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Rural AI: Serverless-Powered Federated Learning

for Remote Applications
Panos Patros∗§, Melanie Ooi∗, Victoria Huang∗¶, Michael Mayo∗, Chris Anderson∗, Stephen Burroughs∗,

Matt Baughman‡, Osama Almurshed†, Omer Rana†, Ryan Chard‡, Kyle Chard‡, and Ian Foster‡

Abstract—With increasing connectivity to support digital ser-
vices in urban areas, there is a realization that demand for
offering similar capability in rural communities is still limited.
To unlock the potential of Artificial Intelligence (AI) within rural
economies, we propose Rural AI—the mobilization of serverless
computing to enable AI in austere environments. Inspired by
problems observed in New Zealand, we analyze major challenges
in agrarian communities and define their requirements. We
demonstrate a proof-of-concept Rural AI system for cross-field
pasture weed detection that illustrates the capabilities serverless
computing offers to traditional federated learning.

Index Terms—Serverless computing, cyber-physical infrastruc-
ture, computing continuum, federated learning, Rural AI.

I. WHY RURAL AI?

Unequal infrastructure between urban and rural areas—

a consequence of disparities in the economics of making

such services available—is likely to increase further the gap

between those areas’ economic potential [1]. We propose

a new discipline of Rural AI, which we define as the en-

gineering of cyber-physical systems for enabling sovereign,

sustainable AI in locations with limited and/or unreliable

power/networking infrastructure. Fig. 1 illustrates an example

Rural AI environment for precision agriculture in Aotearoa

New Zealand (NZ). Such intelligent systems obtain sparse

but valuable sensor data across multiple locations to predict

resource needs, adapt to intermittent connectivity, and preserve

data privacy. Thus, local software agents need to collaborate

on shared models without sharing data, e.g., via federated

learning [2]. We envision the formation of local cooperatives

that benefit from data protection and from aggregation of

resources on individual farms.

Rural AI applications require orchestration of computational

tasks across the computing continuum [3]—a transparent

computing fabric unifying cloud, HPC, and the edge—in rural

environments. We make the following contributions:

• Introduce the discipline of Rural AI to bridge technical

and economic requirements elicited from surveying rural

NZ stakeholders.

• Demonstrate an experimental system highlighting the

efficacy of federated learning and serverless computing

for Rural AI applications.

• Motivate the use of serverless computing and federated

learning for future Rural AI applications.

The authors are with: University of Waikato (NZ)∗, Cardiff Univer-
sity (UK)†, University of Chicago and Argonne National Laboratory (USA)‡,
Raygun Performance Monitoring§, and National Institute of Water and At-
mospheric Research (NZ)¶.
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Fig. 1. Rural AI can sustainably support sovereign precision agriculture.

We first present seven NZ use cases and nine Rural AI char-

acteristics we elicited in collaboration with local stakeholders

in NZ. Focusing on a Robotic Weeds Removal example, we

highlight tradeoffs between computing on the cloud, edge, or

a hybrid approach on the computing continuum.

We develop a prototype system building on federated Func-

tion as a Service. Our experiments indicate that cloud-only

learning exhibits the highest inference accuracy; however, it

risks data sovereignty and fault tolerance, and has limited

technical feasibility. Local-only (at the edge) learning suffers

from low model accuracy, lacking the cooperative federation of

Rural AI, which tolerates low node participation but converges

slower than cloud-only. Choosing an approach depends on:

(i) maturity of computational infrastructure; (ii) complexity of

analysis required; (iii) types of end-user communities (farmers,

regional planners, local authorities, etc.).

II. RURAL AI DESIGN AND REQUIREMENTS ANALYSIS

We show seven Rural AI examples in Fig. 2—all funded

projects of national interest in NZ. Their requirements can be

broadly categorized to the nine shown in Table I. Referring to

these examples, it is clear that cooperative federation, which

involves the exchange and sharing of information among

common stakeholders, is needed to improve performance of

machine learning models based on data from many clients.
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Fig. 2. Rural AI Applications: Seven NZ Examples

Increasingly mission-critical autonomous systems must be

able to self-navigate safely even when geo-location services

are down: agricultural robots must continue performing AI

tasks at brownout quality and upload local updated models

upon reconnection.

Given these observations, we define Rural AI requirements

as follows:

Data sovereignty: NZ has strict data sovereignty laws, and

in particular, those of the nation’s indigenous peoples. For

instance, Māori data sovereignty means that Māori must have

control over their data. This applies to information about

native plant species, agriculture, health, etc. Collected data

must be stored on the edge and deleted as soon as possible.

Only trained models that obfuscate information should be

communicated. This enables group knowledge sharing be-

tween competitors or consumers while preserving the privacy

of information for individuals. Additionally, recent literature

TABLE I
THE RURAL AI REQUIREMENTS MUST BE MET CONCURRENTLY

Adaptive AI

Functionality

Cyber-physical and mission-critical applications and
the underlying platform need to handle concept
drifts, uncertainty, instrument variability, unpredicted
changes in the system and environmental fluctuations.

Ruggedness

and Resilience

Deployment may take place on remote/ isolated areas
with unreliable power, limited networking infrastruc-
ture and adverse environmental conditions.

Cooperative

Federation

Systems that are locality-correlated share nearby ex-
perience to improve performance.

Big data Risky and cost-prohibitive to securely move data man-
ually. Training of models needs to take place incremen-
tally to avoid saturating resources.

Security and

Data

Sovereignty

Guarantees that must keep sensitive raw data from
being shared to the cloud—economic sovereignty is
crucial for industrial Rural AI.

Compute and

Network

Heterogeneity

Varying embedded computing infrastructure, such as
GPGPUs and FPGAs. Varying networking require-
ments, such as WiFi, LoRaWAN, satellite and 5G/6G.

Power- and

Energy-

Awareness

Unreliable energy availability due to renewable source
fluctuations and power-competition between domain
and computing/ networking devices.

Human User

and Developer

Barriers

Easy-to-use systems by non-technical people. Software
engineers to easily develop, test and deploy Rural AI
solutions.

Sustainability
and Cost
Effectiveness

Rural AI systems should be cost effective to develop
and operate vs. cloud. Local renewable power sources
and executing AI on the edge.

demonstrates significant skepticism in the agricultural com-

munity [4] and, as such, it is important to respect those

sensitivities to ensure wide-ranging applications.

Federated Learning: Initial training is undertaken on edge

devices with local data before aggregating models within

fog/cloud nodes. Aggregated models can be transferred back

to the edge devices for inference/actuation.

Federated Cyberinfrastructure: In-field devices could com-

prise the first layer of the computing continuum. These devices

(e.g., pesticide spraying robots) could then decide (a) when to

perform the next round of federated learning by submitting

recently captured data, (b) which field-side unit(s) to commu-

nicate with, and (c) at what granularity to relay their data.

Scheduling strategy: Self-adaptive methods to determine

where and when to distribute workloads are needed to optimize

deployment objectives and provide guarantees under uncer-

tainty. Decision making must address conflicting metrics, such

as time-cost, geographic proximity and computing/ bandwidth/

energy availability tradeoffs.

III. SERVERLESS ARCHITECTURE FOR RURAL AI

We developed a prototype Rural AI platform based on the

requirements in the previous section. Our architecture uses

funcX [5], a federated Function as-a-Service (FaaS) platform

that enables function execution on remote compute endpoints.

FuncX supports reliable execution across heterogeneous com-

puting resources—ideal for heterogeneous computational re-

sources of rural areas. Our prototype (Fig. 3) comprises one

node as the federation server and three edge cluster nodes,

each with 4 VMs, which we then used for our use case.

Serverless computing is a computing paradigm pioneered

by cloud providers [6]. Its aim is to allow software developers

to focus on the development side without having to manage
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Fig. 3. Federated FaaS Architecture using funcX

physical or virtual servers. For example, in the function as

a service (FaaS) model, developers define a programming

function; they may then invoke that function via an API by

passing the function ID and input arguments to the FaaS

platform. The FaaS platform is responsible for provisioning

computing resources, executing the function, and relaying

results to the user.

Others have explored the use of serverless models for IoT

scenarios [7]: cloud providers, such as AWS Greengrass and

Microsoft Azure IoT Edg,e provide methods to bridge between

public clouds and edge devices. However, to the best of our

knowledge, such methods have not been used to deliver with

federated learning applications in rural settings.

A. Weed Detection Use Case

We evaluated the fitness of our prototype Rural AI platform

for weeds detection—a representative application with gener-

alizable observations. Pastures require analysis of highly lo-

calized datasets that benefit from cooperative training (Fig. 4).

We used hyperspectral pasture images from three different

sites [8] labelled with four classes—three different weeds and

a background class.

Dataset: The dataset contains 104,544 labelled 148-channel

hypervoxels drawn from three 900nm–1700nm infrared spec-

trum images, one image per site; 60,072 hypervoxels were

sampled from Site A, 30,240 from Site B, and 6,232 from

Site C. Sites A and B data were balanced across all four

classes; Site C data contained one weed species and the

background class. We randomly split the dataset into training

and testing with an 80 : 20 ratio. Using linear discriminant

analysis in a non-federated (centralised) setting as a baseline

yields 91% test accuracy.

Approach: Based on initial experiments and a non-

exhaustive architecture search, we selected the following ANN

architecture: Two 1D convolutional layers with max-pooling

after each, flattened and fed into a dense classifier; ReLU

activations for the convolutions and softmax for the classifier.

We implemented a federated averaging [9] algorithm that

divides the model training process into T iterations. A random

Fig. 4. Exemplar Rural AI Application: Near-infrared hyperspectral imaging
system to distinguish weeds from produce [8].

subset of local models is selected and E epochs of training

are performed on their local data with minibatch size B.

Both hyperparameters E and B must be optimized: we

experimented with E ∈ {1, 5, 10} and B ∈ {10, 50} and

found that E = 1 and B = 50 performed optimally. When

each local training iteration is complete, the local sites return

their models to the federation server for model aggregation.

In the original algorithm [9], a key parameter is N—the

proportion of local models uploaded to the cloud server per

iteration. In a rural setting, this would correspond to the

fraction of local nodes available at any one time. Therefore,

we also evaluate different N values ranging from 100% to

25%. After aggregation, each local model is replaced with the

downloaded new model.

B. Experimental Results

We demonstrate the benefit of using federated learning vs.

building independent models based on locally captured image
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Fig. 5. Top: Accuracy of models trained using local-only and federated (Rural
AI) approaches over 2,000 iterations. N , the fraction of local nodes available
at any one time. Bottom: Model accuracy with different participation rates N

of different local nodes.

data. As illustrated in Fig. 5, three local models (A, B, C) are

developed on different sized datasets: accuracy can vary from

30% (Local C) to 70% (Local A).

Compared to cloud-only (98% accuracy) and local-only

(30%-70%), our full-participation federated model (N =

100%) reached an accuracy of 85% after 2,000 iterations—

but all federated models exhibit slower convergence rate.

Although cloud-only achieves higher accuracy by training a

global model using all the data from all three sites, it requires:

(i) data to be shared with the datacenter—incurring additional

latency, bandwidth and communication time during the data

transfer process; (ii) violates sovereignty; (iii) suffers from

sustainability, scalability and synchronization issues.

The federated models’ accuracy exhibit higher variance with

smaller N values due to the reduced model sharing. Nev-

ertheless, all federated models show consistently increasing

accuracy. Even with low local-node availability (N=25%), the

federated model outperformed the best local model, achieving

75%. Hence, we hypothesize that nodes can adaptively, vol-

untarily forgo participating in training rounds to save energy

without penalizing the federated models’ performance.

To test our hypothesis, we simulate different nodes volun-

tarily participating at different rates for each training round.

As shown in Fig. 5, sites with more samples have a higher

impact on accuracy if they only partially join the training.

Nevertheless, the federated model still outperformed the best

local model. Meanwhile, for sites with fewer samples (e.g.,

B and C), they can significantly benefit in terms of model

accuracy and energy savings even when only participating in

25% of training rounds.

IV. THE FUTURE OF RURAL AI

We outline in Table I key research challenges in Rural AI,

considering constituent technologies and research areas.

Agriculture: To support cooperating farms, self-adaptive

distributed systems are needed to connect computing resources

with those on the farm and progressively moving to the

cloud. To support interoperability between farm systems, new

specification languages, metamodels and models-at-runtime

are needed. With an increase in capability must also follow

an increase in usability. A possible future solution is to

integrate serverless federated learning with new edge-based

farm management architectures [10].

Artificial Intelligence: At the time of writing, there are 27

ISO/IEC standards on AI under development to address data

quality, management, applications, etc. Adaptive AI algorithms

will be required in planning (e.g., robotic automation of or-

chards [11]), natural language processing (e.g., ease of control

of complex farming systems), and heuristic optimization (e.g.,

developing plans for robotic harvesters). More generally, there

is no guarantee that algorithms developed and evaluated in one

rural region will work effectively in another region due to the

likelihood of the data from the new region not following the

same distribution as that used to train and build the AI systems.

Climate change presents further complications, and can be

viewed as an potential instance of concept drift. Both systems

will necessitate extensive and continuous model testing well

beyond initial deployment.

Computing continuum: The increase in compute capabili-

ties is mirrored readily by networking infrastructure. While

not always the case, as networking increases with compute,

adaptive task placement across different devices becomes more

pressing as the resources are no longer obfuscated by network

bottlenecks. With Rural AI, we envision the ultimate com-

puting continuum—seamlessly combining resources at every

level (including local renewables) to dynamically, adaptively,

and autonomously execute tasks where and when required.

Serverless computing: As our prototype shows, serverless

computing [12] provides a promising direction for delivering

a Rural AI platform and offers an intuitive programming

model to develop and execute AI applications. Extending FaaS

to federated environments is necessary to support Rural AI,

enabling functions to be dispatched to different devices in the

computing continuum based on resource availability, perfor-

mance, data privacy, and location and scheduling requirements.

V. CONCLUSION

Using federated learning to support independent model

construction and subsequent aggregation provides significant

benefits for Rural AI. Using this approach, a robot can capture
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data in its proximity using on-board sensors, develop a model

based on this data, and share this with field-side units to carry

out model “stitching”. In an environment with limited network

and computational resource availability, this approach provides

greater flexibility to sustainably support decision making and

actuation (e.g., weed spraying). Thus, considering the tradeoffs

between local-only (edge computing) vs. cloud-only (cloud

computing), Rural AI architectures offer a valuable middle-

ground, hybrid solution that can achieve better performance,

fault tolerance and data sovereignty without sacrificing accu-

racy or increasing costs and power/energy requirements.
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