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Abstract

Serverless computing has become an important model in cloud computing and influenced the design
of many applications. Here, we provide our perspective on how the recent landscape of serverless
computing for scientific applications looks like. We discuss the advantages and problems with
serverless computing for scientific applications, and based on the analysis of existing solutions and
approaches, we propose a science-oriented architecture for a serverless computing framework that is
based on the existing designs. Finally, we provide an outlook of current trends and future directions.

Introduction

Given the increasing role of simulations and data analysis in science today, researchers never have too
much computing power. For this reason various dedicated research computing infrastructures are
built, including HPC centers, large-scale computing clusters or grids, or smaller centers for research
computing at universities and research institutes. On the other hand, distributed computing in the
industry leverages large-scale datacenters, which provide computing resources based on the cloud
computing model. Over the last 10 years, these commercial offerings in the form of public clouds
have been of interest to the scientific community, and the development of cloud solutions influenced
the way traditional HPC hardware and software have evolved. These technological trends initially
have included virtualization, containerization, on-demand access to resources, or object storage
services. With increasing cloud adoption, advanced cloud-native technologies have emerged, with the
Kubernetes container orchestration technology being their cornerstone [1].

Recently, we observe a new trend in cloud technologies, which is generally called “serverless
computing”. In general, serverless computing allows executing functions with minimum overhead in
server management, combining developments in microservice-based architectures, containers and the
new cloud service models such as Function-as-a-Service (FaaS) and Container-as-a-Service (CaaS)
[2], [3] .

The serverless computing model has not been designed to support scientific computing, rather it has
targeted lightweight event-based applications. Still, as the research community is very open to
exploring new and alternative ways of accessing computing resources and building scientific
applications, we can see many attempts to evaluate the applicability of the serverless model for
scientific applications and the desire to repurpose it to the requirements of the scientific community.
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In this paper, we provide examples of using serverless model for scientific applications, based on our
experience in this area. This provides our perspective on how the recent landscape of serverless
computing for scientific applications looks like. We discuss the advantages and problems with
serverless computing for scientific applications, and based on the analysis of existing solutions and
approaches, we propose a science-oriented architecture for a serverless computing framework that is
based on the existing designs. Finally, we provide an outlook of current trends and future directions.

Strengths and weaknesses of serverless model for scientific
applications

There are several benefits of using serverless model or FaaS:

- Function as a useful abstraction: functions are the most fundamental abstractions in
mathematics, which is called the language of science. Functions are also a very powerful
abstraction in computer science, with theoretical foundations in the lambda calculus and the
functional programming paradigm. Functional programming has proven to be useful for
distributed systems, with the examples of Erlang and Scala languages and actor systems
implemented in them [4]. In scientific computing, modern programming languages such as
Julia are also strongly influenced by the functional programming paradigm. For these reasons,
FaaS offers a natural abstraction for scientific applications using distributed computing.

- Simplicity facilitating programming: the general premise of serverless computing is to
facilitate application programming by hiding the complexity of underlying infrastructure and
relieving the programmer or user from managing the infrastructure. All the intertwined
resource management issues such as provisioning, scheduling or autoscaling are in principle
handled by the provider in a much more broader scope than in any other cloud service model
or in any distributed programming environment.

- Highly-elastic resource management model: in serverless computing, the unit of resource
allocation is a single function call, and the FaaS platforms are designed for serving large
amounts of fine-grained requests very quickly. Our experiments have shown that it is possible
to request thousands of concurrent function calls and they are invoked in parallel within
seconds by a cloud provider such as AWS or Google [5]. The overhead is really low as
compared to IaaS clouds (minutes) or in HPC systems (hours). This opens the possibility of
better support for interactive and dynamic workloads, which are of interest for scientific
applications.

- Deployment model using familiar programming languages and containers: while FaaS
was originally designed for Web or mobile applications based on JavaScript, Java or Python,
now it is possible to add custom language support or container images such as Docker. This
is fundamental for scientific computing, where applications typically require diverse
programming languages, libraries and tools.

Another highly popular approach for scientific computing in the cloud is using a container
orchestration platform, with Kubernetes being a de facto standard, supported by all major cloud
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providers. Kubernetes can be seen as a middle ground between plain Infrastructure-as-a-Service cloud
and FaaS. On the one hand, Kubernetes hides the complexity of cluster management, on the other
hand application development in Kubernetes still requires significant IT engineering skills. In our
research, we have investigated various aspects of scientific workflow management in Kubernetes.
This perspective lets us point out a few problems of FaaS in the context of scientific computing and
contrast them with Kubernetes.

- Vendor lock-in: serverless code usually uses various cloud services through vendor APIs
which increases the chance of vendor lock-in. Developing a portable solution in FaaS is
harder than in Kubernetes.

- Observability: with platform and infrastructure hidden behind APIs, system observability is
out of control of the developer. However, observability is the cornerstone of experimental
science. Diagnosing problems and getting important metrics related to performance, energy
consumption, etc., can be more difficult in FaaS than in Kubernetes where the developer has
full control over the observability stack.

- Economics and performance: the serverless model is very attractive for production systems
that run 24/7 and need to handle variable workload. In such cases, a possibly higher per-cycle
cost of FaaS can be mitigated by high elasticity. However, for a scientist who runs one-off
batch workloads this is not necessarily the case. It has been shown that for data-intensive
workloads, such as model training, FaaS is considerably more expensive and slower than IaaS
[6]. Performance isolation is another challenge. E.g. in [7], the best performance was
achieved on IaaS by allocating one CPU to one computational task. Such control over
resource management, also possible in Kubernetes, is not available on FaaS, where the
resources are managed by the underlying platform [8].

As we can see, there are numerous potential benefits and challenges of using serverless computing for
scientific applications. In the next section we show examples of how these have been addressed in the
specific solutions targeting scientific computing.

Examples of scientific applications and frameworks using FaaS
From the beginning of the serverless model and from the first releases of FaaS services, they have
been noticed as potential sources of computing for scientific applications. Here we provide a set of
selected examples, which we think nicely represent typical scenarios.

PyWren
Perhaps the first framework for running compute-intensive workloads on serverless platforms which
received wider popularity was PyWren [9]. As a simple, yet powerful Python library, it allows running
stateful functions in parallel, using shared cloud storage for input and output, similarly to a tuple space
model proposed in Linda. An interesting technical solution in PyWren is to use Cloudpickle Python
library, which allows one to serialize and execute remotely arbitrary Python code. Cloudpickle was
developed by PiCloud.com start-up company, which offered simplified computing based on Python
functions invoked on AWS cloud more than 5 years before FaaS model was proposed. PyWren has
been applied to many embarrassingly parallel problems such as MonteCarlo simulations, parameter
sweeps, etc, but also for MapReduce style data processing tasks, video encoding, parameter
optimization for distributed machine learning or distributed compilation.
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FaaSification of scientific applications
One of the first discussions of the potential for using FaaS for scientific computing was presented by
Spillner et al [10]. The authors describe four experiments which compare the performance and
resource consumption for example benchmarks or applications: calculation of π, face detection,
password cracking, and precipitation forecast. The experiments are run using AWS Lambda and a
local testbed using Snafu tool developed by the authors. In addition to performance evaluation, there
is a very interesting discussion about possible strategies for FaaSification (adaptation of existing
software to FaaS) of monolithic applications, which can be done at varying levels of granularity: from
whole functions to single lines of code. This discussion brings an important topic of the effort needed
to make use of the serverless computing model to existing applications and the potential for using
tools for automation.

Serverless scientific workflows
FaaS can be a good fit for scientific workflows (graphs of tasks), in particular those with large
numbers of relatively fine-grained tasks. HyperFlow, our workflow engine developed at AGH, was
extended to FaaS platforms [11], including Google Cloud Functions, AWS Lambda, and other
functions based on HTTP request interface. In HyperFlow, stateless functions operate in a
download-compute-upload sequence, using cloud storage for input and output. Initially we had to
work around deployment problems by building custom-compiled binaries compatible with the
operating systems of the FaaS providers, but recent support for Docker images solved this problem.
Similarly, Container-as-a-Service serverless platforms, such AWS Fargate and Google Cloud Run,
proved to be a viable solution for scientific workflows [12]. Other interesting examples include
Triggerflow [13], an event-driven workflow framework based on triggers, and Abstract Function
Choreography Language (AFCL), which offers high-level notation for workflows with a rich set of
control- and data-flow constructs [14]. In our opinion, support for serverless backends will become a
natural evolution of scientific workflow engines.

NumPyWren
Seemingly, it is hard to imagine using serverless platforms for dense linear algebra, a domain
traditionally reserved for HPC. Nevertheless, as NumPyWren and LAmbdaPACK [15] tools show,
algorithms such as matrix multiplication or decomposition, can run efficiently in the cloud.
NumPyWren uses cloud object storage for communication, and while the latency of Amazon S3 is
orders of magnitude higher compared to MPI-over-Infiniband, the aggregate bandwidth and its
scalability allows efficiently decomposing the matrix calculations into basic operations on tiles of
such size that the high latency is compensated by high bandwidth. While the experiments show that
the performance achieved does not immediately beat the MPI implementation, the benefits of
serverless approach are scalability, elasticity and better resource utilization. Notably, the framework
wisely combines various additional cloud services: SQS for task queue and Redis or DynamoDB as
key/value store for managing the state.

ROOT Lambda - serverless tools for High Energy Physics
The High Energy Physics community, having a long tradition of leveraging distributed computing
infrastructures, shows a growing interest in exploring modern frameworks coming from the big data
industry. A notable example includes Distributed RDataFrame, an extension to ROOT framework for
data analysis adding the high-level functionality based on the Data Frame model. RDataFrame
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compiles operations such as filters and aggregations into a graph of tasks, and supports multiple
backends, including local multiprocessing, Apache Spark, Dask, and recently AWS Lambda [16].
When developing the AWS backend, we solved many technical problems, including containerized
deployment of ROOT and remote access to storage at CERN. Despite the relatively large volume of
data transfer between CERN and AWS, this approach scales to at least hundreds of parallel Lambda
tasks, allowing interactive data analysis. This exemplifies the potential of using serverless
infrastructures as backend to domain-specific scientific tools by providing user friendly abstractions.

FuncX
A custom-developed solution which aims specifically at supporting scientific applications using the
serverless model is FuncX [17]. It supports running FaaS applications on federated resources ranging
from local computers, via clusters and clouds to supercomputers, with focus on applications with fine
grained tasks. Examples of such applications are scalable metadata extraction, machine learning
inference, crystallography, neuroscience, correlation spectroscopy, and high energy physics. The
interesting feature of the approach is that it does not simply provide access to FaaS platforms, but
brings together resources from multiple sources, including those dedicated to scientific computing and
e.g. equipped with specialized hardware such as GPU. The example applications of FuncX show that
scientific computing often relies on many tasks which do not necessarily require a traditional
supercomputer.

High-throughput biomedical application examples

High-throughput computing is often required in biomedical applications for screening of large space
of molecular configurations. Examples in proteomics are Replica Exchange Molecular Dynamic
(REMD) which have been successfully ported to serverless computing [18]. The usage of serverless
architecture allows for more dynamic scaling of the workers (executed on FaaS), while it requires
adding a communication layer using cloud object storage or Redis database. A similar approach was
used in serverless implementation of Smith-Waterman dynamic programming algorithm for
comparing protein sequences [19]. A recent survey [20] shows several examples of various
applications of serverless computing to omics data analysis and integration, all representing
high-throughput architecture with a scalable pool of resources obtained using the FaaS or CaaS
model.

Distributed Machine Learning

When discussing scientific or computational applications, one cannot exclude training and serving of
Machine Learning models, which can also be a subject of porting to serverless architectures. One of
the early examples [21] uses AWS Lambda for inference of large neural network models. SIREN [22]
is a distributed framework running compute-intensive batches of ML tasks on FaaS. Another example
is FedLess [23], which is a serverless framework for secure training of ML models using a federated
learning approach.
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Layered ecosystem of applications and generic architecture of the
frameworks

Figure 1 Layered ecosystem of serverless scientific applications.

Having studied examples of serverless scientific applications, we can observe an emerging layered
architecture of their ecosystem, as shown in Figure 1. From the bottom up, we have the basic layer of
cloud storage and communication, which includes cloud object storage, queue systems or caches. This
layer provides state management for the stateless FaaS/CaaS layer. Next come various processing
models - each of them relevant for scientific users and software engineers. Finally, the top layer
includes ready to use frameworks for scientific applications, which typically provide high-level APIs
or user interfaces.

Another general observation is that most of the frameworks have a very similar common architecture,
shown in Figure. 2. The main component, called Execution Engine, is responsible for task
orchestration and it uses some form of database, typically a Key-Value Store, for managing the
internal state of the application. The tasks are submitted to a Task Queue and then are processed using
stateless FaaS or CaaS services, which use Cloud Storage for data exchange. There are possible
variations of this architecture, including more distributed or decentralized orchestration, some
frameworks do not use any queue, but directly invoke FaaS or CaaS functions using the public API,
finally there are multiple options regarding database and cloud storage backends (see Figure 1).
Nevertheless, this typical architecture can be considered as a standard blueprint for building
computing frameworks using the serverless model.



Figure 2 Generic architecture of a serverless execution framework for scientific applications.

Summary and outlook
The examples presented here show that the concept of serverless computing can be applied in
scientific computing, where traditional distributed processing or high-throughput approaches have
been used. The new capabilities offered by serverless, including simplified programming model based
on functions, highly-elastic resource management and convenient deployment model, allow not only
for repurposing of existing applications and frameworks (parallel tasks, workflows, MapReduce, etc),
but can inspire new classes of scientific applications, which can be more event-driven, interactive and
highly dynamic in resource usage, and also take advantage of the whole continuum of resources from
HPC, cloud and other devices located at the edge.

There are of course limitations of serverless computing, such as vendor lock-in, observability
issues, cost-performance trade-offs, distributed state management, caching, and lack of tooling - these
topics are now subject of active research [3]. Some trends such as datacenter disaggregation [15],
convergence between HPC and cloud architectures, and increasingly elastic resource management in
clouds may suggest that some form of “serverless” computing will become prevalent. The future will
show if a “serverless supercomputer” may become an ultimate solution to scientific computing
problems, but at least we are certain that the concepts presented here will influence the future
developments in both compute infrastructures and the architectures of scientific applications.
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