
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/14 6 0 9 3/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Pa t ro s, Pa nos, S pillner, Josef, Pap a dopo ulos, Aless a n d ro V., Vargh e s e, Blesso n, Ra n a,

O m e r , Dus td ar, Sc h a h r a m a n d Dus t d ar, Sc h a h r a m 2 0 2 1. Towa r d s u s t ain a ble

s e rve rle s s co m p u tin g. IEEE Int e r n e t Co m p u ting 2 5 (6) , p p. 4 2-5 0.

1 0.1 1 0 9/MIC.20 2 1.30 9 3 1 0 5

P u blish e r s p a g e: h t t p://dx.doi.or g/10.11 0 9/MIC.20 2 1.30 9 3 1 0 5

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

Towards Sustainable Serverless Computing

Panos Patros1, Josef Spillner2, Alessandro Papadopoulos3, Blesson Varghese4,
Omer Rana5, and Schahram Dustdar6

1 University of Waikato, Aotearoa New Zealand
2 Zurich University of Applied Sciences, Switzerland

3 Mälardalen University, Sweden
4 Queen’s University Belfast, UK

5 Cardiff University, UK
6 TU Wien, Austria

Abstract. Although serverless computing generally involves executing
short-lived “functions”, the increasing migration to this computing para-
digm requires careful consideration of energy and power requirements.
Serverless computing is also viewed as an economically-driven computa-
tional approach, often influenced by the cost of computation, as users
are charged for per-sub-second use of computational resources rather
than the coarse-grained charging that is common with virtual machines
and containers. To ensure that the startup times of serverless functions
do not discourage their use, resource providers need to keep these func-
tions hot, often by passing in synthetic data. We describe the real power
consumption characteristics of serverless, based on execution traces re-
ported in the literature, and describe potential strategies (some adopted
from existing VM and container-based approaches) that can be used to
reduce the energy overheads of serverless execution. Our analysis is, pur-
posefully, biased towards the use of machine learning workloads as: (i)
such workloads are increasingly being used widely across different appli-
cations; (ii) functions that implement machine learning algorithms can
range in complexity from long-running (deep learning) vs. short-running
(inference only), enabling us to consider serverless across a variety of
possible execution behaviours. The general findings are also easily trans-
latable to other domains.

Keywords: Serverless; Sustainability; Green Computing

1 Introduction & Context

People and organizations are increasingly coming to terms with the urgent need
to reverse the deleterious effects of climate change. The 2015 International Paris
Agreement on Climate Change7 mandated a temperature rise well below 2°C—
ideally capped at 1.5°C. The UN proposed 17 Sustainable Development Goals
(SDGs), such as “SDG7: Affordable and Clean Energy”, “SDG9: Industry, In-
novation, and Infrastructure”, and “SDG13: Climate Action”8. As our society’s

7 https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
8 https://sdgs.un.org/goals

needs for computational power—and as such energy—increase, the software and
computer engineering industries also need to decisively respond by adopting and
encouraging sustainable operational paradigms. Serverless Computing, as a new
Cloud Computing paradigm, must also be made sustainable. As many predict
Serverless to be the next evolution of cloud systems [SSK+21], ensuring that
power and energy efficiency of such systems is adequately managed remains a
crucial challenge.

Serverless Computing expands on state-of-the-art cloud computing by further
abstracting away software operations (ops) and parts of the hardware-software
stack. One could consider functions, the execution unit of serverless computing,
as “lightweight” containers, invoked with a set of inputs and expected to produce
a set of outputs, when triggered. A key value proposition for Serverless Com-
puting is its cost model, based on dynamic memory and CPU usage (connected
directly to function invocations and as such, resource utilization and thus pow-
er/energy). This is unlike the more traditional Cloud Computing approaches,
which charge based on the reservation of computing resources.

Data centres, and as such Cloud and Serverless Computing, do have a sig-
nificant impact on the world’s total energy and power requirements. Estimates
range from 200TWh to 500TWh, which corresponds to 1%–2.5% of the world’s
total energy usage. Additionally, this number is likely to increase as the de-
mand for Cloud Computing increases: the estimated number of machines in
data centres increased from 11M in 2006 to 18M in 2020. However, estimates
are that only around 50% of this TWh energy consumption is used for actual
computation; the other half is used on idling servers [Myt20]. Serverless Com-
puting has a key role to play in this; this 50% waste in idling could in theory
be completely reclaimed by this novel paradigm. Leading cloud providers have
acknowledged the need to introduce real consumption pricing, something that
becomes feasible with Serverless architectures despite measurable overheads due
to decomposition [PSR20]. Serverless also provides a strong value proposition
to users, who can pay for short time frames (less than a second), compared to
reserving resources for an hour or more.

Apart from computation and memory, another energy-intensive computing
task is networking. A 2015 meta-study estimated the Internet transmission en-
ergy to be 0.06 kWh/GB [AMKF18]. The problem is exacerbated in the era of
IoT devices explosive growth: CISCO predicted 5ZB of IoT-related data to be
transmitted in 2022 [Cis20]. This amount of IoT traffic will require 60TWh of
energy in 2022, essentially on par with 12%–30% of data centres.

A solution is to move small functions near the data instead of moving zetta-
bytes of data to the data centre; however, this adds significant extra development
and operational burdens. Serverless computing, however, unlocks an easy migra-
tion towards easy-to-manage edge computing. Crucially, experimental evaluation
on an IoT-driven video-analytics application suggests a 50% reduction in emis-
sions is achievable if edge servers are used and data transmission to the data
centre is used sparingly [RdSVGdL21a].

Therefore, to assure sustainable development for the Information Technol-
ogy sector, there is an urgent call to establish energy- and power-aware design
and operational strategies for the novel paradigm of serverless computing. We
posit that the call for Sustainable Serverless Computing can be split into three
directions:

1. Sustainability techniques need to be designed and developed at the Server-
less platform level, such as power capping, scheduling, consolidation, and
switching off policies. Crucially, to provide more room for manoeuvring to
the Serverless Platform operator, serverless end-users need to be given in-
centives to minimise non-critical (deadline constrained) requirements, which
can result in provisioning for Sustainable Service Level Agreements (SLAs).

2. The efficacy of serverless sustainability is closely coupled to workload pat-
terns. The data centre as a whole should avoid peak power consumption on
its grid, as this leads to the use of emissions-heavy fossil-fuel-driven backup
generators. As the world increasingly relies on AI and ML, the workload
patterns generated by such smart systems must be studied and should (po-
tentially) make use of relaxed SLAs, for instance during the training phase.

3. Connecting both these two topics, how can we indeed know how success-
ful a serverless sustainability technique is? Sustainability oriented serverless
benchmarks are needed to assess the quality of the proposed techniques, and
these benchmarks need to be designed with realistic contemporary work-
loads, such as AI/ML, in mind. Crucially, as computation needs to move
closer to the data, monolithic AI applications need to be replaced with
function-oriented microservice architectures such that they can fit on low-
powered edge devices and serverless operators can leverage the various afore-
mentioned sustainability techniques.

Figure 1 illustrates data sources that feed data streams into serverless func-
tions. Functions are frequently invoked with stream chunks, receiving data across
different types of communication channels. A single data source, e.g., in built
environments, Industry 4.0 and electric mobility, may utilise different types of
communication infrastructure.

2 Designing Sustainable Serverless Platforms

Various approaches can be used to limit the power consumption of serverless
functions, ensuring more efficient use of energy of the associated infrastructure
on which these functions are hosted. These techniques, which can be invoked
transparently (from an end-user perspective) must be implemented by the server-
less platform and can include: power capping of serverless deployments, use of
scheduling strategies to make more effective use of the physical resources on
which serverless functions are hosted and mechanisms to minimise cold start
times that can have significant power consumption requirements. Each of these
approaches is described in this section, along with their benefit (and limitations).

Fig. 1. Serverless functions – responding to incoming data streams

Power Capping: this approach relies on limiting the power consumed by func-
tions hosted within a specific container environment. Power capping techniques
such as Dynamic Voltage and Frequency Scaling (DVFS) and Running Average
Power Limit (RAPL) are hardware-based approaches that reduce CPU frequency
and voltage to lower processor power consumption. However, this degrades the
entire system performance and consequently the deployed application. Power
cap violations are undesirable and need to be effectively managed, as the power
benefit can be counter-productive—leading to applications running for longer
time periods, which at times is the worse possible outcome from a sustainability
perspective as it prevents shutting down under-utilized machines. More specif-
ically, power cap violations occur when the total power consumed by a server
exceeds a threshold defined by the server administrators.

Two power capping techniques are particularly relevant in the context of
container-based functions: (i) DockerCap for Docker containers can make use of
system power consumption obtained from a hardware power meter and RAPL.
The CPU quota of all containers at different scheduling priority is reduced,
thereby affecting the performance of all containers; (ii) DEEP-mon power mon-
itoring can be used for Docker containers on the Kubernetes platform. This
technique relies on RAPL and DVFS to manage power cap limits. It is demon-
strated that RAPL affects the run-time performance of all containers on a server.
RAPL enforces a power cap on the processor and DRAM by reducing the CPU
frequency and thus degrading the overall system performance.

In the context of language-runtime-based functions, such as those supported
by serverless platforms like funcx, which runs on Python9, more fine-grain power
capping can take place. Such algorithms could target specific sub-components
that might not need to run at full speed, such as resource-intensive dynamic
memory management, aka., garbage collection [PKD18]. Alternatively, the lan-
guage runtime might be able to better characterize the resource requirements of
its functions, enabling improved execution density via adaptive resource sharing
among multitenant functions [PMK+19].

The performance and execution behaviour of a function is influenced by the
power consumed by each function. Longer running functions can be terminated,
for instance, if their power consumption exceeds the pre-specified cap.

Network Power Saving: QUIC employs some of the basic mechanisms of TCP
and TLS, while keeping UDP as its underlying transport layer protocol. QUIC is
therefore a combination of transport and security protocols by performing tasks
including encryption, packet re-ordering, and retransmission. QUIC can be con-
sidered a user space, UDP-based (stream-oriented) protocol developed by Google
– published by IETF in May 2021 as RFC9000. It is estimated that approx. 7%
of Internet traffic employs QUIC. This protocol offers all the functionalities re-
quired to be considered a connection-oriented transport protocol, overcoming
numerous problems faced by other connection-oriented protocols such as TCP
and SCTP. Specifically, the addressed problems are: reducing the connection
setup overhead, supporting multiplexing, removing the head-of-line blocking,
supporting connection migration, and eliminating TCP half-open connections.

QUIC executes a cryptographic handshake that reduces connection estab-
lishment overhead by employing known server credentials learned from past
connections. In addition, QUIC reduces transport layer overhead by multiplex-
ing several connections into a single connection pipeline. Furthermore, as QUIC
uses UDP, it does not maintain connection status information in the transport
layer. This protocol also eradicates the head-of-line blocking delays by applying
a lightweight data-structure abstraction called streams. Due to its lightweight
nature and support for data encryption, it is viewed as an important enabler
for serverless functions. Using reduced overheads, the power consumption of
QUIC is also reduced compared to other equivalent network protocols used for
serverless deployment. The Quic protocol can be also be used to preserve energy
resources, especially between sleep and awake states that are often used by IoT
devices. Maintaining a TCP connection requires use of keep-alive packets which
can consume energy and bandwidth. Understanding how this can undertaken
more efficiently is also an important approach to reduce energy use [KD19].

Hotspot & Coldspot Migration: A common approach to reducing power
consumption is the dynamic consolidation of virtual machines & containers on
a smaller number of physical machines. This is based on the observation that
physical machines (PMs) run at 10%–50% of their maximum CPU usage and a

9 https://funcx.org/

majority of PMs are idle, whilst still consuming about 70% of their peak power.
This process involves migrating workload to enhance resource usage and min-
imise the use of machines that are underutilised within a data centre – often
turning these PMs off so that they do not consume power. Migration is expected
to be transparent and beneficial when a physical server is highly over-loaded
(creating a hotspot) or under-loaded (creating a coldspot). However, consoli-
dation policies reduce energy consumption significantly but live VM migration
results in increased violations of Service Level Agreements.

Many of these techniques however suffer from issues of instability and fluc-
tuation – as migration of workload is often based on instantaneous (or time
window-based) workload analysis. Only recently, time series (machine learning-
based) forecasting techniques that take account of multiple criteria for estimating
workloads are being used. Understanding where cold spots are likely to happen
is as important as identifying the location of over utilised resources within a
data centre. A key challenge that differentiates this challenge within a serverless
environment is the overhead of migrating workloads compared to: (i) the func-
tion execution time; (ii) the migration time and associated startup time of the
function at the new location. Both of these limit the benefit of migration for
short-running functions – compared to longer running VMs or containers.

Power-off Strategies: As mentioned, traditional approaches in data centre
consolidation have focused on migrating long-running virtual machine instances
to eventually power down idle hosts. More recently, these approaches have been
suggested for re-application in cloud-to-fog continuums [OCY+17]. In our view,
such continuums will emerge everywhere due to the proliferation of sensing,
and it would be short-sighted to assume conventional virtual machines as an
execution technology. Instead, with a Serverless Computing approach, there are
several advantages to simplify management and increase efficacy. First, short-
running code can be left alone, and hosts can be switched off or suspended
when none or even few instances remain. This greatly increases flexibility to
decide when a switch-off shall occur. Second, the inherent event-driven nature
of function invocation allows coupling with dynamic resumption such as Wake-
on-LAN, in particular with fast-resuming and fast-booting technologies such
as Coreboot [SJRZ15] in conjunction with delay-tolerant function invocations.
This way, hardware sensors along with virtualised fog nodes can be connected
to as if they were permanently running, and yet they can power off in between.
This programming simplicity resonates with the Serverless Computing mindset
that infrastructural concerns are abstracted and largely hidden from application
engineers.

Wake-on-LAN concepts have already reached beyond LANs and are com-
monly used in Internet-wide device management, including with custom pro-
tocols such as Apple’s Bonjour Sleep Proxy (Multicast DNS, RFC 6762). For
messaging-based triggers, protocol wrapping will allow a device to be booted or
resumed before answering a request. For time-based triggers, an external time
source needs to be added. Fig. 2 shows the sequence of events, including eventual

suspend and resume actions by the device or virtualised runtimes, based on rules
or machine-learned patterns.

Fig. 2. Sustainability approaches for Internet-wide control of device states and virtu-
alised runtime lifecycle based on serverless event processing

According to our early work experiments on event-driven power switching of
a FaaS platform triggered by occasional IoT events, this approach added on av-
erage 0.95 s execution time per request, within the delay tolerance to most batch
jobs. In return, the platform could be suspended for 73% of the time, leading
to great savings in power consumption. Fig. 3 summarises the suspend/resume
pattern over a window of six minutes. The research challenge is then to learn and
predict messaging patterns to optimise the suspend/resume or switch-off/switch-
on actions.

3 The Effect of Workload Patterns

We consider machine learning workloads consisting of Deep Neural Networks
(DNN), which comprise a sequence of layers and is a general term that covers all
neural networks with multiple hidden layers (that is multiple layers between the
input and output layers). Connectivity between the layers and propagation of an
error function differentiates the different types of DNN architectures. Overall, a
DNN may include: (i) fully connected layers, where each node in the network
is connected to nodes at layer+1 and layer-1. A DNN may also include nodes

alive
request

Fig. 3. Event-driven suspend/resume patterns leading to power consumption savings

that are not fully connected, or where connections may skip layers; (ii) con-
volution layers convolve the input to produce feature maps of inputs to learn
features. This is generally undertaken by identifying X-by-Y windows that are
moved over a stride of Z. A convolution filter is chosen to identify key proper-
ties observed within the input data set; (iii) Pooling layers apply a pre-defined
function (maximum or average) to downsample the input; (iv) an Activation
layer applies non-linear functions and the most commonly used is the rectified
linear unit (ReLu); and (v) a Softmax layer is generally used for classification
to generate a probability distribution over the possible classes. The complexity
of the DNN model is dependent on the number of nodes, the interconnectivity
structure, and the choice of hyperparameters (such as X,Y,Z for convolution
layers and learning rate).

Two different ML deployment scenarios can be considered: (i) workloads that
are distributed; (ii) the miniaturisation of the workload. Traditionally, a DNN is
trained at a data centre and then deployed as a monolithic application on other
resources where they need to be trained. More recently it has been demonstrated
that DNNs can be partitioned and deployed across different tiers of resources
spanning the cloud, edge and user devices to preserve privacy and achieve perfor-
mance and energy efficiency in distributed systems [LHI+20,ALHV21,KHG+17].
In this scenario, the layers of a partitioned DNN can be mapped onto serverless
functions that are invoked on-demand for inference on both resource-abundant
(data centre) and resource-constrained (edge servers or user devices) tiers. Such
an approach can meet the power cap requirements on different resources. Since
training is typically a long-running task, traditional mechanisms such as con-
tainers or VMs may be suited for deployment.

In the second scenario, machine learning workloads that need to fit on to
resource-constrained resources that are located outside conventional data centres
closer to where data is generated are considered. The energy consumed by both
the networking and compute infrastructure can be reduced. During inference,

the energy consumption of the networking infrastructure is naturally conserved if
limited data is transferred to geographically distant servers and can be processed
at the edge of the network (up to a 50% reduction in the carbon footprint when
processing data at the edge has been demonstrated [RdSVGdL21b]). In addition,
there are opportunities to reduce energy consumption on a compute resource.

Consider the example of a real-time video analytics application, such as iden-
tifying objects on different frames of a video stream. A different DNN model from
a portfolio of models can be employed for each frame to maximise the accuracy
of detection [LVWV21]. This is achieved by leveraging the meta-characteristics
of each video frame, such as the size of the object and the speed of movement of
the object. Certain DNN models are more accurate when detecting fast moving
objects but may have higher power requirements. Conversely, low power models
may deliver sufficient accuracy for slow-moving objects. Since the models con-
tained in the portfolio have different power requirements, serverless computing
can leverage the accuracy and power trade-off to deliver a trans-precision-based
approach that maximises the accuracy.

4 Quality Assessment of Serverless Sustainability

While the sustainability aspect of serverless computing has gained a lot of at-
tention, the same cannot be said about approaches and methodologies for the
quality assessment of serverless sustainability. Kistowski et al. define a bench-
mark as a “Standard tool for the competitive evaluation and comparison of com-
peting systems or components according to specific characteristics, such as per-
formance, dependability, or security” [vKAH+15]. The SPEC Cloud IaaS 2018
benchmark10, for example, focuses on four key benchmark metrics: (i) Replicated
Application Instances, (ii) Performance Score, (iii) Relative Scalability, and (iv)
Mean Instance Provisioning Time, none of which includes sustainable-related
metrics. This is the typical focus of most of the benchmarks in cloud com-
puting [PVB+19], and the ones developed for serverless computing [vESE+20,
CKB+20].

Including sustainability in benchmarks for serverless computing is challeng-
ing, yet extremely important, especially when considering the fast growth of
AI applications deployed in the cloud. In a study conducted by Strubell et
al. [SGM20] it has been found that training a single deep learning model can
generate up to 284 000kg of CO2 emissions. This corresponds to the total lifetime
carbon footprint of approximately five cars. But this is not a one-off cost, that
concludes with the training of the ML algorithm—that could be potentially mit-
igated by the use of transfer learning techniques. Amazon estimates that 90% of
production ML infrastructure costs are for inference, not training [Jas18]. Also
NVIDIA estimated that 80-90% of the energy cost of neural networks deployed
in data centres lies in inference processing11.

10 https://www.spec.org/cloud_iaas2018/
11 https://www.forbes.com/sites/moorinsights/2019/05/09/

google-cloud-doubles-down-on-nvidia-gpus-for-inference/

In addition, a benchmark should not just focus on the raw numbers of en-
ergy consumption, but rather on where the energy comes from. If an AI model
were trained using electricity generated primarily from renewables, its carbon
footprint would correspondingly lower. For instance, Google Cloud Platform’s
power mix is more heavily weighted toward renewables than the AWS Platform
(56% vs 17%, according to [SGM20]). Lacoste et al. [LLSD19] developed an ML
CO2 calculator12 that practitioners can use to estimate the carbon footprints
of their deployment based on the following factors: (i) hardware type, (ii) hours
used, (iii) cloud provider, and (iv) geographical region. The last factor can have
a significant impact on carbon emission, as different locations may have different
access to greener energy sources.

Most of these efforts focus on long-lived applications that may not fully ex-
ploit the potential of serverless computing. Researchers and practitioners can try
to focus on how to optimize their deployments and executions of ML applications.
However, more fundamental long-term solutions are needed to automate and op-
timize the sustainability of ML applications. This could be achieved through the
main features of serverless computing and the development of suitable manage-
ment techniques and cost models that can promote greener computation.

In Figure 4, we display our proposed approach for enabling serverless comput-
ing for AI-intensive workloads. As major energy requirements for AI workloads
are due to inference (i.e. during usage rather than training – where training is
only needed occasionally or once), we also focus our attention on the actual op-
eration of deep learning algorithms vs. their training. A key observation is that
DNNs do not need to run as monolithic structures; instead, we propose that
each layer of a DNN be segmented into a function suitable for fine-grain deploy-
ment and scheduling—which can be achieve improved computational density
both on cloud and on edge servers. As such, consider for simplicity a multilayer
DNN [Bur19]. Each layer will have outputs u ∈ R

m, weights W ∈ R
m×n, biases

b ∈ R
m, activation function g and connected with inputs u ∈ R

n will execute
the following function:

λDNN := y = g(W · u+ b)

Thus, a DNN with depth k can be recursively split into independent functions
that can be stacked as follows, considering that λDNN

0 describes the raw data
inputs to whole DNN:

λDNN

k
:= y = g(W · λDNN

k−1 + b)

Consequently, from a serverless perspective, the instructions required to be trans-
mitted in order to execute one of these λDNN functions reduces to the weights,
biases and type of activation function. From a cluster management perspective,
the serverless provider can now make more informed decisions on where and
when each λDNN instance should run, taking into consideration data locality to
minimize network energy, renewable and off-peak power availability to reduce

12 https://mlco2.github.io/impact/

Fig. 4. A serverless approach for the sustainable execution of deep AI inference.

the stress on the grid, depending on their sparsity, place them on machines with
the appropriate level of hardware parallelism (e.g., CPU vs. GPU), as well as
existing utilization of computing resources to maximize utilization of power-on
resources while keeping as many machines as possible powered off. Additionally,
smart reusable algorithms could be created that easily combine existing struc-
tures to efficiently deploy novel DNN architectures by essentially leveraging this
micro-service oriented design of DNNs.

Furthermore, on the actual device that executes one of these λDNN functions,
an autonomic manager operated by the serverless platform can enable runtime-
specific energy-aware optimizations. For example, consider multi-tenancy of DNN
lambdas, i.e., the secure sharing of equal λDNN functions used by multiple
tenants—the statelessness of these functions allows for this optimization—which
can save energy costs by reducing unneeded context switches or thrashing the
hardware caches. Additionally, if users are willing to sacrifice a bit of accuracy
for improved energy efficiency, even slightly different λDNN could be shared,
for example by using the average weights of the multitenant users or one user
accepting to use the λDNN of another.

5 Conclusion

The serverless computing paradigm enables abstracting away hardware resource
management and resource operations, which transfers the burden of energy inno-
vation to the serverless platform provider. With an urgent call for worldwide sus-
tainable development, serverless platforms must also be designed to be energy-
and power-aware.

We highlight the need for sustainable serverless computing, which we posit
can be achieved via: a) serverless platform design and infrastructure, b) improved
characterization of novel IoT- and AI-driven workloads, which are bound to
dominate the world’s computing needs, paired with smarter decision-making at
the application-design level, and c) automated methodologies that assess the
sustainability efficacy of such power and energy-aware methods.

Finally, people, developers and end-users must also contribute to this effort
of sustainable serverless computing! For instance, a user might need to consider
turning on the “eco-mode” for their functions, relaxing the requirements just
enough so that the serverless provider has enough time to schedule them during
an off-peak time or can keep that extra server in reserve turned off. “Human
brains can do amazing things with little power consumption. The bigger question
is how can we build such machines.” [Hao19].

References

[ALHV21] Hyunho Ahn, Munkyu Lee, Cheol-Ho Hong, and Blesson Varghese.
Scissionlite: Accelerating distributed deep neural networks using trans-
fer layer, 2021.

[AMKF18] Joshua Aslan, Kieren Mayers, Jonathan G Koomey, and Chris France.
Electricity intensity of internet data transmission: Untangling the es-
timates. Journal of Industrial Ecology, 22(4):785–798, 2018.

[Bur19] Andriy Burkov. The hundred-page machine learning book, volume 1.
Andriy Burkov Canada, 2019.

[Cis20] U Cisco. Cisco annual internet report (2018–2023) white paper, 2020.
[CKB+20] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-

stawski, and Torsten Hoefler. Sebs: A serverless benchmark suite for
function-as-a-service computing, 2020.

[Hao19] Karen Hao. Training a single ai model can emit as much carbon as five
cars in their lifetimes. MIT Technology Review, 2019.

[Jas18] Andy Jassy. Amazon AWS ReInvent keynote, 2018.
https://www.youtube.com/watch?v=ZOIkOnW640A.

[KD19] Puneet Kumar and Behnam Dezfouli. Implementation and analysis of
QUIC for MQTT, arxiv: 1810.07730, 2019.

[KHG+17] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, page 615–629, 2017.

[LHI+20] Luke Lockhart, Paul Harvey, Pierre Imai, Peter Willis, and Blesson
Varghese. Scission: Performance-driven and context-aware cloud-edge
distribution of deep neural networks. In IEEE/ACM 13th International
Conference on Utility and Cloud Computing, pages 257–268, 2020.

[LLSD19] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas
Dandres. Quantifying the carbon emissions of machine learning. arXiv
preprint arXiv:1910.09700, 2019.

[LVWV21] JunKyu Lee, Blesson Varghese, Roger Woods, and Hans Vandieren-
donck. Tod: Transprecise object detection to maximise real-time accu-
racy on the edge. In 5th IEEE International Conference on Fog and
Edge Computing, 2021.

[Myt20] David Mytton. How much energy do data centers use? hypertext docu-
ment, 2020. Available electronically at https://davidmytton.blog/how-
much-energy-do-data-centers-use/.

[OCY+17] Opeyemi Osanaiye, Shuo Chen, Zheng Yan, Rongxing Lu, Kim-
Kwang Raymond Choo, and Mqhele Dlodlo. From cloud to fog com-
puting: A review and a conceptual live vm migration framework. IEEE
Access, 5:8284–8300, 2017.

[PKD18] Panagiotis Patros, Kenneth B Kent, and Michael Dawson. Mitigating
garbage collection interference on containerized clouds. In 2018 IEEE
12th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), pages 168–173. IEEE, 2018.

[PMK+19] Vladimir Podolskiy, Michael Mayo, Abigail Koay, Michael Gerndt, and
Panos Patros. Maintaining SLOs of cloud-native applications via self-
adaptive resource sharing. In 2019 IEEE 13th International Conference
on Self-Adaptive and Self-Organizing Systems (SASO), pages 72–81.
IEEE, 2019.

[PSR20] Alexander Poth, Niklas Schubert, and Andreas Riel. Sustainability
efficiency challenges of modern it architectures – a quality model for
serverless energy footprint. In Murat Yilmaz, Jörg Niemann, Paul

Clarke, and Richard Messnarz, editors, Systems, Software and Services
Process Improvement, pages 289–301, Cham, 2020. Springer Interna-
tional Publishing.

[PVB+19] Alessandro V. Papadopoulos, Laurens Versluis, André Bauer, Nikolas
Herbst, Jóakim von Kistowski, Ahmed Ali-Eldin, Cristina L. Abad,
José Nelson Amaral, Petr Tůma, and Alexandru Iosup. Methodological
principles for reproducible performance evaluation in cloud computing.
IEEE Transactions on Software Engineering, 2019.

[RdSVGdL21a] Brian Ramprasad, Alexandre da Silva Veith, Moshe Gabel, and Eyal
de Lara. Sustainable computing on the edge: A system dynamics per-
spective. In Proceedings of the 22nd International Workshop on Mobile
Computing Systems and Applications, pages 64–70, 2021.

[RdSVGdL21b] Brian Ramprasad, Alexandre da Silva Veith, Moshe Gabel, and Eyal
de Lara. Sustainable computing on the edge: A system dynamics per-
spective. In Proceedings of the 22nd International Workshop on Mobile
Computing Systems and Applications, page 64–70, 2021.

[SGM20] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and
policy considerations for modern deep learning research. Proceedings
of the AAAI Conference on Artificial Intelligence, 34(09):13693–13696,
Apr. 2020.

[SJRZ15] Jiming Sun, Marc Jones, Stefan Reinauer, and Vincent Zimmer. Build-
ing coreboot with Intel FSP, pages 55–95. Apress, Berkeley, CA, 2015.

[SSK+21] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja Jayant Yadwadkar, Raluca Ada Popa, Joseph E.
Gonzalez, Ion Stoica, and David A. Patterson. What serverless comput-
ing is and should become: the next phase of cloud computing. Commun.
ACM, 64(5):76–84, 2021.

[vESE+20] Erwin van Eyk, Joel Scheuner, Simon Eismann, Cristina L. Abad,
and Alexandru Iosup. Beyond microbenchmarks: The spec-rg vi-
sion for a comprehensive serverless benchmark. In Companion of the
ACM/SPEC International Conference on Performance Engineering,
ICPE ’20, page 26–31, New York, NY, USA, 2020. Association for
Computing Machinery.

[vKAH+15] Jóakim von Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter
Lange, John L. Henning, and Paul Cao. How to build a benchmark. In
Proceedings of the 6th ACM/SPEC International Conference on Per-
formance Engineering, ICPE ’15, pages 333–336, New York, NY, USA,
2015. Association for Computing Machinery.

