
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/14 7 7 2 0/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Pe t ri, Ioan , Chi rila, Ioa n, Go m e s, H ei tor, Bife t , Albe r t a n d R a n a, O m e r 2 0 2 2.

Resou rc e-a w a r e e d g e-b a s e d s t r e a m a n alytics. IEEE In t e r n e t Co m p u tin g 2 6 (4) , p p.

7 9-8 8. 1 0.1 10 9/MIC.20 22.3 1 5 2 4 7 8

P u blish e r s p a g e: h t t p://dx.doi.or g/10.11 0 9/MIC.20 2 2.31 5 2 4 7 8

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

IEEE INTERNET COMPUTING 1

Resource-Aware Edge-Based Stream Analytics

Ioan Petri, Ioan Chirila, Heitor Murilo Gomes, Albert Bifet, Omer F. Rana, Member, IEEE

Understanding how machine learning algorithms can be used for stream processing on edge devices remains an important
challenge. Such ML algorithms can be represented as operators and dynamically adapted based on the resources on which they are
hosted. Deploying machine learning algorithms on edge resources often focuses on carrying out inference on the edge, whilst learning
and model development takes place on a cloud data center. We describe TinyMOA, a modified version of the open-source Massive
Online Analytics (MOA) library for stream processing, that can be deployed across both local and remote edge resources using the
Parsl and Kafka systems. Using an experimental testbed, we demonstrate how machine learning stream processing operators can be
configured based on the resource on which they are hosted, and discuss subsequent implications for edge-based stream processing
systems.

Index Terms—edge computing, MOA, sensor data processing, stream processing, machine learning.

I. INTRODUCTION

AN
INCREASE in performance and reliability of edge

devices provides computational capacity in proxim-

ity to an end user and to the data capture / generation source.

Applications that can be hosted directly on these devices has

also continued to increase over recent years, ranging from

real time event processing to the identification of triggers that

can initiate cloud-based execution, service and data migration

to/from mobile devices and cloud systems, leading to more

complex data processing of stream-based (e.g. audio and

video) data. IoT applications can also generate vast amounts

of data, often streamed from a device to a data processing

system. The ability to run machine learning on resource-

constrained IoT devices provides an alternative to connecting

to the cloud. Data movement from edge to the cloud brings

cost inefficiencies including latency, connectivity and security.

The ability to host machine learning algorithms on constrained

hardware can enable developers to change the way applica-

tions interact with computational infrastructure [1]. Given the

resource constraints of IoT devices, their capability needs to be

enhanced using edge computing to ensure efficiency, accuracy,

productivity and cost reductions [2].

We analyse how machine learning (ML) algorithms can be

applied to data streams on edge devices. We note that ML

libraries can vary in computational complexity, based on a va-

riety of hyperparameters that influence their construction and

subsequent deployment. The complexity of an ML algorithm

is also determined by the mode of usage, e.g. whether the

algorithm is being used in “inference” or “learning” mode.

Existing ML libraries, such as TensorFlow-Lite (TF-Lite) often

involve a data center-based model development, and then an

edge-based inference. This choice is made based on the com-

putational and data storage capacity of edge devices compared

to data center capacity (the former is expected to have substan-

tially lower capacity than the latter). This discrepancy between

edge and data center resources is therefore used to modify the

types of operations carried out on an edge device compared

to a data center. An ML model undergoes ”adaptation” to

Ioan Petri, Ioan Chirila and Omer Rana are with Cardiff University, UK
Heitor Murilo Gomes and Albert Bifet are with the University of Waikato,

NZ

make it execute on an edge resource. In TensorFlow to TF-

Light, the number of bits used to encode weight parameters

of a learned model are reduced (quantization) and the range

of weight values are constrained (distillation) before moving

the model to a resource constrained device. Our approach is

focused on modifying the size and range of Java classes that

can be hosted on a resource, realised using a custom Java class

loader as explained in section II-B. This forms the key focus of

this paper, i.e. how the resource characteristics and properties

of a computational resource can dynamically modify the ML

algorithm executed on a resource. We investigate, in particular,

how ML applied to data streams can be adapted based on the

resources on which ML algorithms are hosted, using the MOA

(Massive On-line Analytics) software toolkit. Using stream

processing terminology. We refer to ML algorithms used for

analysing the properties of a stream as “operators”, capable of

being placed on edge or data center resources. In particular, we

describe the development of TinyMOA, a version of MOA that

can be hosted on edge resources [15]. MOA includes a number

of machine learning algorithms, including classification (e.g.

Hoeffding Trees, Naive Bayes, Stochastic Gradient Descent),

clustering (e.g. StreamKM++, CluStream/micro-clusters), out-

lier detection, concept drift detection and tools for evaluation.

The rest of this paper is organised as follows: Sections II

compares our approach with other related efforts, highlightly

key novelty of this work. An application scenario to support

machine-aware edge orchestration is presented in section III

followed by results in Section IV. We conclude and identify

future research directions in Sections VI.

II. RELATED WORK

A. Background

Edge computing builds on the growth in IoT infrastructures

where heterogeneous and networked devices collaborate to

achieve particular data monitoring/ processing objectives. Fog

cells have been used to group IoT devices based on vicinity,

i.e., single IoT device coordinating a group of other IoT de-

vices, to support security, performance and data analysis. Such

fog cells can lead to the development of IoT services to process

data in close vicinity to data sources/ sinks as an alternative to

transmission of data to a cloud system. The use of fog (edge)

IEEE INTERNET COMPUTING 2

cells can reduce communication delays, to provide a more effi-

cient use of computational, storage and networking resources.

Application scenarios include supporting pre-processing of

data streams from sensor nodes [3]. Edge computing must

also take into consideration user mobility, geo-distribution,

latency and variable connectivity within a communication

network [4]. In edge processing, quality of service metrics

such as minimising network latency are supported through the

use of cloudlets – which can bring edge capacity closer to

IoT and mobile devices. Complementary to edge computing,

“Cloud of Things” [5] provides in-network capacity between

IoT and Cloud Computing for data processing. Similarly,

operations on data (such as sampling or filtering), as it is being

transmitted from an IoT device to a Cloud data center, can be

carried out using in-transit processing, thereby reducing data

volumes and limiting the size of the data being moved across

the network [6]. This is equivalent to executing a number of

stream operations on data along its path from a source to a

destination.

Specialist services can also be provided on IoT/sensor de-

vices based on their operating environment, such as provision

of specialist operating systems (e.g. Contiki, Wind River

VxWorks etc) which enable dynamic modification of code

running on sensor nodes within a network. LooCI (LOOsely

coupled Component Interfaces) supports the integration of

software components across different sensor nodes. Edge

nodes can also be viewed as hosting environments for code,

the functionality of such nodes can be modified dynamically.

Examples of sensor-hosted, lightweight Virtual Machine en-

vironments include DAViM (Dynamically Adaptable Virtual

Machine) [7], and Mate [8] – a Java byte-code interpreter

that executes over Contiki. Mate breaks an application into

capsules that can be distributed throughout the network at

runtime. Additional examples include Parsl & funcX, which

enable (serverless) functions to be executed across different

types of resources. The hosting environment can be modified

depending on the resource being considered using a specialist

Executor.

R-Pulsar is a software library for IoT systems that extends

the capabilities of a cloud environment, by aggregating re-

sources from local devices using a programming model for

data collection and processing. R-Pulsar has been tested on

various embedded devices such as Raspberry Pis (RPis) and

Android phones to enable timely stream analytics by exploit-

ing edge and data center resources. R-Pulsar can also perform

and orchestrate data analytics between the edge and the

cloud for computing continuum applications [9]. R-MStorm is

another stream processing system that allocates tasks to edge

devices within stream groups – to partition the stream among

counterpart tasks. The system implements stream selection to

support approximate computation, e.g. filtering of stream units

to reduce processing workload by optimising the processing

accuracy [10]. Microsoft-AI [11] supports stream processing

applications for Android devices. The platform supports a

wide range of AI scenarios configured to support application-

specific model execution. The AI platform provides features

for optimising performance and accuracy when using machine

learning models with edge devices.

IoT data streams require processing on real time data which

often require machine learning operations (i.e. inference) to

be executed at the edge [12]. When sensor readings are

trasferred from IoT devices to the Cloud, a reduction in

data volume is needed. Dynamic clustering using centroids

and fuzzy join on data streams can address data motion

and online changes in data streams [13]. The volatility in

data streams with data drifts are some of the challenges

that impact on the performances of machine learning. The

execution of machine learning at the edge [14] imposes several

constraints on the learning algorithms, which is expected to

yield accurate prediction while updating its model in an on-

line fashion without surpassing strict memory and processing

time constraints. Other challenges related to learning from

streaming data concern the occurrence of concept drifts in the

data, the lack of labelled data amongst others [15]. An ideal

machine learning algorithm developed for streaming data must

be resource-aware and able to maintain an accurate model

based on the data on which it has been trained. The algorithm

should monitor its computational resources usage and limit

them appropriately.

B. MOA & TinyMOA Software Library

MOA is a software environment for implementing machine

learning algorithms for processing streaming data. MOA con-

tains a number of pre-built algorithms that can be configured

by a user, ranging from decision trees (such as Hoeffding

Trees) to dynamic clustering algorithms. A number of stream

generators are also included to enable experiments to be

carried out on synthetically generated data (such as a rotating

hyperplane). MOA also provides a number of evaluation

metrics (such as the Kappa statistic, accuracy, precision, etc) as

a way to evaluate the performance of a learning algorithm and

provide a basis for comparison between algorithms. MOA is

popular among researchers as it is simple to configure and run

experiments, but it can also be used in practical applications

to process incoming instances using Kafka Streams. Kafka1

is an Apache project that enables development of applications

that make use of topic-based event publishers and subscribers.

Kafka streams2 enable dynamic partitioning of incoming data

streams based on the resources on which these streams must

be processed, providing both scalability and fault tolerance.

TinyMOA is a variant of MOA that can be hosted on edge-

based devices (e.g. a RPi). TinyMOA fragments the MOA

library into sub-components, enabling distribution of key

MOA components to edge devices. Using custom classloaders,

TinyMOA enables dynamic adaptation of stream processing

algorithms based on the properties of the resources on which

these algorithms are hosted – achieved in practice by limiting

the number of Java classes that are hosted on the resource.

TinyMOA only includes classifiers used in the specific ex-

periment of interest, as indicated in section IV, and the core

classes required for these classifiers to execute – such as the

Instance representation to support data stream processing. The

file size of MOA is 2.8MB while TinyMOA is only 970KB.

1https://kafka.apache.org/
2https://kafka.apache.org/documentation/streams/

IEEE INTERNET COMPUTING 3

Figure 1 illustrates the class loading mechanism in TinyMOA,

where a limited number of MOA classes are uploaded to a RPi

device, depending on the type of stream processing algorithm

being considered.

We consider different edge, fog and cloud resources to host

ML algorithms (hereby referred to as “operators”), combing

the use of the MOA toolkit for real-time stream processing

with Parsl [16]. This enables us to dynamically deploy MOA

algorithms on the available computational resources. Parsl

allows a variety of different types of resources to be inte-

grated into the hosting environment (through the use of Parsl

executors), such as high performance computing resources and

edge devices (consisting of RPi). Each resource is treated as

a Parsl endpoint, able to support a Parsl Executor that can

execute an algorithm from MOA. We benchmark different

machine learning algorithms (as stream processing operators)

and measure their execution performance on different edge

configurations. Configuration of the ML algorithm is modified

based on the type of resource on which it will be hosted.

III. METHODOLOGY & DEPLOYMENT

In this section we provide details about the edge experimen-

tal testbed and subsequent integration with MOA. Figure 2

identifies experiments and the associated data flow which

changes at different stage in the process. We have implemented

a Python script decorator, scheduled as an asynchronous task

using the DataFlowKernel in Parsl. This enables a future

object to be identified, i.e. placeholder data structure that is

associated with an outcome that will occur once computa-

tion has completed. We also configure components of the

DataFlowKernel such as the Task Table keeping account

of scheduled tasks, Dependency Check which verifies

Parsl has fulfilled all the data dependencies before execution,

Memoization Lookup to prevent the same App from

being executed many times with the same input parameters.

An Executor Selection can be used to specify the type

of task executor we want to deploy on the desired machine

(e.g. a Raspberry Pi or an HPC resource). We make use of the

HighThroughputExecutor in all our scenarios.

We use the Kafka software library on the same device

as the Parsl-Executor to support stream management. Kafka

is used to generate data streams for edge processing with

improved latency and cost-efficiency. In our deployment, a

Kafka server acts as a data streaming engine for the MOA

classification algorithms, comprising of a zookeeper client and

a server. Using the Zookeeper pub/sub. framework, we support

a number of “Brokers” which hold a “Topic” that a listener can

subscribe to. In our case the Topic contains the “Census” train-

ing data3, which has been added via a Producer push request

and which can be consumed by the MOA machine learning

algorithm. The Census.arff file is 40MB in size, containing 68

numeric attributes, and can be streamed from a data producer

to a consumer running the MOA algorithm (stream processing

operator). This provides a useful benchmark data set that can

3Available from: https://moa.cms.waikato.ac.nz/
kdd-2017-hands-on-tutorial/

be used to compare the performance of stream processing on

a RPi vs. a desktop/cloud-based processing platform.

We have configured an experimental testbed that supports

deployment and testing of several scenarios, across two main

environments: Configuration 1: Local environment (Worksta-

tion) : ThinkPad T410i with 8GB RAM, Linux Ubuntu 18.04

Virtual Environment1 (Python3.7, Parsl1.1.0, MOA Release

2021.07) Virtual Environment2 (Python3.6, Parsl0.9.0, MOA

Release 2021.07). Configuration 2: Remote environment

(Raspberry Pi): RPi 4 model B with 2GB RAM - Raspbian

OS/Linux 10 Virtual Environment1 (Python3.7, Parsl1.1.0,

MOA Release 2021.07) Virtual Environment2 (Python3.6,

Parsl0.9.0, MOA Release 2021.07). Hence, we implement

and test MOA algorithms and their deployment on (i) a

local resource, and (ii) remote Raspberry Pi (RPi) environ-

ment. These experiments demonstrate the behaviour of MOA

machine learning on edge devices deployed on their own,

locally or remotely through Parsl. In addition, we compare

a simplified stream processing pipeline using TinyMOA. We

therefore investigate reducing the size of the deployed software

library (TinyMOA vs. MOA) on the execution time of the

analysis tasks. For conducting these experiments we have

defined a scenario that will be run on both systems locally

and remotely.

The choice of tools and architectural design of our system

allows for scalable remote deployment of stream processing

on heterogeneous edge devices which can be scaled to take ad-

vantage of cheaper computational resources. This is achieved

by fragmenting MOA into portable Java classes, that can be

combined with custom classloaders. This coupled with Parsl

enables an adaptive framework that can be supported across a

number of different types of computational resources.

IV. EVALUATION & RESULTS

This section reports findings for what-if scenarios that

use datastreams with machine learning algorithms and their

subsequent execution on customized edge environments. The

reported experiments utilise time-to-complete metrics for mea-

suring the efficiency of the ML algorithms on local vs.

remote resources (local resources have greater computational

capacity than remote resources). The experiements aim to

benchmark different machine learning algorithms and measure

their execution performance on different edge configurations.

a) Experiment 1: Hoeffding tree and KMeans: In

this experiment we measure the execution time of Hoeffding

tree [17] and KMeans [18] implementation in MOA. As

indicated in figure 3, the number of examples (on y-axis) to

train the learner rang from 5K to 10M. The MOA stream

generator was generators.WaveformGenerator

which generates a stream for predicting one of three

waveform types. As illustrated in Figure 3, we report the

execution time on a local systems with spec. Intel Core

i5-5200U, 8RAM compared to execution time on a RPi4

model B with 2GB RAM. As expected the local system with

the better computational specs outperforms the edge device.

Also Kmeans requires more computational resources and

more time to complete.

IEEE INTERNET COMPUTING 4

Fig. 1. Left: a number of edge nodes running Parsl executor to host MOA libraries + Kafka; Right: realisation of this architecture using custom class loading
mechanisms via a “core” TinyMOA implementation

Fig. 2. Experimental testbed components – where MOA algorithms are executed on the Raspberry Pi (RPi) as a Parsl application. A RPi therefore hosts a
Parsl Executor and a Kafka Broker. The Parsl DataFlowKernel uses a secure data channel to interact with the Parsl Executor to carry out data processing and
execute a stream processing operator. This enables a MOA algorithm to be directly migrated to a RPi based on the capacity of the resource on which it is
hosted.

Fig. 3. Execution time Hoeffding Tree and Kmeans: Local execution vs Remote RPi

IEEE INTERNET COMPUTING 5

Fig. 4. MOA Hoeffding tree derivations and WaveformStream

b) Experiment 2: MOA Hoeffding tree derivations

and WaveformStream: In this experiment we use differ-

ent Hoeffding Tree algorithms including Hoeffding Option

Tree [19], Adaptive Size Hoeffding Tree [20], Hoeffding

Adaptive Tree [21], and Random Hoeffding Tree [22]. All

were tested using the Waveform data stream generator (Wave-

formStream). In the experiment below, the x-axis represents

the type of machine learning algorithm used while the y-

axis shows the execution time in seconds. All the learners

in this example were trained with 100K instances using

the generators.WaveformGenerator stream. As illus-

trated in Figure 4, the execution time of different Hoeffd-

ingTree types uses MOA on a RPi4 model B with 2GB

RAM and the best performer is the RandomHoeffdingTree

followed by the HoeffdingTree and ASHoeffdingTree. The

diagram describes only one set of trained examples because the

different classification trees display the same relative execution

behaviour regardless of the size of the training data.

Fig. 5. Percentage of correct classification for different Heoffding Tree types

c) Experiment 3: Percentage of correct classifica-

tions for different HoeffdingTree types: This scenario is

a continuation of the previous experiment in Figure 4, and

analyses the accuracy of different Hoeffding tree types using

the EvaluateMethod provided by MOA, which is used to

measure the percentage of correct classifications. The objective

of this experiment was to determine which models achieve

the best accuracy and speed performance. The experiment

configures all learners as trained with 100K instances using

the generators.WaveformGenerator stream. As illustrated in

Figure 5, the RandomHoeffdingTrees displayed a faster ex-

ecution time however this is at the cost of accuracy as can

be seen in Figure 8 because it has the lowest accuracy score

out of the different types of HoeffdingTrees. The remaining

HoeffdingTrees displays a very similar accuracy score all

having a rating above 80% accuracy.

Fig. 6. Comparison of Streamgenerators with HoeffdingTrees

d) Experiment 4: Hoeffding tree vs related MOA

algorithms: This scenario aims to explore the performances

of various MOA algorithms in comparison to the Hoeffding

tree algorithms based on different edge configurations. A

Kafka installation on RaspberryPis produce data streams and

subsequent data changes as required for the algorithms anal-

ysis. This experiment conducts comparisons across different

stream generators including WaveformGenerator, SEAGener-

ator, LEDGenerator,HyperplaneGenerator, RandomTreeGener-

ator and ArffFileStream. The x-axis represents the set of

heterogeneous data streams used while the y-axis represents

the time-to-completion in seconds. The learner used in this

example was a HoeffdingTree which was trained with 100K

instances of each data stream. As illustrated in Figure 6,the

biggest fluctuations in our results came from the SEAGenera-

tor and the ArffFileStream which show a percentage decrease

of 75.8% and a percentage increase of 153.13%, respectively,

as time-to-completion when compared to the WaveformGen-

erator.

e) Experiment 5: Hoeffding tree with ArffFileStream

via Kafka and Parsl: In this experiment we provide

analysis for the execution of HoeffdingTree algorihtm with

ArffFileStream with Kafka and Parsl. The y-axis measures

the maximum number of examples to train the learner

ranging from 5K to 1M. The stream generator used was

generators.ArffFileStream which stream an .arff file

used for training the model in this case is Census.arff. As

illustrated in Figure7, we report the execution time on a RPi4

model B with 2GB RAM. The experiment also shows how the

execution time fluctuates when MOA algorithm is wrapped in

a Parsl file and executed locally through Parsl, when MOA

algorithm streams data from a local Kafka server and lastly

when MOA together with the Kafka stream is wrapped in a

Parsl and executed remotely. The scenarios where MOA has

been trained using kafka as a data streaming engine takes a

longer time to complete due to the MOA having to consume

the Topic data rather than have access to it from a local source

on the computer memory.

f) Experiment 6: Hoeffding tree with Arff FileStream

via Websockets and Parsl: In this experiment we test the

IEEE INTERNET COMPUTING 6

Fig. 7. Comparison of MOA local, MOA with Kafka and MOA with Remote Parsl and Kafka

Fig. 8. Comparison of MOA local, MOA with Parsl and MOA with Websocket

execution of a HoeffdingTree algorithm using Parsl and a

websocket to channel the incoming set of data for execution.

The y-axis measures the number of examples to train the

learner ranging from 5000 to 2M. The stream generator

used was generators.ArffFileStream which streams

the Census.arff file for training the model. As illustrated in

Figure8, the execution time fluctuates when MOA algorithm

is wrapped in a Parsl file and executed locally and remotely

– showing the variation in times between Parsl and the Web-

socket implementation. The limitation with this experiment is

that unlike data streams which feed the learning model during

its training, in this scenario the file is firstly transported via

a TCP-based network connection before the data file can be

used by the learning model thus adding an additional delay to

the execution time.

g) Experiment 7: Comparing MOA and TinyMOA on

WaveformStream via Parsl: In this experiment, we consider

a set of homogenous machine learning tasks that were trained

with 500K training instances of the WaveformGenerators

stream. The objective is to analyse machine learning algo-

Fig. 9. Comparison of MOA and TinyMOA

rithms and their behaviour when executing on edge systems.

As illustrated in Figure 9, we observe a 0.02-0.2 second

difference in execution time between MOA and TinyMOA.

The file size difference does not affect the execution time

of the machine learning algorithm when executed through

Parsl, but rather follows the same behaviour of the algorithm

IEEE INTERNET COMPUTING 7

when deployed without Parsl. This demonstrates that although

significantly smaller in deployment size, TinyMOA offers a

viable alternative for a much larger MOA deployment, but on

resource constrained devices.

V. DISCUSSION

When applying machine learning to a data stream, the learn-

ing algorithm is expected to yield accurate predictions while

updating its model in an online fashion without surpassing

strict memory and processing time constraints [16]. This raises

some key challenges in relation to the functionality in use of

the entire workflow. One such challenge is that the model will

be processing a massive stream of data in short periods of time,

very often with limited computational resources available at

the edge. This ‘processing’ refers to both making predictions

and updates to the underlying machine learning model (i.e.

training). On top of that, the data may be susceptible to

unexpected changes, also known as concept drifts, which must

be detected and actioned upon to avoid a catastrophic decrease

to the machine learning model predictive performance. In this

paper we have used the abstraction of data streams [14] and

explore how machine learning tasks can be accommodated

at the edge to enable more flexible and autonomous stream

execution. We have used the MOA framework on a costumized

Parsl edge computing infrastructure to enable the execution of

different machine learning algorithms for data stream analysis.

VI. CONCLUSION

The developement of resource aware stream processing

offers a number of benefits: (i) effective use of resources in

proximity to data stream generation to support latency-aware

application requirements; (ii) limiting the need to transmit a

stream across a lossy network to a data centre for analysis.

We describe how these benefits can be realised by supporting

stream processing on edge resources. We present benchmarks

for the execution of different machine learning algorithms in

edge configured environments, using an extension to the MOA

library – referred to as TinyMOA. Overall, the paper provides

the following contributions: a seamless integration of machine

learning algorithms, as stream processing operators, using a

custom class loading mechanism for MOA. The Parsl system

is used to to deploy TinyMOA on edge resources and Kafka is

used to partition a stream across different resources executing

TinyMOA.

Using several stream analytics experiments on a sample data

set, we demonstrate how stream operators can be deployed at

the edge by taking into consideration resource constraints. Our

experiments can be used to configure an edge environment

to make more effective use of such operators. The proposed

aproach can be used to manage stream processing on edge

resources in a wide range of applications where computation

needs to be completed closer to data source.

REFERENCES

[1] Gopinath, Sridhar, et al. “Compiling KB-sized machine learning models
to tiny IoT devices.” Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 2019.

[2] D. Puschmann, P. Barnaghi and R. Tafazolli, “Adaptive Clustering for
Dynamic IoT Data Streams,” in IEEE Internet of Things Journal, vol. 4,
no. 1, pp. 64-74, Feb. 2017, doi: 10.1109/JIOT.2016.2618909.

[3] Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R (2016)
Fog computing: principles, architectures, and applications. In: Internet
of things: principles and paradigms, chap. 4, MorganKaufmann

[4] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for internet of things and analytics,” in Big Data and Internet
of Things: A Roadmap for Smart Environments. Springer, 2014, pp.
169–186.

[5] M. Aazam and E.-N. Huh, “Fog computing and smart gateway based
communication for cloud of things,” in Intl. Conference on Future Internet
of Things and Cloud (FiCloud). IEEE, 2014, pp. 464–470.

[6] A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana, A. Anjum
and M. Parashar. “Deadline constrained video analysis via in-transit
computational environments.” IEEE Transactions on Services Computing,
2017.

[7] S. Michiels, W. Horre, W. Joosen and P. Verbaeten, “DAViM: a dynami-
cally adaptable virtual machine for sensor networks”, Proc. of Int. Work.
on Middleware for sensor networks (MidSens), pp 7–12, Melbourne,
Australia, November 28 2006. ACM Press.

[8] P. Levis and D. Culler, “Mate: A Tiny Virtual Machine for Sensor
Networks”, Proc. of the 10th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS X), Oct.
2002. Available at: https://sing.stanford.edu/site/publications/2

[9] D. Balouek-Thomert, et al. “Towards a computing continuum: Enabling
edge-to-cloud integration for data-driven workflows.” The Int. Journal of
High Performance Computing Applications 33.6 (2019): 1159-1174.

[10] M. Chao and R. Stoleru. “R-mstorm: A resilient mobile stream process-
ing system for dynamic edge networks.” IEEE International Conference
on Fog Computing (ICFC). IEEE, 2020.

[11] Microsoft AI, Available at https://
cloudblogs.microsoft.com/opensource/2021/12/14/
add-ai-to-mobile-applications-with-xamarin-and-onnx-runtime/, last
accessed Dec. 2021

[12] Adi, Erwin, et al. ”Machine learning and data analytics for the IoT.”
Neural Computing and Applications 32.20 (2020): 16205-16233.

[13] D. Mrozek et al. “A hopping umbrella for fuzzy joining data streams
from IoT devices in the cloud and on the edge.” IEEE Transactions on
Fuzzy Systems 28.5 (2019): 916-928.

[14] A. Bifet, R. Gavalda, G. Holmes, B. Pfahringer, “Machine learning for
data streams: with practical examples in MOA”. MIT Press; 2018.

[15] Gomes HM, Read J, Bifet A, Barddal JP, Gama J. Machine learning
for streaming data: state of the art, challenges, and opportunities. ACM
SIGKDD Explorations Newsletter. 2019 Nov 26;21(2):6-22.

[16] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J.M. Wozniak, I. Foster and M. Wilde, “Parsl:
Pervasive parallel programming in Python”. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing (pp. 25-36), 2019.

[17] P. Domingos and G. Hulten. “Mining high-speed data streams.” Proc.
of the 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, 2000.

[18] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations.” Proc. of 5th Berkeley symposium on mathematical
statistics and probability. Vol. 1. No. 14. 1967.

[19] B. Pfahringer, G. Holmes, and R. Kirkby. “New options for hoeffding
trees.” Australasian Joint Conference on Artificial Intelligence. Springer,
Berlin, Heidelberg, 2007.

[20] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavalda. “Improving
adaptive bagging methods for evolving data streams.” Asian conference
on machine learning, pp. 23-37. Springer, Berlin, Heidelberg, 2009.

[21] A. Bifet, and R. Gavalda. “Adaptive learning from evolving data
streams.” Int. Symposium on Intelligent Data Analysis, pp. 249-260.
Springer, Berlin, Heidelberg, 2009.

[22] A. Bifet, G. Holmes, and B. Pfahringer. “Leveraging bagging for
evolving data streams.” Joint European conference on machine learning
and knowledge discovery in databases, pp. 135-150. Springer, Berlin,
Heidelberg, 2010.

	INTRODUCTION
	Related work
	Background
	MOA & TinyMOA Software Library

	Methodology & Deployment
	Evaluation & Results
	Discussion
	Conclusion
	References

