications as networks of black-box processes, which commu- 

nicate via data traveling across predefined connections. As such, flow-based programming 

emphasize data flows, as the previously introduced DFDs do. Example Titan flows for engine 

temperature control are shown in Figure 3. In Titan, a graph of connected bricks is called a 

flow. There are several types of bricks [15]: 

• Inlets and outlets are to be found at the edges of flows and constitute the start and end- 

ing points of data flows (depicted as triangles embedded within squares). An inlet is a 

producer brick to a data flow. An outlet brick will end a data flow. In Figure 3, Engine is 

an inlet for temperature measurements. The Time Series Database Writer is an outlet to 

store the measurement data. Within Titan flows, communication among bricks is stan- 

dardized, while inlets and outlets connect our flows to possibly heterogeneous external 

components. 

• Filter bricks (depicted as triangles, with the tip to the right) process the incoming data 

based on filter conditions. The Temperature Filter in Figure 3 converts the raw sensor 

measurements into corresponding Titan data structures. 

• Selector bricks (depicted as triangles, with the tip to the left) forward incoming data to 

selected out ports of this brick depending on the conditions set in the implementation. In 
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Figure 3: Example Titan flows for engine temperature control. 
 

Figure 3, the Check Temperature selector decides whether to handle the temperature or 

to write a log message. 

• Signals do constitute a special type of flow edge (depicted as double arrows to the left 

and right for signal producers and consumers, respectively). A signal producer starts a 

flow by receiving a trigger possibly including a data set delivered via the signal. The signal 

consumer will end the current flow, optionally triggering some signal producers with the 

same name. In Figure 3, Handle Temperature is such a signal. With signals, we may build 

event-driven architectures. 

• General bricks (depicted as rectangles) contain logic that cannot be classified into the 

more specialized bricks listed above. In Figure 3, Adapt Temperature and Alert Operator 

are examples for such general bricks. 
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Note that the control flow decisions are encapsulated within the brick implementations. The 

visual Titan flows describe only data flow. The essential difference to the previous DFD model 

is that we model event-driven architectures with Titan’s signal mechanism. Event-driven archi- 

tectures fit to microservice architectures [16]. 

Titan provides a graphical modeling language, which is designed to enable the domain ex- 

perts to model the integration and, based on this, to configure the integrated system. Hence, 

there is no software engineer required to perform these configurations or (pre-configured) 

changes. Instead, domain experts receive training on the modeling language, to allow for end-

user programming. 

The strong encapsulation of the internal functionality of a brick makes it highly modular. 

Bricks implemented in different languages can be combined. The brick logic can be described 

in the form of a script, for example with Python. With Titan, we also intend to combine our flow-

based programming approach with block-based programming [17], such that the domain 

experts do not need to learn textual programming languages to describe the internal brick logic. 

In block-based programming, the programming constructs like conditionals and loops are 

represented via graphical blocks. Popular examples include MIT Scratch and Google Blockly. 

Figure 4 depicts a block-based program snippet and corresponding Python code for the Check 

Temperature selector brick of Figure 3. 

With Titan, graphical flow-based programming for integrating distributed systems is domi- 

nated by data flows, while control flow is specified within the bricks. For both, we provide low- 

code programming to domain experts. In principle, the Titan approach is similar to JOpera [12], 

where data flow graphs are refined by control flow graphs. However, with Titan, data flow 

graphs are refined via block-based programming to specify the control flow (Figure 4). 

 

Conclusion 
 
With the production line example, we intend to illustrate our experience and lessons learned 

with respect to control and data flow in distributed systems integration: 

1. Our BPMN engine temperature control example in Figure 1 is a pure control-flow model. 

The logic for checking the temperature, for instance, is explicitly modeled in the (global) 

workflow. 

2. Our DFD engine temperature control example in Figure 2 is a pure data-flow model. The 

logic for checking the temperature is not modeled in the (global) data flow, it should be 

implemented in a domain service. 
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if MeasuredTemp >= MaxTemp: 

EmitPacket(MeasuredTemp, ’TooHighPort’) 

elif MeasuredTemp <= MinTemp: 

EmitPacket(MeasuredTemp, ’TooLowPort’) 

else: 

EmitPacket(MeasuredTemp, ’InRangePort’) 
 
 
 
 
 
 
Figure 4: Block-based program snippet (left) and corresponding Python code (right) for the 

Check Temperature selector brick of Figure 3. 

 
3. Our Titan engine temperature control example in Figure 3 is a data-flow model, enriched 

with events (called signals in Titan). Such event-driven architectures fit well to microser- 

vice architectures and domain-driven design [16]. 

Both, data and control flow are important concerns in distributed systems integration. Based 

on our experience, we suggest that for loose coupling, explicit control-flow modeling should be 

avoided on the integration level. Modeling control flow is more coupled because it as- sumes 

an exact ordering of service invocations, while data flow abstracts from this ordering as long 

as the service interfaces have matching assumptions regarding the data that needs to be 

exchanged. Thus, on the level of integrating microservices, data-flow modeling should be 

dominant. Control-flow should be secondary and preferably delegated to the microservices in 

some way. However, be aware of the resulting trade-off of loosing an integrated overview on 

the control flow. Such an integrated overview on the actual system interactions may be recon- 

structed via runtime monitoring [18, 19], but the system design should focus on data flow. We 

suggest that researchers investigate more on data-flow oriented modeling methods, and that 

professionals reconsider and revive data-flow modeling and flow-based programming. 
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