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ertello@tamps.cinvestav.mx

3 Laboratoire d’Informatique (LIMOS, UMR CNRS 6158), Campus des Cézeaux,
63177, Aubière Cedex, France

placomme@sp.isima.fr

Abstract. The Vehicle Routing Problem with Route Balancing (VR-
PRB) is a bi-objective version of the original Vehicle Routing Problem
(VRP) in which, besides minimizing the total distance traveled by the
vehicles involved, the balance among route loads is also pursued. Differ-
ent objective functions (OFs) to achieve balanced route configurations
have been proposed in the literature, however to the best of the authors’
knowledge there is still no consensus on which OF is the most suitable one
for addressing, through metaheuristics, this challenging multi-objective
optimization problem.
This paper inquires into the effectiveness of seven different OFs for the
VRPRB. Their influence on the performance of a basic single-solution-
based evolutionary algorithm is analyzed by comparing the quality of
the Pareto-approximations produced for a set of well-known benchmark
instances. The obtained results indicate that studying alternative evalu-
ation schemes for the VRPRB represents a highly valuable direction for
future research which merits more attention.

Keywords: Objective Functions, Vehicle Routing Problem with Route
Balancing

1 Introduction

The Vehicle Routing Problem (VRP) is a classical combinatorial optimization
problem with great relevance both in theoretical research and in practical matter.
Derived from the Traveling Salesman Problem (TSP), the VRP has been mainly
tackled as a multi-objective problem, for two or three objectives of interest,
therefore, a set of non-dominated solutions, the so-called Pareto-approximation
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(see Sect. 2) is required. The most common objectives that have been addressed
in literature are minimizing the total length of the routes as well as the number
of vehicles used. Frequently, variants of VRP add more objectives on top of
one of the two aforementioned. One flavor of the VRP that has received much
less attention than other variants is the Vehicle Routing Problem with Route
Balancing (VRPRB), which looks for the balance between routes as well as the
total length minimization.

A balanced VRP solution is one in which all routes are as similar as possible
regarding a given indicator such as tour length or vehicle load. This kind of so-
lutions are required for example, when it comes to workload distribution among
vehicle drivers or when trying to even out the travel time of passengers served by
a transportation service. For the later case, a problem that very well represents
this requirement is the School Bus Routing Problem (SBRP) [1,2,3] that consid-
ers the pick-up and delivery of students to schools. Within this kind of problems,
important aspects to consider are efficiency, effectiveness and equity, as firstly
proposed by Savas [4]. Nonetheless, when considering this scenario is clear that
equity, defined as to minimize the difference in the time that students spend
on the bus when being transported, has not been fully researched. For example,
Park and Kim [5] rightly stated: “Equity has been neglected in evaluating the per-
formance of a school bus service as well as public services. However, its growing
importance has been recognized. To improve the equity of a school bus service,
balancing the loads and travel times between buses should be considered.”. The
importance of balance in real-world problems then, is attracting more attention,
and the interest in the study of measures to achieve it is compelling.

In order to capture the balance of a set of routes, different objective functions
(OFs) have been defined in the VRPRB literature. In [6], the authors identify six
different types of OFs and give a brief explanation of each one to conclude with
the selection of the OF Min-max (minimization of the maximum indicator value)
for their experiments. In [7], the authors identify a set of axiomatic properties
that should be satisfied by an ideal equity OF and use them to evaluate six
common measures of equity, pointing out their properties and the properties of
the resulting Pareto-optimal fronts. For their study, the authors create a set of
small VRP instances, solvable to optimality, and compute all the feasible tours.
The authors conclude that none of the OFs satisfies every desirable axiom and
thus no OF is better than the others in all relevant aspects.

This article tries to motivate discussion and further research in the under-
standing of different OFs designed to capture balance. A statistical analysis is
proposed to evaluate the quality of the Pareto-approximations obtained by using
seven different OFs within a basic single-solution-based evolutionary algorithm,
called (1+1) EA, over the instances proposed in [7]. We are interested in finding
out what differences appear when applying specific OFs to the same data, using
the same algorithm, and even the same random seed.

The rest of this paper is organized as follows. Sect. 2 presents a basic overview
of multi-objective optimization concepts and formally defines the VRPRB. Rel-
evant literature is revisited in Sect. 3. The seven OFs for the VRPRB analyzed
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in this study are defined in Sect. 4, where the components of the single-solution-
based evolutionary algorithm used for assessing them are also described in detail.
Sect. 5 presents the experiments performed for comparing the selected OFs as
well as the results achieved. Finally, the conclusions of this study are stated in
Sect. 6.

2 Vehicle Routing Problem with Route Balancing

The VRP with balance requirements is de facto a multi-objective optimization
problem. With multi-objective problems, in contrast to mono-objective prob-
lems, the objective is to provide a set of non-dominated solutions or Pareto-
approximation. Without loss of generality, the concept of dominance can be
defined as follows. Given two solutions, where each solution i has a vector
Vi = {obi1, obi2, . . . , obim} of m objectives, a solution i dominates solution j, writ-
ten i ≺ j, if ∀q ∈ {1, 2, . . . ,m}, obiq ≤ objq and ∃ q such as obiq < objq

4. Given the
NP-Hard nature of this kind of problems (the VRP and its variants), the set of
non-dominated and optimal solutions, i.e. the Pareto-front, is unknown most of
the times.

2.1 VRP with Balance Requirements

The Vehicle Routing Problem with Route Balancing (VRPRB) considers a set
V = {0, 1, 2, . . . , N} of N+1 vertices, where V0 represents the depot/school/work
center, and the subset V ′ = V \{V0} represents the customers nodes to be at-
tended. Each node Vi has two attributes, a pair of geographic coordinates (xi, yi)
and a demand that needs to be collected di. For the depot V0 its demand d0 = 0.
The pick-up service is provided by a set K = {2, 3, 4, . . . ,M} of trucks/buses,
where each truck/bus Kj has capacity Cj ≥ di, ∀i ∈ {1, 2, 3, . . . , N}. For any pair
of nodes Vo and Vs, there is an associated travel cost lo,s. The first objective is to
find a set of feasible routes T = {1, 2, 3, . . . , P} with the minimum total distance,
meaning that each route Tw has an associated variable Lw which represents the
sum of all lo,s, given that o, s ∈ Rw. The second objective which represents bal-
ance is to make as similar as possible any pair Lw, and Lq ∀w, q ∈ T . In order
to further motivate discussion, a quantitative measure for route balance is not
provided in this section.

3 Literature Review

Most of the works reported in literature tackle the VRPRB as a bi-objective
problem, where the first objective is to minimize the total length of routes, and
the second is the balance among the routes. For a first sub-classification, there
are two variables that have been used for balancing purposes, i.e. load-related

4 For the sake of explanation this is a minimization problem, but it could be also
generalized, previous change of relational operators, for maximization.



4 Authors Suppressed Due to Excessive Length

ones and the length of each route. When the load of routes is considered, the
work of Lee and Ueng [8] proposed an Integer Programming model with one of
its objectives being the balance of the work-load of the drivers, then looking for
fairness in the work schedules. In another work, Ribeiro and Lourenço [9] pro-
posed a MILP model to balance volume transportation, thus trying to equally
distribute compensations among drivers, since the earnings were associated to
the load. When distances of the routes are used as a variable indicator for bal-
ancing, most of the works have used the Max−min formulation (see Sect. 4.1).
The first works in this direction were the ones of Josefowiez et al. [10,11], where
they approached this problem proposing a modification of the NSGA II algo-
rithm based on parallelization, afterwards, an implementation of a strategy based
on a Pareto approach [12] was presented. Other work [13], proposed a MOEA
algorithm for this problem based on the islands models. Lacomme et. al. [14] in-
troduced a Multi-Start strategy based on Path-Relinking, where they compared
their algorithm with the one proposed by Josefowiez et al. [13] obtaining better
results in the Balance criterion. Recently, Schwarze and Voß [6] presented a very
complete survey of OFs used for balance and their indicator variables in the
context of Skill VRP, where load balancing and resource utilization is sought.

4 Materials and Methods

This section introduces the OFs under study, the algorithm and the two mutation
operators implemented as well as a TSP-to-VRP transformation involved in the
mutation process. A description of the heuristic used for initial solution creation
and the metrics used for comparison purposes are also given.

4.1 Objective Functions Under Study

Seven OFs for route balancing were chosen from the literature including some of
the most widely used and some others that are not that common but have been
taken into account in some of the latest studies. Among the most commonly
used OFs we find Max-min (also called range), perhaps the most widely used,
which tries to minimize the difference between the maximum and minimum
indicator value; Min-max which tries to minimize the maximum indicator value;
and Var which tries to minimize the variance of indicator values (some studies
also use the standard deviation for this matter). In [6], the authors also identify
an objective function trying to minimize the relative deviation of indicator values
from maximum value, namely Rel and another trying to minimize the cumulative
difference (over all routes) between the indicator value for the given route and
the minimum indicator value, namely All-min. In a more recent study Matl et.
al. [7] analyzed two more OFs: MAD (Mean Absolute Deviation), defined as the
mean absolute difference between each indicator value and the mean of indicator
values; and the Gini Coefficient or Gini, one of the most widely used measure
for inequality studies in general.
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A formal definition of each OF under study is presented:

All-min

min
∑
t∈T

(lt −minu∈T lu) (1)

Max-min

min(maxu∈T lu −minu∈T lu) (2)

Min-max

min maxu∈T lu (3)

Rel

min
1

|T |
∑
t∈T

(
maxu∈T lu − lt
maxu∈T lu

)
(4)

Var

min

(∑
t∈T l2t
|T |

−
(∑

t∈T lt

|T |

)2
)

(5)

MAD

min
1

|T |
∑
t∈T

∣∣li − l̄
∣∣ (6)

Gini

min
1

2n2 l̄

∑
t∈T

∑
t′∈T

|lt − lt′ | (7)

Where T stands for the set of routes of a given solution and l, the indicator
value, was chosen to be the tour length.

4.2 (1+1) Evolutionary Algorithm with External Archive

In order to find out if using different OFs for balance leads to solutions of dif-
ferent quality when used within a meta-heuristic, the simplest version of an
evolutionary algorithm, the (1+1) EA, was implemented, which consists in the
iterative mutation of a single individual sol created initially at random. The
individual sol is only replaced by the mutated one sol′ when the latter is at least
as good as the former. But, considering the bi-objective nature of the VRPRB,
a variant as presented by [15] was chosen, which includes an external archive to
store the non-dominated solutions found during the evolution process in such a
way that the mutated individual sol′ is only accepted if it is non-dominated by
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any individual already in the archive. When a new individual sol′ is accepted,
all individuals dominated by sol′, as well as those mapping to the same objec-
tive vector, are removed from the non-dominated archive. The (1+1)EA with
external archive is formally described in Algorithm 1.

Algorithm 1 (1+1) EA with external Archive

1: procedure solveInstance
2: sol← randomly generated solution
3: A← {sol}
4: iter ← 0
5: while iter < MAX ITER do
6: sol′ ← mutationOperator(sol)
7: if @ŝol ∈ A : ŝol ≺ sol′ then
8: A←

{
ŝol ∈ A : sol′ ⊀ ŝol ∧ f(ŝol) 6= f(sol′)

}
∪ {sol′}

9: sol← sol′

10: iter ← iter + 1

The selection of such a simple algorithm was in order to avoid any possible
bias towards the benefit of any specific objective function. MAX ITER was
fixed to 30,000, which is a large enough number of iterations for the algorithm to
converge. Also in order to get impartial results, two different mutation operators
were developed: Swap mutation and Reverse mutation. Both mutation operators
make use of a search space transformation from VRP to TSP and vice versa
before and after the solution disturbance. In the next paragraphs the heuristic
used to generate the initial solution, the mutation operators and the TSP-VRP
transformation process are described.

Heuristic for Constructing the Initial Solution For creating the initial
solution, a client permutation list (containing all clients) is randomly generated.
Then, clients are inserted one by one into the first route until no more clients
can be included due to the vehicle capacity constraint. When no more clients can
be included into the first route, a second route is created to insert the following
clients. The process stops until all clients have been inserted into a trip.

VRP-to-TSP Transformation Because (1+1) EA uses only a mutation op-
erator it is difficult to get an appropriate balance between exploration (searching
on a large portion of the search space trying to find more promising areas) and
exploitation (searching on a limited and promising region of the search space try-
ing to improve a high quality solution). In order to achieve this balance between
exploration and exploitation, a VRP-to-TSP transformation, before the solution
perturbation, is used. This is achieved by concatenating all the individual routes
into a TSP permutation. Operating over the TSP version of the solution allows
the mutation operators to work inside a single route as well as between differ-
ent routes, thus favoring both exploitation and exploration, respectively. Once



Title Suppressed Due to Excessive Length 7

the perturbation has been done, the TSP solution is turned back into a VRP
solution in a similar way to that used to construct the initial solution.

Swap Mutation Operator First, the VRP solution is transformed into a
TSP permutation. Then, a random number n of clients to swap is chosen (for
this study, n was bounded between 2 and 4). Then, n positions from the TSP
permutation are chosen and swapped randomly. The resulting TSP permutation
is finally transformed back into a VRP solution.

Reverse Mutation The original VRP solution is encoded as a TSP solution
and a randomly selected sub-path of the TSP is reversed. Finally, the resulting
TSP permutation is transformed back into a VRP solution.

Note that neither the (1+1) EA, nor the mutation operators (Swap and Re-
verse) include any strategy to make individual routes optimal in length (optimal
TSPs), thus solutions could be artificially balanced by increasing the length of
small routes within a solution, as stressed by Jozefowiez et. al. in [13].

4.3 Hypervolume to Measure the Pareto-approximation Quality

When applied to a multi-objective problem, a meta-heuristic would generally
lead to a set of non-dominated solutions known as Pareto-approximation. Several
metrics could be used to measure the quality of a Pareto-approximation. One of
the most popular metrics is the hypervolume metric H(A,z) [16], which captures
the area dominated by an approximation set A and a reference point z. The
larger the hypervolume, the better the convergence of a given solution set to the
optimum set (Pareto-front).

A more formal definition for the hypervolume is as follows. Considering a two
objective dimensional space f(x) = (f1(x), f2(x)), each solution xi ∈ A forms a
rectangle defined by its coordinates (f1(xi), f2(xi)) and the coordinates of the
reference point (z1, z2). The hypervolume is calculated as the union of all the
rectangles defined between all the points in A and z. For minimization problems,
one typical decision is to choose the worst possible value on each objective as the
coordinates of the reference point. For this study, the reference point is computed
as follows. For the balance, a solution with only two routes is created, the first
one including all the clients except the last one, which is included into the second
route. For the distance, a solution with one route per client is created. This way
a solution with extremely poor objective values is obtained. It is important to
point out that, in order to get a hypervolume measure equally influenced by both
objectives, the objective values of each solution in the Pareto-approximation are
normalized to a 0-1 range.

5 Experiments

In this section, we describe the experiments that were performed in order to
statistically compare the OFs presented in Sect. 4.1. First, the set of VRP in-
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stances recently proposed in [7] was selected. The set is composed of 60 small
VRP instances, solvable to optimality, which are created as follows: based on
the instances 1-10 of Christofides et. al. [17], the authors take sets of n = 14
customers to create a subset of instances by varying the number of vehicles |T |
between 2 and 5, and the vehicle capacity q to [n/ |T |] or [n/ |T |] + 1. All the
customers demands are set to 1.

The algorithm described in Sect. 4.2 was coded in JAVA and run on a PC
with 2.50 GHz CPU and 6 GB of RAM. Two variants are considered: the first
one using the Swap mutation operator and the other using the Reverse mutation
operator. Both versions are benchmarked on the 60 VRP instances using each
of the seven OFs under study, so 14 different configurations (mutation operator-
OF ) are tested. Each variant is run 30 times per instance and each run goes for
30,000 iterations. At the end of each run, an archive with a set of non-dominated
solutions is obtained, and its hypervolume is computed.

Thirty Pareto-approximations were obtained per instance for each of the 14
algorithm variants (mutation and objective function combinations). Since every
objective function works on a different objective space for balancing purposes, in
order to statistically compare the quality of the obtained sets, a common space
where all the objective functions can be fairly compared should be considered.
Thus, the Max−min objective space was selected since it is the most widely used
in the literature. So each solution in the Pareto-approximations is re-evaluated
using the Max−Min OF, then the hypervolume of each Pareto-approximation
over a unified objective space can be computed, allowing a fair comparison.

To statistically compare the vectors composed of 30 hypervolumes obtained
by using each of the seven OFs, a t-test (two-sample, two-tailed, unequal vari-
ance) is applied between pairs of vectors. The results presented in this section
are based on a scoring scheme that works as follows. When comparing two hy-
pervolume vectors, corresponding to two different OFs, if the t-test shows that
differences between both vector averages are significant at a 95% confidence level,
we add +1 to the score of the OF with larger average and -1 in detriment to the
other OF score. If there is no statistically significant difference between the two
vector averages, 0 is added for both OF scores.

In Table 1 the scores obtained by each OF over 60 instances when using two
different mutation operators are presented. The highest scores per instance are
marked in bold for each mutation operator. For example, for instance number
35 and the Reverse mutation, MAD gets an accumulated score of 3, given that
it overcomes OFs All-min, Max-min, Min-max and Rel (in terms of the t-test
analysis previously described), so +4 is added to its score, but it is also overcame
by Gini and indifferent with Var, so -1 and 0 is added to obtain the final score
of 3.

A clear disadvantage of the Min-max OF is noticed, since only negative
scores for both mutation operators are obtained. It would be of great interest to
investigate if this also happens when using a more powerful meta-heuristic.

It is also important to note that for some instances, several OFs get the
highest score, meaning that no OF dominates all of the others; e.g. instances
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Fig. 1. Number of times a given objective function got the highest score over the 60
instances using the two mutation operators.

10, 16 or 46 for the Reverse mutation and instances 4, 8 or 60 for the Swap
mutation, where Var, MAD and Gini got the highest scores. And there are also
some instances in which no OF appears to have a significant advantage as is the
case for instances 37 and 43 when using the Reverse mutation and instances 1
and 49 when using the Swap mutation.

It is interesting how the scores are very similar in both tables even when they
were obtained by using quite different mutation operators.

In Fig. 1 a histogram is presented showing how many times a given OF got
the highest score after the t-test evaluations over the 60 instances using the two
different mutation operators.

Here some facts attract attention. A clear domination of OFs Var, MAD and
Gini is observed, meaning that these three OFs were the ones with statistically
higher hypervolume vector-averaged over the 60 instances. It is noticeable that
Max-min, being perhaps the most widely used OF for balance in the VRPRB
literature, has been overcame most of the times by these three OF. The same
goes for Min-max which was unable to beat the rest of the OFs even once.

It is also interesting that, even when the two mutation operators work quite
differently, the scores obtained by the different OFs are very similar, for this
matter it would also be of interest to investigate if the scores behave similar
when using a more powerful meta-heuristic.
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Using two quite different and free of bias algorithms (mutation operators)
under exactly the same parameters over a set of 60 different VRP instances,
and observing very similar behaviors when using the different OFs under study,
pushes us into considering the next. Rather than being correlated to the OF
alone, the quality of the Pareto-approximation obtained when using different
OFs for balance must be somehow correlated with some properties of the VRP
instance itself, like the distribution of the clients or the number of vehicles. This
constitutes a very interesting topic for further research.

6 Conclusions and Future Work

A statistical comparison was made between quality (in terms of hypervolume) of
the Pareto-approximations obtained when using seven different objective func-
tions for balance in a (1+1) EA with two different mutation operators for VR-
PRB over a set of a state-of-the-art instances proposed by [7]. The size of the
instances as well as the type of algorithm and the mutation operators were cho-
sen in order to avoid any bias towards the benefit of any particular objective
function.

Experiments clearly demonstrate three of the objective functions under study,
namely Var, MAD and Gini, leading to Pareto-approximations of higher qual-
ity than the rest of the objective functions, thus overcoming two of the most
widely used in the VRPRB literature: Max-min and Min-max, and two other
also considered: All-min and Rel.

Moreover, similar behaviors were observed when using the two different mu-
tation operators: a clear advantage of Var, MAD and Gini objective functions
when it comes to how many times the objective function got the highest score
in the t-test performed by instance; poor quality Pareto-approximations for the
rest of the objective functions, highlighting Max-min and Min-max which are
two of the most widely used objective functions in the VRPRB literature.

This pushes us into considering that the quality of the Pareto-approximations
when using different objective functions does not depend on the algorithm used
nor in the objective function alone, but in a possible correlation between some of
the VRP instance properties and the objective function used. Further research
on this matter is of great interest.

In a future study it would be interesting to include a more powerful meta-
heuristic and tackle some more complex VRP instances to determine if behaviors
among algorithms when using different objective functions for balance are still
similar and thus reinforcing the hypothesis stated in the previous paragraph.
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Table 1. Cumulative scores obtained by each compared OF over 60 instances using
two different mutation operators.
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1 1 1 -6 0 2 1 1 1 1 -6 1 1 1 1
2 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
3 -2 -2 -6 -2 4 5 3 -2 -2 -6 -2 4 4 4
4 -1 -1 -6 -1 -1 5 5 -1 -2 -6 -3 4 4 4
5 -3 -1 -6 -2 4 3 5 -2 -2 -6 -2 4 4 4
6 -4 -1 -6 -1 4 4 4 -3 -2 -6 -1 4 4 4
7 1 0 -6 2 1 1 1 1 0 -6 1 1 1 2
8 -2 -1 -6 -2 3 6 2 -2 -2 -6 -2 4 4 4
9 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4

10 -3 -2 -5 -2 4 4 4 -2 -2 -6 -2 3 4 5
11 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
12 -2 -1 -6 -3 4 4 4 -2 -2 -6 -2 5 2 5
13 0 0 -1 0 -1 0 2 0 1 -4 1 0 1 1
14 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 3 5
15 -3 -3 -3 -3 3 4 5 -2 -2 -6 -2 4 4 4
16 -2 -2 -5 -3 4 4 4 -2 -2 -6 -2 4 4 4
17 -2 -2 -6 -2 4 4 4 -2 -1 -6 -3 4 4 4
18 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
19 0 2 -6 -2 2 3 1 1 2 -6 0 1 1 1
20 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
21 -2 -2 -6 -2 4 4 4 -1 -1 -6 0 1 4 3
22 -2 -2 -6 -2 4 3 5 -2 -2 -6 -2 4 4 4
23 -4 -3 -4 -1 4 4 4 -2 -3 -6 -1 4 4 4
24 -3 -2 -3 -4 4 4 4 -3 0 -6 -3 5 4 3
25 -1 -1 -5 -2 5 -1 5 0 1 -6 3 1 0 1
26 -2 -2 -6 -2 3 5 4 -2 -2 -6 -2 4 4 4
27 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
28 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
29 -2 -2 -6 -2 3 5 4 -2 -2 -6 -2 4 4 4
30 -2 -2 -6 -2 5 3 4 -2 -1 -6 -3 4 4 4
31 0 1 -6 1 1 2 1 1 1 -6 1 1 1 1
32 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
33 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
34 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
35 -2 -2 -6 -2 4 3 5 -2 -2 -6 -2 4 4 4
36 -1 -2 -6 -3 4 3 5 -1 -2 -6 -3 4 4 4
37 1 1 -6 1 1 1 1 2 1 -6 1 1 0 1
38 -3 -3 -3 -3 4 4 4 -2 -2 -6 -2 4 4 4
39 -1 -2 -6 -3 4 4 4 -1 -2 -6 -1 2 4 4
40 -1 -1 -6 -1 -1 5 5 -2 -2 -6 -2 4 4 4
41 -2 -2 -5 -3 4 4 4 -2 -2 -6 -2 4 4 4
42 -1 -2 -6 -3 4 4 4 -1 -2 -6 -3 4 4 4
43 1 1 -6 1 1 1 1 1 1 -6 1 2 1 0
44 -4 -3 -2 -3 4 4 4 -3 -3 -3 -3 4 4 4
45 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
46 -3 -3 -3 -3 4 4 4 -2 -2 -6 -2 4 4 4
47 -3 -3 -3 -3 4 4 4 -2 -2 -6 -2 3 4 5
48 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
49 1 1 -6 1 1 1 1 1 1 -6 1 1 1 1
50 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
51 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
52 0 0 -6 0 -4 4 6 -2 -3 -6 -1 4 4 4
53 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
54 -1 -2 -6 -3 5 2 5 -2 -2 -6 -2 4 4 4
55 0 -3 -6 2 2 3 2 1 1 -6 1 1 1 1
56 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
57 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 3 6 3
58 -2 -2 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
59 -3 -1 -6 -2 4 4 4 -2 -2 -6 -2 4 4 4
60 -2 -1 -6 -3 3 6 3 -3 0 -6 -3 4 4 4


	A Statistical Comparison of Objetive Functions for the Vehicle Routing Problem with Route Balancing

