DIGITAL ACCESS 10 -
SCHOLARSHIP sr HARVARD T e i Schotaty Communicatin

DASH.HARVARD.EDU

Performance issues in correlated branch
prediction schemes

Citation
Gloy, Nicolas, Michael D. Smith, and Cliff Young. 1995. Performance Issues in Correlated Branch
Prediction Schemes. Harvard Computer Science Group Technical Report TR-23-95.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506435

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506435
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Performance%20issues%20in%20correlated%20branch%20prediction%20schemes&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=1c3cef4d4860f5d8fcb60377ab79bf6b&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

This paper is available from the Center for Research in
Computing Technology, Division of Applied Sciences,
Harvard University as technical report TR-23-95.

Performance Issues in
Correlated Branch Prediction Schemes

Nicolas Gloy, Michael D. Smith, Cliff Young
Division of Applied Sciences
Harvard University, Cambridge, MA 02138
{ng, smith, cyoung}@das.harvard.edu

Abstract further improvements. In static correlated branch predic-

A te static b h prediction is the kev t ¢ htion (SCBP) techniques [33], the cost of better prediction
ccurate static branch prediclion 1S the key 1o many tec accuracy is code expansion, and thus, the point of dimin-

hiques for exposing, enhancing, and exploiting Instructioqshing returns is defined primarily by the relationship

:‘ e:vgl E arallre]z lism d(.ILtP)' ngllgr}l:tlaldwork otn sttac'juc_ COIe~ hatween the changes in the average access time of the
ated branch prediction () demonstrate IMPrOVe;,struction memory subsystem and the cycle count

ments in branch prediction accuracy, but did not addre_s%hanges enabled by the improvements in prediction accu-
overall performance. In particular, SCBP expands the S'Z?acy. In this paper, we explore this relationship to deter-

of executable programs, which negatively affects the P€ine how parameters such as the pipeline structure and

formance of the instruction memory hierarchy. Using tr?ethe cache organization of a processor affect the viability of

pr_ofile information available under SCBP, we can mini- CBP techniques. Using this framework, we also examine
mize these negative performance effects through the appji, performance benefits of two profile-driven optimiza-

cation of code layout and branch alignment teChanueStions on gshare [18], a dynamic branch prediction scheme
We evaluate the performance effect of SCBP and the at efficiently exploits branch correlation

profile-driven optimizations on instruction cache misses, SCBP improves prediction accuracy for a particular

branch mispredictions, and branch misfetches for a numg by creating multiple copies of that branch, effec-
geé:ngf Fece”t proces?or |mplementat|otns.d_¥Ve fl'nd thatl'ively encoding information on the outcome of previous

IMproves periormance over (ra_\ itional) PET hranches in the program counter. It is clear that this will
branch static profile prediction. We also find that SCBP.

. : . ffect the instruction cache behavior of the resulting pro-
improves the performance benefits gained from branc%

. -) ram. First, by enlarging the cache footprint of the pro-
alignment. As expected, SCBP gives larger benefits o ! y ging P P

hi izati th high mi dict/misfetch am, SCBP increases the number of compulsory and
machine organizations wi Igh mispredicmisietc pen'capacity misses. Second, by increasing the code size of
alties and low cache miss penalties. Finally, we find tha

Fnd' idual procedures and causing these procedures to
the application of profile-driven code layout and branch vidua’ p . Hsing P u

) .)) shift relative to each other in memory, it can significantl
alignment techniques (without SCBP) can improve th%hange the number of conflict missesy g y

performance of the dynamic correlated branch prediction Though Young and Smith [33] present code expansion

techniques. numbers in their initial paper on SCBP, they do not quan-
. tify the magnitude of the performance effects of this code
1 Introduction expansion on the memory subsystem, and hence it is diffi-

Recent work in branch prediction [3, 18, 25, 30, 31, 32cult to say when further improvements in prediction accu-

acy are outweighed by the memory system penalties due
33] has led to the develo_pment_ of both ha_rdware and SOFEO greater code expansion. In this paper, we consider the
ware schemes that achieve high prediction accuracy tW

exploiting branch correlation. The motivation for this rst-order effects on program performance: total cycles

due to branch mispredictions, branch misfetches, primary
work stems from the fact that the performance of super- . o L)
ache misses, and additional dynamic instructions due to

scalar and deeply pipelined processors can benefit SI(‘Jn'fciode layout considerations. As defined by Calder and

cantly from a small improvement (a couple of percentGrunwald [2], a misfetch penalty refers to any penalty

points) in pred!cnon accuracy. AS .Wlth any teChmqueassomated with a correctly predicted branch. Since SCBP
however, there is a point of diminishing returns where the : .
. . . ; is a software scheme, the cycle time of the processor is not
incremental costs of the technique begin to outweigh the

affected and hence that component of the performancéBHT)), while the most effective static schemes relied on
equation is unchanged. The true performance benefit gfrofiles from previous runs of the program [8, 16, 20] to
SCBP is dependent upon the effectiveness of compiledetermine a fixed prediction per branch. In 1991, Yeh and
time optimizations, such as global instruction schedulingPatt [30] introduced two-level adaptive schemes which
[15, 17] and code optimization [4], since these optimiza-record the direction of the recently executed branches and
tions attempt to reduce the total number of cycles requiredse this information (in addition to the branch address) to
to execute a program. Since the design and evaluation @fidex into a BHT. This hardware organization allows the
sophisticated compile-time optimizations is an endlesgrediction scheme to exploit patterns of related branches,
task, we do not attempt to give a definitive answer to théncreasing the overall prediction accuracy. Pan, So, and
guestion of how much SCBP can ultimately improve Rahmeh [25] appear to have been the first to use the term
application performance. “correlation.” In their two-level adaptive scheme, they use
Even in this limited study, comparing the cache behava single hardware shift register of lengtho record the
ior of different versions of the same program can be probprevious directions of the laktbranches (Yeh and Patt
lematic unless measures are taken to minimizg31] refer to this scheme as GAs andktas thehistory
unnecessary conflict misses. We have observed that smalépth. The contents of the shift register are concatenated
changes in the relative locations of different parts of a prowith some bits from the branch address to select one of the
gram can cause very significant changes in the number @&-bit counters in the BHT. Under the constraint of a fixed
cache misses, and these fluctuations can completelize BHT, McFarling [18] was able to achieve prediction
obscure the relation between code expansion and changascuracies better than those from GAs by exclusive-oring
in the miss rate. Fortunately, the profiling information that(rather than concatenating) bits from the branch address
is necessary to implement SCBP is sufficient for thewith the bits of the branch history shift register. McFarling
implementation of code layout algorithms that keeprefers to this new scheme gshare Figure 1 illustrates
instruction fetch penalties to a minimum. In particular, wethe essential features of GAs and gshare.
have implemented three previously published techniques
[24] that use profiling information to optimize the instruc- GAs
tion cqche behavior and minimize the instruction mlsfetch Branch History
penalties of a program. We apply these techniques gShift Register

Branch History
together with the code transformations that implement } Table
SCBP. For the vast majority of our benchmarks on all of =™ | | | [IR
our machine microarchitectures, SCBP gives better per- ————— | S
formance than per-branch profiled static branch predic- = = b5
tion, and a large component of the overall benefits comes o'?dBdrgenscsh Bl S > S
from the code layout optimizations. In fact, we find that, Tt a
in addition to our SCBP scheme, the profile-driven code HIH R
layout optimizations also help to improve the performance —_— |
of a dynamic branch prediction scheme.

Section 2 reviews the previous work in code expanding gshare
optimizations, and it relates this work to the domain of .

. . . . Branch History .
branch prediction. Section 3 introduces our experimental Shift Register Branch History
methodology, and it briefly describes the code layout opti- Table
mizations used in this study. Section 4 presents the results ™ | [| [” :
of our simulations. We conclude with a summary of our ; 5
findings in Section 5. T b5

Address =
. of Branch : 3]
2 Previous work] a

In the last five years, interest in branch prediction has
been re-ignited by schemes that exploit branch correla-
tion. Before 1990, the best branch prediction schemesgig e 1. Block diagrams illustrating the hardware orga-
used the recent history of a branch to predict the futurenizations for a GAs and a gshare correlated branch pre-
direction of that branch. The most effective dynamic diction scheme. Both use a BHT of 2-bit, up/down,
schemes used a table of 2-bit, saturating, up/downsaturating counters.
counters [26] (often referred to as the branch history table

The results of these hardware studies are appealingize of the program executable. All of these methods
because better branch prediction rates translate directipcrease both the static size and the dynamic memory
into fewer cycles wasted due to branch mispredictionsfootprint of the optimized program, placing greater
However, compile-time optimizations that benefit from demands on the instruction memory system. Surprisingly,
improvements in prediction accuracy, such as globalery few of these studies examine the interaction between
instruction scheduling, cannot take advantage of thesthe code-expanding optimizations and the instruction
sophisticated dynamic branch prediction schemesmemory system. Often, studies of these techniques simply
Inspired by the GAs scheme, Young and Smith [33] develassume a perfect instruction memory system and examine
oped a static correlated branch prediction (SCBP) schemenly the change in CPU cycle count due to the compile-
that exploits the correlation found in a branch profile totime optimization (and possibly data cache effects).
improve overall branch accuracy using only compiler- A few studies have considered the impact of object
specified branch prediction bits. SCBP works by encodingode size on instruction memory performance. The earli-
branch history into the program counter. As shown in Fig-est of these studies, e.g. Steenkiste [29] and Davidson and
ure 2, extra copies of blocks are made to differentiaté/aughan [7], investigated the relationship between
interesting branch histories, i.e. histories that contairinstruction cache performance and code density due to
branch correlation. Thus, improved prediction accuracyinstruction encoding. A later study by Chen et al. [6],

comes at the cost of increased program size. fixed the instruction set and examined the impact of code
expanding optimizations on the design of instruction
Before After caches. They found that several code expanding optimiza-

tions noticeably increased the miss ratio of 8 kilobyte and
16 kilobyte caches, and this change resulted in an effec-
|:> tive loss of performance after program transformation.
To try and improve the performance of instruction
caches, a small number of papers [14, 19, 24] subse-

guently examined how programs use the instruction mem-

Figure 2. Example illustrating the (simplified) functioning ory system and proposed methods to improve its overall
of SCBP. The second IF-block is correlated with the performance. Each of the proposed methods uses profiles
action of the first IF-block. SCBP duplicates the second of previous program runs either to exclude certain por-
IF-block so that it can appropriately set the branch pre- tions of the instruction stream from the instruction cache
diction bits in the second IF-block. [19] or to reorganize the code layout to avoid conflict

misses and improve the spatial and temporal locality of

Young and Smith [33] showed that SCBP doesthe cache [14, 24]. Since it is often difficult to selectively
improve overall prediction accuracy over that achievableexclude code from today’s instruction caches, we concen-
with simple profiling with reasonable (30-110%) code trate on the code layout techniques, and in particular on
expansion. They also showed that, by increasing the hishe approach described by Pettis and Hansent[24].
tory depthk and thus allowing for greater code expansion, Pettis and Hansen’s approach is based on finding an
one can achieve even better prediction accuracies. Whakdering of the procedures of a program such that groups
was beyond the scope of that initial paper was the effect adf procedures with frequent calls between them are placed
prediction accuracy and code expansion on performanceat nearby addresses. They introduce the term “fluff’ to

Code expansion during compile-time optimizations isrefer to code that is not reached during the profiling run or
not a new problem. Many compile-time optimizations runs. Such code is viewed as error-handling code (or code
aimed at exploiting instruction-level parallelism also that handles very rare cases), and they recommend that
increase the size of the program text. Loop optimizationsthis fluff be moved to the end of the program in order to
including loop peeling and loop unrolling [23], and soft- compact the part of the program that is actually executed.
ware pipelining [5] produce reordered code that is largeBy compacting the executed part of the program, their
than the original. Aggressive function inlining [13] approach improves spatial locality and reduces the poten-
increases the overall code size, even though some savingsl for conflict misses. Pettis and Hansen also describe a
in code space are realized through the removal of the pranethod for setting the branch conditions for the taken and
cedure call overhead and through the enabling of further
intra-procedural optimizations. Speculative execution and. The code layout approach by Hwu and Chang [14] is similar, but
global instruction scheduling [1, 15, 17, 21, 27] move since it also employs function inlining, it is more appropriate as a
instructions across basic block boundaries, and this code compile-time rather than link-time optimization. Our experimental

] ! Jour i ect fil hus link-ti L)
motion may result in code duplication that expands the SStuP modifies objectfiles, and thus link-time optimizations are easier
for us to implement than compile-time optimizations.

fall-through paths of branches such that each branch falfs oElog ol _ g
through more frequently than it takes. If correctly-pre- Benchmark and DataSet | £ 5 | £ é % fc, %iﬁ_
dicted taken branches still result in a misfetch penalty (as Descriptions %% g g n g5 g
in the DEC Alpha 21164 [10]), this branch alignment step = .

results in fewer cycles lost due to misfetch penalties angWk [l pattern-directed scanning/processing, GNU ver. 2.15.5
a extensive test of features 18M 259M 1 9%
, 94 KB

an increase in the average length _of straight-line execute analysis of branch profiles 50M 64M 1031

code which improves spatial locality. To offset the cachecompress [co]: compression using adaptive Lempel-Ziv, SPECInt92

effects of code expansion in SCBP, we have implementgth SPECInt92 reference input| 87 ‘M 11M 257 63 KB
68

each of these code layout techniques in our experimentgls _ 15-page postscript paper igmM 24M
S diff [di]: differential file comparator, GNU version 2.6
ystem. a two C files with 3 diffs 57M 432 646
Both SCBP and Pettis and Hansen’s layout techniqug, o jatex files wimany diffs| 3.3M 275 704 174 KB

1

rely on good training data. Fisher and Freudenberger [8qntott [eq]: boolean equation to truth table conversion, SPECINId

N

found that different data sets are reasonable predictors gtk 8-bit fix to fp encoder J 275M| 29M| 533 .. o
other data sets of a program. Needless to say, bad trainif§ MIPS R2000 branch decodel99 M| 19 M| 528
sets which exercise only small subsets of program featurg&Presso [esl: boolean minimization, SPECint92
ke for bad | ml SPECIint92 short input 71 11 17 1247 KB
make for bad resulits. z5 SPECIint92 short input 25M 38M 1646
gccl [ge]: ccl program from gec 2.6.3
3 Methodology FO _compress.c from SPEC92 29M 3.1 5 50866KB
in interp.c from SPEC92 sc 36M 3.9 5144

We briefly describe the structure of the system that pe Qrgp (or]: P";]‘tzem Seamhi”%?ﬁ?ramv;l'\‘l\‘j ng25i°;<‘ 2.0 ,
forms our SCBP and code layout transformations, and wd®> Search forreg. exp. (2L hits) - 2. 335 KB
. . .) | fe5 search for reg. exp. (1K hits) 4.0M 575K 2
discuss the way in _wh|ch we obtaln. our measurementSss [scf: spreadsheet program, SPECINO2
We also outline the influence of the pipeline structure angi1 SPECInt92 reference input| 129 M| 23 M| 1614
the instruction cache organization on the performancg4 modified SPECint92 ref.in) 28 M 5.4 15
tradeoffs in branch prediction. Table 1 provides informadXlisp [lil: lisp interpreter, SPECint92
K 550
140 KB

; . . ia Newton's method| 1.1M 1
tion on the benchmarks that we use in our experiments. |7~ Sar0 via Newton's method m 06 -

9254 KB

g4 4 queens problem 3.6 413

Table 1: Benchmark and data set descriptions. The results
in this paper were derived from trace-driven simulations.

We use one of two production-quality compilers toWe collected the traces using ATOM v1.1 [28]. We
generate object files for the DEC Alpha architecture. Wesompiled the SPECint92 benchmarks using cc version
then use the ATOM instrumentation tool [28] to generate?-0.0 and the optimization level specified in the SPEC
traces of basic blocks and branch conditions. These trac@%"’i‘:gﬁ'gié \T/ges (?d?i(t)i%;]alAltl)erc]):‘:htnrq]:rksxpvg(reiﬁer?tosm\?\/izljg
ilr:Xge\?vZngﬁ(; t;Otgr;tZ dsucr:fz ;ln ?; r(;c:)c:]e ;)éolé:)ilt?;n;lgr\?vgérformed on a DEC 3000/400 running OSF/1 version 2.0.

graphs for each procedure using the information in the 14 output of the various code transformation algo-
object files. This step poses some problems for us since jiihms is a set of basic blocks with addresses, static pre-
is not always easy to determine the targets of dynamigiciion information, and CFG information linking these
jumps (i.e. jumps where the target address is computed gf,cks together. This information allows a trace-driven
runtime), which arise from procedure calls. As a resultgjm|ator to generate the statistics on branch and instruc-
the p_rocedure call graph used for the procedure ordering,., cache behavior that we present in SectidVatuse a
algorithm may not always be complete, and the code laygjmyator instead of running the transformed code on an
out based on this information may not be optimal in all,c 51 machine for two reasons. From a pragmatic point of
cases. Finally, the procedure call graph, the control flowe,y there are currently very few commercially-available
graphs, and the profile information are fed to our SCBFgygtems that have a processor with static prediction bits.
and code layout algorithms. After applying SCBP, we USerhe powerPC architecture [22] is one of the few incorpo-
the layout techniques described by Pettis and Hansen [24l,ing this general functionality, and its most recent pro-
In Section 4, we lump procedure positioning, procedur&eggors implement a dynamic branch prediction scheme
ordering, procedure placement, and procedure splittingy,,t takes precedence over the static prediction bits (Pow-
(fluff removal) under the term “code layout’, and we refer o pc jesigners believe that dynamic branch prediction
to basic block placement with the term “branch align-gchemes perform better than static ones). From an experi-
ment” (after Calder and Grunwald [2], who solved a simi- yantal point of view, we want to have the freedom to

lar problem). evaluate performance under several different machine

3.1 Experimental system

organizations where we vary only the cache and branclvith increasing line size, as expected from the results of

penalties. the previous papers on code layout, and thus we do not
include these simulations in this paper. Since conflict
3.2 Measuring the influence on performance misses occur more often in a direct-mapped rather than a

set-associative cache, our results are conservative for an

To measure the impact of SQBP (anc_i c_ode layout) OrE)rganization with a set-associative L1 instruction cache.
performance, we present a metric quantifying the average

number of cycles saved per 1000 instructions executed
Unless stated otherwise, the baseline for these numbersA|s Results
the identical machine microarchitecture under test with To illustrate the combined effects of cache behavior

profiled branch prediction and no code layout (and hencgnq pranch prediction on processor performance, we wil
no code expansion since SCBP was not performed). All ofresent results for three different machine organizations
our Prgf"e'd“"e” experiments train and test on differenty,; closely correspond to several recently announced
inputs® Our performance metric is computed as acommercial systems. Before we present these perfor-
weighted sum of the number of mispredicted branchesyance results however, Sections 4.1 and 4.2 report the
the number of misfetched branches, and the number Qfftact of SCBP on the code size, the instruction cache
first level (L1) cache misses. The weights in this equationyiss rate, and the branch misprediction rate. These results
are the branch misprediction and branch misfetch penal;;,iqe the background information necessary to under-

ties, which are related to the pipeline organization, and thg,nq the performance results presented in Section 4.3.
L1 cache miss penalty, which is assumed to be the average

amount of time that it takes to fetch the missing block
from the rest of the memory system. The larger the ratio of ’
the branch mispredict penalty to the cache miss penalty, We have measured the code expansion both in terms of
the more code expansion the system can tolerate for dhe increase of the total program size (Figure 3) and in
improvement in prediction accuracy. For hardwareterms of the increase in the size of the code that is exe-
schemes, a larger ratio would shift the optimal balance (atuted during the profiling run (Figure 4). We see that, as
other things being equal) of prediction table size versughe history deptfk increases, code expansion increases.
cache size in favor of larger prediction tables. Since SCBP does not expand those parts of the code that

The calculation of our metric assumes that the proceswere not executed (i.e. those parts without profile infor-
sor stalls during an instruction cache miss (i.e. the procegnation), the relative increase in the size of the code that is
sor does not overlap branch stalls with instruction cach@ctually fetched into the instruction cache is often much
stalls). Even though our metric does not represent overafireater than the overall code expansion ratio, especially at
performance, it is a much better metric than code exparlarge values ok. It is this code expansion effect that actu-
sion or even change in instruction cache miss rate. Fully impacts performance.
thermore, our metric is independent of the rest of the
processor organization. It does not matter if the processor
issues one instruction per cycle or four instructions per
cycle, though obviously, a four-issue machine will benefit
more from improvements in prediction accuracy since the
cycles saved will be a larger percentage of the total cycles
it takes to execute 1000 instructions on a four-issue
machine than on a single-issue machine.

For all of the experiments in Section 4, we simulate
either an 8 kilobyte or 16 kilobyte direct-mapped instruc-
tion cache, each with a 32-byte line size. We chose these
design points because the vast majority of high-speed
microprocessors include a direct-mapped L1 instruction History Depth (k)

cache of one of these two sizes. Our results do improveFigure 3. Code expansion of the entire executable due to
SCBP. Without SCBP (k = 0), the expansion factor is 1.0.

Code expansion and cache miss rates

35 esml

Expansion Factor

2. For the results in Section 4, we report the result obtained by running
on one data set (the testing data set), after having trained on the other
(the training data set). The data set listed in the label on the resultis AS @ first measure of this performance impact, Figure 5
the testing data set, e.g. “eq.fx” indicates that the “fx” data set was thehows the resulting increase in cache misses caused by

testing data set and that “tb” was the training data set for this expericode expansion in an 8 k||obyte instruction cache. There
ment.

combination with Figure 5) shows that, even when the

cache footprint is several times larger than our primary

instruction cache, code layout is a more important deter-

minant of the cache miss rate (and thus performance) than
is the executable size.

8.0

Expansion Factor

o Size after SCBP, code layout,
Benchmark Original and branch alignment
Program Size|
k=0 k=14
aw.a 76064 7008D 80416
aw.c2 56997 48704 672Q0
co.in 14944 12352 35392
History Depth (k) €o.ps 14334 11616 29632
di.a 33504 2816 47936
Figure 4. Code expansion due to SCBP in the executed dib 35904 3068 50528
portions of the benchmarks. eq.fx 29600 24832 40608
eq.tb 2944(Q 24448 43296
es.ml 89504 7865p 290400
es.z5 8588 74336 348476
7 gc.co 297157 268256 571552
s o ge.in 291456 275808 566560
& gr.re3 41024 3456D 60384
gs g gr.re5 39456 32608 58560
o sc.| 87778 78432 168352
% 4 cops sc.l4 83649 74144 1600Q0
§ 3 Sé‘c!”lf‘s li.n 36096 30917 39136
o el li.q4 39840 34304 405444
(=} i

g 2 Table 2: Cache footprint of executable in bytes. The cache

2, tin, footprint represents the total number of unique bytes read

s & ai.hﬁs% into the instruction cache (calculated by multiplying the

0 others

-) number of compulsory misses times the 32 byte line size).
original 2 6 10 14

History Depth (k)

Figure 5. Instruction cache miss rates of untransformed 4.2 Branch prediction accuracy

(“original”) and transformed (k > 0) executables. Results Figure 6 shows the misprediction rates for two sets of
are for a direct-mapped instruction cache of 8KB with a branch prediction schemes: our SCBP scheme, ranging
giigﬁ ggii'c'frz:cg’ V:’ee d?cetir:;?jrr(r;idscggi)layout and fra- from uncorrelatedkc0) to various degrees of correlation

P ' (k=2 throughk=14), and the dynamic gshare scheme, with
tables ranging in size from 256 byt&s10) to 8 kilobytes

are some anomalies in this data that can be explained 2 =15). We chose these prediction table sizes to cover the

conflict misses. Even thpugh we try to.remove hot S.pOtspectrum of design trade-offs. At 256 bytes, a hardware
from the cache, they still occur occasionally, especially

since the behavior of the profiling inputs is different from prediction table is an |nS|gn|_f|cant '?ardwafe cost when
that of the testing inputs. Overall, the cache miss ratcompared to the cost of a typical L1 instruction cache. On

drops after code layout, but then basically increases as?he other hand, a hardware branch prediction table of 8

:) !) ilobytes is the point where an area tradeoff between the
increases. The increase, however, is not as dramatic as the

code expansion numbers in Figure 4. This effect is due inranch prediction table and the L1 cache reportedly
large part to the code layout routines. Figure 5 demonpecqmes reIe_/ant [12]. -
. Figure 6 illustrates that the prediction accuracy

;trates the §|gnlf|cant benefits qf code layout via prommgachieved by SCBP is generally not as good as that of
information; often the cache miss rate after code eXpang']share In fact, there are some cases, sualviaseqntott
sion with a large value dfis less than the cache miss rate and xlis;p Wher,e the prediction accurl’;\cy is much W(;rse
of the original program with procedures in source codeunder SéBP Young et al. [34] discuss a range of reasons
order (the first data point in each series of Figure 5). X j

Finally, Table 2 shows the size of the cache footprintWhy SCBP and gshare achieve different pr§d|ct|op accu-
racies, and hence, we do not repeat that discussion here.
The misprediction rates under SCBP do not monotoni-

no layout optimizations and for the endpoint values of cally decrease dsincreases because we train and test on

with code layout and branch alignment. This table (in

N
(6]

N
o

=
[&;]

=
o
|

Mispredict Rate

aw.a aw.c2 co.in co.ps di.a

M|

I

di.b eq.fx eqtb es.ml es.z5 gc.co gc.in grre3 grre5 sc.ll sc.l4

li.n

li.qg4

Figure 6. Branch misprediction rates under SCBP and gshare. Each white set of bars depicts the range of values
for SCBP with history depths (k) ranging from O to 14, in steps of 2. Each black set of bars depicts the range of
values for gshare with history depth taking values 10, 12, 14, and 15.

different data sets. In fact, the use of more specific inforf

mation from the training data set (i.e. largeralues) can
sometimes result in increasingly worse prediction accura

cies (e.g.eq.th. For this paper, the important aspect of
Figure 6 is that the component of the performance metri
due to prediction accuracy will typically be greater unde
gshare than under SCBP since the prediction accuracy
gshare is typically better than SCBP.

4.3 Evaluating performance

Mis- . Cache | Size of
. Misfetch)
Processor model predict enalt miss L1
- penalty P y penalty | Cache
DEC Alpha 21164-like 5 1 6 8KB
"Intel P6-like 1 0 3 16KB
JIfIP PA-8000-like 5 2 30 256KB

Table 3: Processor models used in our simulations. The

models basically correspond to

recently announced

microprocessors. We use a L1 instruction cache size of

16KB in our Intel P6-like model since Gwennap [12]

Section 3.2 describes a performance metric, CyC|e$eports that Intel could have used a 16KB instruction cache
saved per 1000 instructions executed, that focuses on the their P6 processor if they had not implemented a
performance effects of branch prediction, code layout, anddardware BHT.
code expansion. Through the experiments in the previous
subsection, our system can generate the total number of Recently announced processors, like the DEC Alpha
mispredictions saved over a static profiled scheme withou#1164 [10] and the Intel P6 [11], have implementations
branch correlation, the total number of misfetches save#hore favorable to trading cache misses for mispredictions.
over an executable without branch alignment, and thdhe 21164 has a five cycle mispredict penalty and a one
increase in the number of cache misses over an executalsigcle misfetch penalty (penalty for correctly predicted
without code expansion and code layout. To evaluate théaken branches). It incorporates a small 8KB L1 instruc-
effects of these changes, we need to choose values for tHien cache and a 96KB on-chip L2 cache with a L1 miss
branch mispredict penalty, the branch misfetch penaltypenalty of 6 cycles. The P6 has a branch misprediction
and the L1 cache miss penalty. Table 3 presents the valuggnalty of at least 11 cycles and 256KB of on-module,
that we choose for our simulations. We chose thesgequested-word-first, L2 cache, which reportedly results in
machine models because their high misprediction pena® L1 miss penalty of 3 cyclgsOther recently announced
ties demand aggressive branch prediction schemes. Givdtiocessors like the HP PA-8000 also benefit from an
our limited compile-time use of the branch prediction SCBP scheme since their very large (greater than 256KB)
information, we hypothesized processors with low branch-1 cache is only slightly influenced by the code expan-
mispredict penalties will not benefit from the few percent-sions listed above. Since the cache footprints of almost all
age point improvement in prediction accuracy generate®f our benchmarks fit completely into a 256KB cache, the
by SCBP. Preliminary studies based on a MIPS R2000few additional cache misses that occur are almost exclu-
like machine, which has less than one cycle of branch
misprediction penalty (depending on how the branch3. Our experiments assume that the processor stalls for the entire cache
delay slot is filled), verified this hypothesis, and so we miss penalty. Chen et al. [6] show that the use of requested-word-first

trated ffort th i fi f hi miss handling and sequential prefetching can overcome a significant
Con(j:eln rated our efiorts on the next generauon or machine portion of the negative cache effects of code-expanding optimizations.
moaels.

In our P6-like simulations, we assume that the requested-word-first
technique hides all but the 3 cycles required to access the L2 cache.

sively compulsory misses due to the differences betweek. By enlarging the instruction cache size to 16 kilobytes,
the last two columns (labelégtO andk=14) in Table 2. the maximum performance benefit occurk= for aw.c2

Table 4 shows all of the detail for our performance cal-and occurs at=4 for es.z5 Unfortunatelygcclandscdo
culation using the DEC Alpha 21164-like model in not benefit from SCBP even at this larger cache size.

Table 3; Table 5 and Table 6 show the same for the P6-like Figures 7 through 9 plot three rows from Table 4 that
and PA8000-like machine models. The baseline simulaare representative of the types of behavior exhibited by
tion in Table 4 is a 21164-like machine model with pro- our benchmarks. The three columns gevalue corre-

filed branch prediction (no branch correlation) and nospond to the values in each “Cache”, “Predict’, and
code layout or branch alignment. The numbers in eachAlign” row. The line shows the total of the three compo-
row correspond to the change in cycles per 1000 instruments. In general, we see a bell-shaped curve that attains a
tions due to the component in the row label. Rows labeledhaximum at some particular value kf In Figure 7,
“Cache” show the cycles saved (or lost if negative) due tavhich plots the values foli.n, the best performance
fewer (or more) cache misses. The code layout (procedureccurs ak=6. In other benchmarks, likes.ml(Figure 8),
ordering and fluff code removal) algorithms lead to cyclesthe total line goes negative at high valuek.oAt these
saved while code expansion due to the SCBP algorithrhigh k values, the penalty due to code expansion greatly
potentially lead to cycles lost. Overall, cycles saved due t@utweighs the benefits of the other components. As men-
fewer cache misses typically begins positivé=#1 since tioned above, a few experiments, lg@I|1(Figure 9), per-
there is no code expansion and code layout improves thferm best ak=0.

performance of the instruction cache. Ksincreases
though, the “Cache” numbers decrease and often become
negative at high values &f This trend corresponds to the

increasing cost of SCBP’s code expansion. -

Rows labeled “Predict” show the cycles saved due to
fewer branch mispredictions. As expected, the number of
cycles saved typically increases as we incrdasén
benchmarks that exhibit only weak branch correlation
(e.g.diff), there is very little benefit from SCBP. Further-
more, the benefit of SCBP may fluctuatekasmicreases
due to the fact that we train and test on different data sets
(the “Prediction” row always improves with increasikg E= cache @M predict L align - total
when training and testing on the same data set).

Rows labeled “Align” show the benefit due to rear-
ranging the code to make taken branches less frequent.
This row contains non-zero numbers only when a machine
model, such as the 21164-like model of Table 3, has a
non-zero misfetch penalty. In Table 4, branch alignment 100
contributes a large improvement in almost all cases (even
though the misfetch penalty is only a single cycle), and
the improvement appears to be weakly correlated kvith s
This suggests that the improved predictions under SCBP
also improve the effect of branch alignment.

The “Total” row shows the sum of the previous three
rows. Overall, the combination of SCBP, layout, and
branch alignment often improves performance of the DEC
Alpha 21164-like machine model of Table 3. The maxi- =
mum value in the “Total” row often occurs ak@reater = cache == prodict — align — total
than 0, i.e. performance benefits from SCBP. For an 8
kilobyte instruction cache, just the six experimeatac?2,
es.z5, gc.*,and sc.*, exhibit their best performance Figure 8. Performaljce chan.ge on the es.ml bench-
tradeoff atk=0. The large cache footprints and the large Mark for the 21164-like machine model (8KB cache).
code expansion values for these programs are the main por the Intel P6-like machine model, we found that the
reasons why performance does not improve under SCBRaximum value in the “Total” row occurred lagreater
even though the mispredict rates improve with increasinghan zero for all benchmark runs (Table 5). This result is

100

Cycles Saved per 1000 Instructions

-50

-100

Figure 7. Performance change on the li.n benchmark
for the 21164-like machine model (8KB cache).

Cycles Saved per 1000 Instructions
o

-100

techniques and avoided misfetches, rather than from the
150 avoided mispredictions.

j 4.4 Profiling for performance

It appears that the combination of code layout, SCBP,
and branch alignment gives performance benefits at a
number of different points in the pipeline and cache

design space. Since dynamic correlated branch prediction
schemes often achieve better prediction accuracies than
SCBBP, it is interesting to investigate the performance of a

scheme where we replace SCBP by a dynamic correlated
branch prediction scheme, such as gshare, and yet retain
the benefits of code layout and branch alignment. Figure

11 presents the results of this study for each of our three
machine models.

For the 21164-like model, Figure 11 shows that gshare
performs significantly better when the executable is first
150 processed by the code layout and branch alignment rou-
tines. Without these profile-driven optimizations, the best
SCBP scheme (from Table 4) always outperforms gshare.
100 Note that this performance comparison does not penalize
gshare for the cost of the 8 kilobyte BHT.

For the P6-like model, Figure 11 shows some, but not
50 much, benefit in gshare when the executable is first pro-

[I J J cessed for code layout and branch alignment. This is a

Cycles Saved per 1000 Instructions

W cache mmm predict C_Jalign — total]

-50

Figure 9. Performance change on the sc.l1 benchmark
for the 21164-like machine model (8KB cache).

result of the small miss rate (due to a large L1 instruction
cache) in the P6-like model. Because code layout is rela-
tively unimportant in the P6-like model, the slightly better

Cycles Saved per 1000 Instructions

E= cache B prodict T align — totall branch prediction accuracies under gshare result in notice-
-50 ably better performance figures than under SCBP.
Figure 10. Performance change on the sc.l1 bench- For the PA-8000-like model, Figure 11 shows that
mark for the P6-like machine model (16KB cache). gshare still benefits from code layout, but not quite as
Note that there are no “align” bars because the P6 much as in the 21164-like model. This is a result of the
model does not have a branch misfetch penalty. smaller miss rate in the PA-8000. In all benchmarks

exceptawk the best SCBP scheme outperforms gshare

not surprising given that the misprediction penalty hasW'thOUt code-layout optimizations.

increased while the cache miss rates and miss penalties The key to the effective use O.f SCBP 1S Fhe ab|I_|ty to
have gotten smaller. Figure 10 re-plots #uell results select the proper value kf We believe that it is possible

under the P6-like machine model. The total line now© build a compile-time algorithm that is able to select a

peaks ak=2. Also, Figure 10 shows that the magnitude of\{"jllue ofk that is close to the best valueldlor each par-

benefits due to improved branch prediction is comparabléICUIar z_ipphcatlon, a_no_l thus find a balance pe?ween code
to the benefits from code layout in the P6-like model. Thigxpansion and prediction accuracy that maximizes perfor-
trend is a consequence of the bigger ratio of the P6 brandRa"Nce:
misprediction penalty to cache miss penalty.
In the PA-8000-like simulation, we found that the max-
imum value in the “Total” row occurred ktgreater than
zero for all experiments excegiff.*, where the perfor-
mance is fairly uniform for all values &f Because of the
large misfetch penalty and the fact that our executables
can all fit into the L1 cache after code layout, we found
that the majority of the benefit in the PA-8000-like simula-
tions comes from the contributions of the code layout

N
9]
]

m Best SCBP
m gshare w/o layout
Cgshare w/layout

N
Q
o

Cycles Saved per 1000 Instructions
s 5 &8 8
=

IV

s N = 8 © o 2 E g 8 = Qg g = = = =

21164-like machine model

N
9]
o]

@ Best SCBP
m gshare w/o layout
O gshare w/layout

N
Q
o

Cycles Saved per 1000 Instructions
s 5 &8 8

=

=

P6-like machine model

N
4]
o]

m Best SCBP
m gshare w/o layout
O gshare w/layout

N
Q
o

R
[0
]

Cycles Saved per 1000 Instructions
B
[o]
o o] o

s N = 8 © o 2 E g 8 £ Q9 g = = = =

PA-8000-like machine model

Figure 11. Comparison of performance benefits due to
SCBP (including code layout), gshare without layout,
and gshare with layout. The contribution due to code lay-
out for gshare is the difference of the “gshare w/o layout”
and “gshare w/layout” bars in each group.

10

5 Conclusion

In this study, we go beyond prediction accuracy to
evaluate the performance of SCBP and to quantify the
negative effects of code expansion under SCBP. We find
that SCBP can improve application performance, espe-
cially when coupled with profile-driven code layout and
branch alignment techniques. These layout techniques
control and minimize the effects of code expansion on the
performance of an instruction cache. In fact, we find a
synergistic relationship between SCBP and branch align-
ment in that SCBP also increases the performance
improvements resulting from branch alignment. As
expected, SCBP achieves the biggest performance gains
on machine organizations with high mispredict/misfetch
penalties and low cache miss rates/penalties.

In summary, compile-time transformations that maxi-
mize prediction accuracy do not necessarily maximize
application performance. When small incremental
improvements in prediction accuracy result in large
amounts of code expansion, there is the potential to
improve application performance by limiting the amount
of branch correlation exploited by SCBP. To achieve even
better performance improvements from incremental
changes in prediction accuracy, the next step is to couple
SCBP with aggressive ILP techniques like global instruc-
tion scheduling, which were not employed in the results of
this study.

We also find that a dynamic branch prediction scheme
like gshare can benefit significantly from the application
of profile-driven code layout and branch alignment tech-
nigues. Without the benefit of these profile-driven layout
techniques, the performance of gshare may drop mark-
edly. In fact, we find that SCBP with code layout and
branch alignment can perform better than gshare without
profile-driven layout and alignment. This result is true
even when gshare achieves a noticeably lower branch
misprediction rate.

6 Acknowledgments

We thank Hewlett-Packard and Digital Equipment Cor-
poration for their generous donation of several HP 9000
Series 700 and DECstation 3000 Series workstations on
which we ran our tracing and analysis tools. D. Levitan
and M. Surya of IBM Austin provided us with informa-
tion about PowerPC implementation decisions. Cliff
Young is funded by a Graduate Fellowship from the
Office of Naval Research. Michael D. Smith is supported
by a National Science Foundation Young Investigator
award, grant number CCR-9457779.

7 References [18] S. McFarling, “Program Optimization for Instruction
Caches”Proc. 2nd Annual Intl. Conf. on Architectural Support

[1] D. Bernstein, D. Cohen, and H. Krawcztyk, “Code Duplica- for Prog. Lang. and Operating Systerfxt. 1994.

tion: An Assist for Global Instruction Schedulingzfoc. 24th [19] S. McFarling and J. Hennessy, “Reducing the Cost of

Annual ACM/IEEE Intl. Symp. and Workshop on Microarchitec- Branches, Proc. of 13th Annual Intl. Symp. on Computer Archi-

ture, Nov. 1991. tecture Jun. 1986.

[2] B. Calder and D. Grunwald, “Reducing Branch Costs via[20] S. Moon and K. Ebcioglu, “An Efficient Resource-Con-
Branch Alignment”,Proc. 6th Annual Intl. Conf. on Architec- strained Global Scheduling Technique for Superscalar and
tural Support for Prog. Lang. and Operating Syste@at. 1994. vLIW Processors,Proc. 25th Annual ACM/IEEE Intl. Symp. on
[3] P. Chang, E. Hao, T. Yeh, and Y. Patt, “Branch Classifica-Microarchitecture Dec. 1992

tion: a Neyv Mechanism for Improving Branch Predictor Perfor- [21] Motorola CorporationPowerPC 601 RISC Microprocessor
mance,” in Proc. 27th Annual ACM/IEEE Intl. Symp. and yUser's Manual Motorola, 1993.

Workshop on Microarchitectuélov. 1994. [22] D. Padua and M. Wolfe, “Advanced Compiler Optimiza-

[4] P.Chang, S. Mahlke, and W. Hwu, “Using Profile Informa- tions for SupercomputersComm. of the ACM29(12), Dec.
tion to Assist Classic Compiler Code OptimizationS¢dftware 1986.

Practice and Experiencabl. 21, No. 12, Dec. 1991. [23] K. Pettis and R. C. Hansen, “Profile Guided Code Position-

[5] A. Charlesworth, “An Approach to Scientific Array Pro- ing” Proc. SIGPLAN ‘90 Conf. on Prog. Lang. Design and
cessing: The Architectural Design of the AP-120B/FPS-164|mplementationJun. 1990.

Family,” Computey 14(9), Sep. 1981. . [24] S. Pan, K. So, and J. Rahmeh, “Improving the Accuracy of
[6] W. Chen, P. Chang, T. Conte, and W. Hwu, “The Effect of pynamic Branch Prediction Using Branch CorrelatioRroc.

Code Expanding Optimizations on Instruction Cache Design,"sth Annual Intl. Conf. on Architectural Support for Prog. Lang.
Technical Report CRHC-91-17, Coordinated Science Lab, Uniand Operating System®ct. 1992.

versity of III.|n0|s, Urbana, IL, May 1“991') [25] J. Smith, “A Study of Branch Prediction Strategie2dc.
[g] J~| Dawdsor; and R. \g}UQha‘&v I\;Irhe Effelé:t C;f |n5t“g:é%n Setgth Annual Intl. Symp. on Computer Architeculen. 1981.
omplexity on Program Size and Memory Performan . N . -
SecoFr)1d In¥ Conf gn Architectural Suppo)r/t for Prog. Lang and[2§] M. Smith, “Architectural Support for Compile-Time Specu-
- ’ : ’ lation,” The Interaction of Compilation Technology and Com-

Opera“”? Systemoct. 1987. o _ puter Architectureedited by David Lilja and Peter Bird, Kluwer
[8] J. Fisher and S. Freudenberger, “Predicting Conditionalpncademic Publishers, 1994.

Branch Directions From Previous Runs of a Progrdmt. 5th g [27] A. Srivastava and A. Eustace, “ATOM: A System for

énr;lrj:tlir!ntlécstjtg:h%ncﬁfgggctural Support for Prog. Lang. an Building Customized Program Analysis ToolBfoc. SIGPLAN
P 9=y ' ' ‘94 Conf. on Prog. Lang. Design and Implementatiium. 1994.

[9] L. Gwennap, “Digital Leads Pack with 21164icropro- 28] : w : ;

! ; P. Steenkiste, “The Impact of Code Density on Instruction
cessor ReporMicroDesign Resources, 8(12), Sep. 12, 1994. Cache PerformanceProc. 16th Annual Int. Symp. on Computer
[10] L. Gwennap, “Intel's P6 Uses Decoupled Superscalararchitecture Jun. 1989.

Design,”Microprocessor ReparMicroDesign Resources, 9(2), [29] T. Yeh and Y. Patt, “Two-Level Adaptive Branch Predic-

Feb. 16, 1995.) ~ tion,” Proc. 24th Annual ACM/IEEE Intl. Symp. and Workshop
[11] L Gwennap, “New Algorithm Improves Branch Predic- gn Microarchitecture Nov. 1991.

}\I/loa?r' 29/' |ig)£§)éocessor ReportMicroDesign Resources, 9(4), [30] T. Yeh and Y. Patt, “A Comparison of Dynamic Branch Pre-
e ' I)] dictors that use Two Levels of Branch Historytoc. 20th

[12] W. Hwu and P. Chang, “Inlining Function Expansion for Annual Intl. Symp. on Computer Architectuvay 1993.

Compiling C Programs,Proc. ACM SIGPLAN 1989 Conf. on [31] T. Yeh, “Two-Level Adaptive Branch Prediction and

Prog. Lang. Design and ImpI“eme_nta_tJQ]mn.. 1989.] Instruction Fetch Mechanisms for High Performance Supersca-
[13] W. Hwu and P. Chang, “Achieving High Instruction Cache |ar Processors,” Computer Science and Engineering Div. Tech.

Performance with an Optimizing CompilerProc. of 16th Report CSE-TR-182-93, Univ. of Michigan, Ann Arbor, MI,
Annual Int. Symp. on Computer Architectuvialy 1989. Oct. 1993.

[14] W. Hwu, et al., “The Superblock: An Effective Technique [32] C. Young and M. Smith, “Improving the Accuracy of Static
for VLIW and Superscalar Compilatiorithe Journal of Super- Branch Prediction Using Branch CorrelatioRybc. 6th Annual

computing Kluwer Academic Publishers, 1993. Intl. Conf. on Architectural Support for Prog. Lang. and Operat-
[15] J. Lee and A. Smith, “Branch Prediction Strategies anding SystemsOct. 1994.
Branch Target Buffer DesignComputey 17(1), Jan. 1984. [33] C. Young, N. Gloy, and M. Smith, “A Comparative Analy-

[16] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, Rsis of Schemes for Correlated Branch Predictiétrdc. 22nd
Nix, J. O’Donnell, and J. Ruttenbeg, “The Multiflow Trace Annual Intl. Symp. on Computer Architectutfanel1995.
Scheduling Compiler,The Journal of Supercomputinigluwer

Academic Publishers, 1993.

[17] S. McFarling, “Combining Branch Predictor$¥RL Tech-

nical Note TN-36Digital Equipment Corp., Jun. 1993.

11

History Depth B): o] 2] 4] 6] 8§ 10 12 1 History Depth B): o] 2] 4] 6] 8§ 10 12 1
Cache| 65| 13| 99 67 8] 73 3f 2¥ Cachel 18] 16] 23| 61 84 30 35 0L
a Predictf 00| 02| o5 o5 04 08 o0B o a Predict| 00| 04| 11 11 13 18 1 1ff
Align| oo| 14| 13 13 19 13 op op Align| 00| 00| 00 od o004 op op ol
Total| 65| 128 113 8] o4 8 3 2 Total| 18| 17| 24| 72 od 48 5B 1P
aw Cache| 142| 136| 54 11§ 8 12p 8 9 aw Cache| 20| 31| 13| 27 11 29 39 34
o Predict| 00| 20| 24 21 29 19 1B 18 o Predict| 00| 44| 52| 47 44 43 ap 4P
Aign | 27| 27| 27| 28 29 24 28 28 Align| 00| 00| 00 od o4 op op ol
Total| 169| 166 84| 144 115 151 118 126 Total| 20| 35| 18] 32 24 28 o1 74
Cache] 01] 01] 01 01 01 =20 65 13 Cache] 00| 00| 00 0d 04 0% -2p 33
i Predict/ 00| 40| 74 84 87 1 b o Predict/ 00| 88 16 171 19 26 3 3
Align| 34| 34| 35 35 39 3§ 3 3p Align| 00| o0o| 0o od o4 op op ol
Total| 34| 38| 43| 43 43 44 -13 -8 Total| 00| 89| 16 18 14 26 31 -2p
co Cache] 01] 01] 01 01 01 5§ B5f 238 co Cache] 00| 00| 00 0d 04 00 08 4
bs Predict| 00| 21| 54 284 24 53 ap 4l os Predict| 00| 46| 11| 61 61 11 8B 8b
Align| 24| 24| 25| 25| 29 26 25 2b Align| 00| oo 00 od o004 op op ol
Total| 24| 26| 30| 28 24 -2 28 -208 Total|] 00| 47| 11 624 62 11 8k -15
Cachel 22| 22| 22| 22 24 =@ 2[2 Cache| 04| 03] 02 04 01 0§ 0p ol
a Predict| 00| 04| 04 04 04 o4 oF ol a Predict| 00| 09| o9 od 08 o8 1p 1f
Aign| 11| 96| 96 11l 1 12 12 1 Align| 00| o0o| 00 od o4 op op ol
) Total| 34| 32| 32 34 34 34 3% 3B) Total| 04| 12| 12 od 09 o8 1n 1o
di Cache| 49| 49| 49| 47| 49 44 44 4 di Cache] 69| 65| 67 64 63 62 6L 6l
b Predict| 00| 13| o9 11 o1 -0l -0p -oft b Predict| 00| 28| 19 25 03 -03 -0k -0
Align| 17| 15| 15| 17 1] 1 a1y ay Align| 00| 00| 0o od o4 op op ol
Total| 66| 65| 66| 66 64 63 62 6P Total| 69| 94| 86 89 65 59 s5f sl
Cache| 118 18] 118 95§ 118 11p 1o 13 Cache| 84| 84| 61 84 84 84 77 8
" Predictf 00| 18] 20| 20 14 18 18 1f b Predict| 00| 37| 35| 35 3§ 3 3 3p
Align| 22| 25| 26| 26 24 2§ 25 2b Align| 00| oo 00 od o004 op op ol
Total| 141| 162| 164 143 168 16p 140 157 Total| 84| 46| 41| 43 43 43 37 3B
€q Cache| 74| 77| 72| 71 74 7§ 7 7h €q Cache| 12| 12| 1| o8 17 1@ 1@ 1¢
" Predict| 00| 17| 16| 16 14 1§ 13 1B . Predict| 00| 40| 45| 45 a4 33 39 3D
Aign| 19| 21| 21| 21 21 20 21 2p Align| 00| o0o| 0o od o4 op op ol
Total| 94| 116| 1100 114 114 114 1do 199 Total| 12| 52| 57| 45 59 52 51 5
Cache| 30| 62| 52 22 3{ 72 ofF -1 Cache| 65| 41] =20 524 14 15 =25 4
- Predict/ 00| 13| 21| 24 2§ 26 2§ 2§ - Predict/ 00| 33| 48 50 53 53 55 s
Align| 13| 15| 16| 16 14 1§ 18 1 Align| 00| 00| 0o od o4 op op ol
Total| 44| 34| 43| 18 64 28 -49 -6p Total| 65| 37| 46| 45 37 37 2 1L
es Cache| 22| 22| %4 14 -1 4% 57 OB es Cache| 48] 07] 03 12 -1 28 3F 4b
m Predict| 00| 15| 21| 23 24 24 28 24 il Predict| 00| 20| 47 53 5§ 571 57 58
Aign| 15| 18| 20| 200 29 20 20 2 Align| 00| 00| 00 od 04 op op ol
Total| 37| 56| 35| 280 271 01 12 54 Total| 48| 30| 47| 41 45 28 2 1L
Cache| 83| 31| 27| 68 9§ 137 158 160 Cachel 32| 18] 15| 23 41 54 66 7k
o Predict| 00| 83| 13| 17 14 20 21 2p o Predict| 00| 18| 20| 38 44 45 4 5D
Aign| 31| 33| 34 34 39 3§ 35 35 Align| 00| 00| 00 od o4 op op ol
Total| 115| 72| 20| -16 -4 -7} 96 -11p Total| 32| 36| 14| 14 14 -91 18 -2
9 Cache| 79| 44| 04| 68 74 -109 -12 14 gc Cache| 35| 13| 51 15 =29 42 46 5p
i Predict/ 00| 10| 14 18 20 20 2 2 o Predict| 00| 23| 31| 39 43 4 4 5P
Aign| 31| 32| 33 34 34 3¢ 35 35 Align| 00| o0o| 0o od o4 op op ol
Total| 111| 88| 47| -1 -24 53 68 -6p Total| 35| 36| 36| 23 24 40 23 -0k
Cache| 66| %3] 29 41 1 1 1p 1o Cache| 17| 33| 27 24 56 50 45 4l
03 Predict| 00| 47| 90 13 13 12 1§ 1B o3 Predict| 00| 10| 19| 28 21 2] 28 2§
Aign| 13| 18| 19| 19 19 19 19 1p Align| 00| oo 00 od o004 op op ol
Total| 20| 16| 25| 28 21 20 22 2 Total| 17| 71| 17| 28 24 22 28 2k
ar Cache| 49| 48| 48| 22 1§ 1 97 1p ar Cache| 18| 14| 13 12 0§ 08 0b ol
o5 Predict/ 00| 13| 21 24 2§ 25 25 25 o5 Predict| 00| 29| 45 5§ 5§ 56 55 56
Aign| 12| 12| 13 13 19 1§ 13 1 Align| 00| o0o| 0o od o4 op op ol
Total| 61| 62| 63 37 33 21 25 3L Total| 18| 42| 58 6d 63 63 6p 6
Cache| 90| 72 30| 41 14 1] 21 =2 Cache| 35| 24| 18] 12 34 42 3] O0p
11 Pre_d|ct 0.0 10 12 14 17 14 14 1 11 Pre_d|ct 0.0 22 27 31 37 34 32 3p
Align | 43| 47| 47| a8 ad a9 4 4 Align| 00| o0o| 0o od o4 op op ol
Total| 133| 130 90 104 80 8 4p 43 Total| 35| 46| 45| 44 49 49 28 3P
se Cache| 62| 43| 19| 14 39 14 -1f 3p se Cache| 24| 16| 78| 27 1§ 09 9p 1
1 Predict| 00| 45| 59 93 13 16 17y 1B " Predict| 00| 98| 12| 20 24 35 3% 4
Align| 45| 50| 51| 5| 5] 50 50 5 Align| 00| 00| 00 od o004 op op ol
Total| 107| 98| 76| 74 33 e 5L 3B Total| 24| 26| 20 23| 19 34 3 20
Cachel 51| 39| 47| 47 24 22 1z 1y Cachel 13| 1| 12| 17 17 @ 1 1
N Predict| 00| 12| 13| 13 19 13 13 1B N Predict| 00| 27| 20| 30 34 30 30 3p
Aign | 19| 21| 22| 22 20 22 22 2 Align| 00| o0o| 00 od o4 op op ol
. Total| 71| 74| 83| 8] 64 5§ 48 5B . Total| 13| 30| 42| 42 44 41 4 a4
l Cache| 56| 39| 48| 39 44 43 45 4 l Cache] 12| 59| 83| 51 74 & 12
o Predict| 00| 13| 85 85 83 8% 85 85 o Predict| 00| 28| 18| 18 14 18 18 1B
Aign| 30| 32| 32| 3 3] 33 3 3P Align| 00| 00| 0o od o4 op op ol
Total| 87| 84| 88| 8| 84 83 8 85 Total| 12| 34| 27| 23 24 25 3 4

Table 4: Cycles saved per 1000 instructions under SCBP and code layout.
The machine model assumed is the DEC Alpha 21164-like processor
with 8KB of direct-mapped instruction cache (32 byte line size). The base
line is the same machine model with profiled prediction (k=0) and no code
layout or branch alignment.

12

Table 5: Cycles saved per 1000 instructions under SCBP and code layout.
The machine model assumed is the Intel P6-like processor with 16KB of
direct-mapped instruction cache (32 byte line size). The base line is the
same machine model with profiled prediction (k=0) and no code layout or
branch alignment.

History Depth K): 0 2 4 6 8| 10 12 14
Cache| 039] 0.25] 005 0.0 020 -035 -049 -043
a Predict| 0.00| 018 04d o050 o058 083 o0.f8 o0f9
Aign| 28| 29| 28] 28 29 28 28 2
Total| 28| 30| 28 28 24 24 28 28
aw Cache| 0.16] 011] 003 003 008 15 47 019
© Predict| 0.00| 200 234 214 20p 194 182 12
Align| 56| 57| 57| 58 59 54 5 58
Total| 56| 59| 60| 60 e 43 33 s
Cache| 003] 003] 003 002 00p 004 -0[1 -0p2
i Predict| 0.00 401 744 815 87D P 15 13
Align 69| 69 71| 71 70 72 7 78
Total| 69| 73| 78] 79 79 84 89 sy
co Cache| 0.14] 0.13] 010 00) ©00F 040 043 06
s Predict| 0.00| 2.09| 53d 278 278 549 401 4p7
P Align| 49| 49| so| s| 5] 51 51 sp
Total| 49| 51| 56| 53 53 57 54 5
Cache| 005 0.27] 0.0 068 12p 173 201 2p8
a Predict| 0.00| 0.40 044 03¢ 036 037 051 050
Align | 22| 20 20 23 23 24 2 24
) Total| 23| 21| 20| 23 24 23 23 2
di Cache| 158] 033 045 118 24D 343 -3.76 -4ps
b Predict| 0.00| 1.20| 084 112 o01p -0.14 -0.08 -045
Aign| 35| 32| 32| 36 3d 3§ 3 3p
Total| 36| 34| 33 36 33 33 32 3f
Cache| 0.02] 0.01] -0.0] 00l 00p -0.43 -0.06 -0p7
" Predict| 0.00] 17| 16| 14 14 1§ 18 1B
Align| 39| 43| 43| 43 a9 a3 a2
Total| 39| 60| 59| 59| 59 54 56 56
€q Cache| 0.02] 0.01] 0.0 00] 00p 042 -0.03 0p4
. Predict| 0.00] 18] 20| 20 14 18 18 1f
Align | 44| 51| 52 52 53 51 5 51
Total| 44| eo| 72 72l 7 64 69 b
Cache| 0.13[-0.04] -0.19 -04¢6 -0.8p -1d1 -585 -p7
- Predict| 0.00 15| 21 23 23 24 2p 2
Align| 32| 38| a0 a1 a1l a1 4l 4
Total| 32| 53| 62| 63 64 64 59 3
es Cache| 040] 007 044 1oZ 176 315 16 B2
ml Predict| 0.00| 13| 21| 24 2§ 25 25 2
Align| 20| 32| 34 34 37 37 38 3
Total| 20| 45| 55| 58| el 64 48 3P
Cache| 53 22 15 88 -39 -13 o1 -11p
o Predict| 0.00| 833 13 17 19 20 2 2P
Align 64| 66| 68 70 70 7 7 7
Total| 117| 97| 97| -10d 50 -4h 167 20
9 Cache| 40| 31| 21| 32 4 73 127 12t
- Predict| 0.00(10| 14 171 19 20 2p 2P
Aign| 63| e6| 67| e e 69 T 7
Total| 112| 108 61 54 17 18 -3 2B
Cache| 287| -L.15| 301 425 670 749 815 842
o3| Predictl 000/ 473 ood 13 1 1 1
Aign| 27| 36| 38 39 39 39 39 3
Total| 30| 40| 44| 48] 45 44 a4 a4h
ar Cache| 156] 004 11§ 175 278 370 413 447
o5 | Predict| 000 131 204 255 250 253 254 253
Align| 24| 25| 25| 26 29 2§ 25 25
Total| 26| 26| 26| 26| 29 24 24 24
Cache| 006] 0.04] 0.1 026 -13p 2.2 -2.01 -4p4
11 Pre_dict 0.00| 9.99 12| 14 1 1 1 17}
Align| 89| 96| 97| 98 9 99 9§ 9
Total| 89| 106| 109 114 113 118 11 108
s¢ Cache| 030] 0.18] 044 08§ 148 3.05 7568 -9Bo
“ Predict| 0.00| 445 584 930 1 16 Iz 18
Align| 93| 102| 103 104 102 10R 1G2 103
Total| 93| 106| 108 111 113 11p 12 1fa
Cache| 457 315] 20§ 109 O06[036 109 259
N Predict| 0.00] 12| 13 13 13 13 1B 1B
Align 38| 43| 44| 44 4 44 4 44
. Total| 43| 59| 59| 58| 54 58 56 55
I Cache| 1.46] 1.04 071 043 03[038 005 015
4 Predict| 0.00| 12| 850 848 858 849 851 853
4 Align 61| 64| 64 64 6 64 6 64
Total| 63| 78| 73] 73 73 13 7

Table 6: Cycles saved per 1000 instructions under SCBP and code layout.
The machine model assumed is the HP PA8000-like processor with
256KB of direct-mapped L1 instruction cache (32 byte line size). The base
line is the same machine model with profiled prediction (k=0) and no code
layout or branch alignment.

13

History depth k
Benchmark 2 4 6 8 10 14 14
awk.a 1.052 1.08D 1.110 1.181 1.1l66 1.182 1J196
awk.c2 1.04d 1.060 1.082 1.104 1.113 1.137 1E89
com.in 1.025 1.045 1.092 1.101 1.188 1.300 1457
com.ps 1.02% 1.028 1.047 1.069 1.139 1.p83 1525
diff.a 1.052 1.091 1.11y 1.186 1.226 1.279 1.910
diff.b 1.073 1.119 1.19% 1.305 1.415 1.488 1.408
eqgn.tbra 1.06% 1.108 1.131 1.182 1.218 1.p35 14340
eqgn.fx2fp 1.07d 1.128 1.159 1.195 1.239 1.365 1602
esp.mip4 1.089 1.156 1.300 1.485 1.900 2.618 33499
esp.zb 1.087 1.163 1.330 1.5B81 1.847 2.894 31255
grep.re3 1.206 1.441 1.600 2.318 2.669 2.p41 3J047
grep.reb 1.20% 1.279 1.376 1.749 1.858 2.p18 2|014
sc.loadl 1.146 1.311 1.489 1.178 2.072 2.B48 2613
sc.load4 1.12% 1.251 1.319 1.688 1.856 2.p05 2119
li.new 1.023 1.044 1.058 1.054 1.0p5 1.064 1.p73
li.qud 1.024 1.044 1.058 1.056 1.058 1.974 1.IiQO
Table 7: Code expansion of the entire executable
due to SCBP. Figure 3 was created from this data.
History Depth k

Benchmark 2 4 6 8 10 14 14
awk.a 1.177 1.291 1.425 1.507 1.645 1.721 1§97
awk.c2 1.136 1.22y 1.332 1.421 1.472 1.646 1B44
com.in 1.077 1.167 1.413 1.464 1.777 2.292 2992
com.ps 1.063 1.098 1.188 1.2p6 1.635 2.810 31519
diff.a 1.237 1.354 1.481 1.799 1.910 2.125 2.§69
diff.b 1.290 1.469 1.865 2.352 2.7%5 3.059 3.%28
egn.tbra 1.186 1.323 1.409 1.588 1.724 1.791 2]010
eqgn.fx2fp 1.229 1.420 1.552 1.685 1.848 2.321 2p41
esp.mip4 1.222 1.402 1.717 2.1p7 3.106 4.607 71170
esp.zb 1.219 1.435 1.791 2.298 3.143 4.569 6§779
grep.re3 1.53% 2.011 2.572 4.087 4.822 5.p53 5J180
grep.reb 1.452 1.759 2.047 2.808 3.038 3.182 33214
sc.loadl 1.298 1.616 2.122 2.783 3.409 4.094 41650
sc.load4 1.297 1.624 2.010 2.555 3.020 3.429 3§742
li.new 1.066 1.174 1.23p 1.243 1.248 1.295 1.p25
li.quéd 1.063 1.155 1.211 1.231 1.241 1.305 1.p82

Table 8: Code expansion of the executed portions of the benchmarks due to
SCBP. Figure 4 was created from this data.

14

Benchmark Original SCBP with profiled code layout and branch alignment
program| —q 2 4 6 8 10 12 k=14
awk.a 3.770 2.608 1.870 2.092 2.578 2.387 21485 31043 .196
awk.c2 6.786 4.311 4.416 5.683 4.738 5.212 4652 5160 .038
com.in 0.001 0.001 0.001 0.001 0.001 0.001 0.p32 1019 4.079
com.ps 0.00 0.00p 0.002 0.0p2 0.9q02 0.002 0[918 0.901 .708
diff.a 0.396 0.020 0.024 0.035 0.029 0.030 0.034 04037 o054
diff.b 0.860 0.047 0.054 0.044 0.017 0.093 0.100 0.125 Q117
eqn.fx2fp 1.894 0.001 0.002 0.014 0.368 0.005 0.009 0031 .081
eqn.tbra 1.237 0.042 0.001 0.074 0.004 0.po6 0|016 Q.047 p.oa7
esp.mip4 1.231 0.766 1.146 1.169 1.598 1.836 2{369 3.707 p.972
esp.z5 1.174 0.831 0.833 1.206 1.430 1.454 1/907 2.093 . 743
grep.re3 0.232 0.127 0.332 0.2]79 0.299 0.413 0|417 0.395 426
grep.re5 0.833 0.036 0.0%1 0.0p4 0.479 0.p42 0}641 Q.677 [.573
sc.loadl 2.587 1.150 1.430 2.002 1.923 2.841 2307 2.896 P.880
sc.load4 2.184 1.195 1.499 1.890 1.973 2.689 2|246 2.497 p.719
li.new 1.133 0.317 0.509 0.382 0.3p0 0.750 0.y87 0J949 @861
li.qu4 1.517 0.614 0.88p 0.748 0.881 0.13 0.825 0/788 @798
Table 9: Instruction cache miss rates of untransformed and transformed (code layout and SCBP)
executables. Results are for a direct-mapped instruction cache of 8KB with a 32 byte line. Figure 5 is
based on this data.
Benchmark Original SCBP with profiled code layout and branch alignment
program| - 2 4 6 8 10 12 k=14
awk.a 1.498 0.865 0.917 0.714 1.247 1.179 1343 11326 431
awk.c2 3.065 2.311 1.974 2.524 2.093 2.389 2304 3,060 .836
com.in 0.003 0.001 0.001 0.001 0.001 0.001 0.p15 0{064 4023
com.ps 0.001 0.00R 0.002 0.0p2 0.902 0.p02 0/003 0.015 .750
diff.a 0.029 0.016 0.02p 0.021 0.025 0.926 0.029 0/030 q032
diff.b 0.259 0.030 0.044 0.039 0.048 0.053 0.055 0.057 0jo61
eqgn.fx2fp 0.268 0.001L 0.04q1 0.013 0.367 0.002 0,001 0L002 .002
eqn.tbra 0.389 0.001 0.001 0.0[73 0.001 0.po1 0j002 Q.022 p.013
esp.mip4 0.493 0.308 0.436 0.453 0.845 0.800 1|353 1.531 .902
esp.zb 0.455 0.293 0.371 0.565 0.665 0.p54 0/989 1.327 |.802
grep.re3 0.118 0.059 0.217 0.199 0.191 0.p94 0275 0.258 .260
grep.re5 0.08 0.028 0.042 0.045 0.047 0.p61 0j061 0.066 [.064
sc.load1l 1.524 0.407 0.761 0.985 1.115 1.417 1384 1.627 |.518
sc.load4 1.402 0.621 0.890 1.1p1 1.325 1.p41 11451 1721 |.794
li.new 0.562) 0.134 0.199 0.1715 0.180 0.177 0.179 0/199 q228
li.qud 0.775 0.371 0.58b6 0.507 0.6Dp9 0.541 0.561 0/166 @095

Table 10: Instruction cache miss rates of untransformed and transformed (code layout and SCBP)
executables. Results are for a direct-mapped instruction cache of 16KB with a 32 byte line.

15

