
Performance issues in correlated branch
prediction schemes

Citation
Gloy, Nicolas, Michael D. Smith, and Cliff Young. 1995. Performance Issues in Correlated Branch
Prediction Schemes. Harvard Computer Science Group Technical Report TR-23-95.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506435

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506435
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Performance%20issues%20in%20correlated%20branch%20prediction%20schemes&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=1c3cef4d4860f5d8fcb60377ab79bf6b&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

1

Performance Issues in
Correlated Branch Prediction Schemes

Nicolas Gloy, Michael D. Smith, Cliff Young
Division of Applied Sciences

Harvard University, Cambridge, MA 02138
{ng, smith, cyoung}@das.harvard.edu

Abstract

Accurate static branch prediction is the key to many tech-
niques for exposing, enhancing, and exploiting Instruction
Level Parallelism (ILP). The initial work on static corre-
lated branch prediction (SCBP) demonstrated improve-
ments in branch prediction accuracy, but did not address
overall performance. In particular, SCBP expands the size
of executable programs, which negatively affects the per-
formance of the instruction memory hierarchy. Using the
profile information available under SCBP, we can mini-
mize these negative performance effects through the appli-
cation of code layout and branch alignment techniques.
We evaluate the performance effect of SCBP and these
profile-driven optimizations on instruction cache misses,
branch mispredictions, and branch misfetches for a num-
ber of recent processor implementations. We find that
SCBP improves performance over (traditional) per-
branch static profile prediction. We also find that SCBP
improves the performance benefits gained from branch
alignment. As expected, SCBP gives larger benefits on
machine organizations with high mispredict/misfetch pen-
alties and low cache miss penalties. Finally, we find that
the application of profile-driven code layout and branch
alignment techniques (without SCBP) can improve the
performance of the dynamic correlated branch prediction
techniques.

1 Introduction

Recent work in branch prediction [3, 18, 25, 30, 31, 32,
33] has led to the development of both hardware and soft-
ware schemes that achieve high prediction accuracy by
exploiting branch correlation. The motivation for this
work stems from the fact that the performance of super-
scalar and deeply pipelined processors can benefit signifi-
cantly from a small improvement (a couple of percent
points) in prediction accuracy. As with any technique
however, there is a point of diminishing returns where the
incremental costs of the technique begin to outweigh the

further improvements. In static correlated branch predic-
tion (SCBP) techniques [33], the cost of better prediction
accuracy is code expansion, and thus, the point of dimin-
ishing returns is defined primarily by the relationship
between the changes in the average access time of the
instruction memory subsystem and the cycle count
changes enabled by the improvements in prediction accu-
racy. In this paper, we explore this relationship to deter-
mine how parameters such as the pipeline structure and
the cache organization of a processor affect the viability of
SCBP techniques. Using this framework, we also examine
the performance benefits of two profile-driven optimiza-
tions on gshare [18], a dynamic branch prediction scheme
that efficiently exploits branch correlation.

SCBP improves prediction accuracy for a particular
branch by creating multiple copies of that branch, effec-
tively encoding information on the outcome of previous
branches in the program counter. It is clear that this will
affect the instruction cache behavior of the resulting pro-
gram. First, by enlarging the cache footprint of the pro-
gram, SCBP increases the number of compulsory and
capacity misses. Second, by increasing the code size of
individual procedures and causing these procedures to
shift relative to each other in memory, it can significantly
change the number of conflict misses.

Though Young and Smith [33] present code expansion
numbers in their initial paper on SCBP, they do not quan-
tify the magnitude of the performance effects of this code
expansion on the memory subsystem, and hence it is diffi-
cult to say when further improvements in prediction accu-
racy are outweighed by the memory system penalties due
to greater code expansion. In this paper, we consider the
first-order effects on program performance: total cycles
due to branch mispredictions, branch misfetches, primary
cache misses, and additional dynamic instructions due to
code layout considerations. As defined by Calder and
Grunwald [2], a misfetch penalty refers to any penalty
associated with a correctly predicted branch. Since SCBP
is a software scheme, the cycle time of the processor is not

This paper is available from the Center for Research in
Computing Technology, Division of Applied Sciences,
Harvard University as technical report TR-23-95.

2

affected and hence that component of the performance
equation is unchanged. The true performance benefit of
SCBP is dependent upon the effectiveness of compile-
time optimizations, such as global instruction scheduling
[15, 17] and code optimization [4], since these optimiza-
tions attempt to reduce the total number of cycles required
to execute a program. Since the design and evaluation of
sophisticated compile-time optimizations is an endless
task, we do not attempt to give a definitive answer to the
question of how much SCBP can ultimately improve
application performance.

Even in this limited study, comparing the cache behav-
ior of different versions of the same program can be prob-
lematic unless measures are taken to minimize
unnecessary conflict misses. We have observed that small
changes in the relative locations of different parts of a pro-
gram can cause very significant changes in the number of
cache misses, and these fluctuations can completely
obscure the relation between code expansion and changes
in the miss rate. Fortunately, the profiling information that
is necessary to implement SCBP is sufficient for the
implementation of code layout algorithms that keep
instruction fetch penalties to a minimum. In particular, we
have implemented three previously published techniques
[24] that use profiling information to optimize the instruc-
tion cache behavior and minimize the instruction misfetch
penalties of a program. We apply these techniques
together with the code transformations that implement
SCBP. For the vast majority of our benchmarks on all of
our machine microarchitectures, SCBP gives better per-
formance than per-branch profiled static branch predic-
tion, and a large component of the overall benefits comes
from the code layout optimizations. In fact, we find that,
in addition to our SCBP scheme, the profile-driven code
layout optimizations also help to improve the performance
of a dynamic branch prediction scheme.

Section 2 reviews the previous work in code expanding
optimizations, and it relates this work to the domain of
branch prediction. Section 3 introduces our experimental
methodology, and it briefly describes the code layout opti-
mizations used in this study. Section 4 presents the results
of our simulations. We conclude with a summary of our
findings in Section 5.

2 Previous work

In the last five years, interest in branch prediction has
been re-ignited by schemes that exploit branch correla-
tion. Before 1990, the best branch prediction schemes
used the recent history of a branch to predict the future
direction of that branch. The most effective dynamic
schemes used a table of 2-bit, saturating, up/down
counters [26] (often referred to as the branch history table

(BHT)), while the most effective static schemes relied on
profiles from previous runs of the program [8, 16, 20] to
determine a fixed prediction per branch. In 1991, Yeh and
Patt [30] introduced two-level adaptive schemes which
record the direction of the recently executed branches and
use this information (in addition to the branch address) to
index into a BHT. This hardware organization allows the
prediction scheme to exploit patterns of related branches,
increasing the overall prediction accuracy. Pan, So, and
Rahmeh [25] appear to have been the first to use the term
“correlation.” In their two-level adaptive scheme, they use
a single hardware shift register of lengthk to record the
previous directions of the lastk branches (Yeh and Patt
[31] refer to this scheme as GAs and tok as thehistory
depth). The contents of the shift register are concatenated
with some bits from the branch address to select one of the
2-bit counters in the BHT. Under the constraint of a fixed
size BHT, McFarling [18] was able to achieve prediction
accuracies better than those from GAs by exclusive-oring
(rather than concatenating) bits from the branch address
with the bits of the branch history shift register. McFarling
refers to this new scheme asgshare. Figure 1 illustrates
the essential features of GAs and gshare.

…
…
…

… …………

Branch History
Shift Register

…

GAs

Figure 1. Block diagrams illustrating the hardware orga-
nizations for a GAs and a gshare correlated branch pre-
diction scheme. Both use a BHT of 2-bit, up/down,
saturating counters.

Address
of Branch

P
re

di
ct

io
n

…

Branch History
Shift Register

…

Address
of Branch

P
re

di
ct

io
n

gshare

Branch History
Table

Branch History
Table

3

The results of these hardware studies are appealing
because better branch prediction rates translate directly
into fewer cycles wasted due to branch mispredictions.
However, compile-time optimizations that benefit from
improvements in prediction accuracy, such as global
instruction scheduling, cannot take advantage of these
sophisticated dynamic branch prediction schemes.
Inspired by the GAs scheme, Young and Smith [33] devel-
oped a static correlated branch prediction (SCBP) scheme
that exploits the correlation found in a branch profile to
improve overall branch accuracy using only compiler-
specified branch prediction bits. SCBP works by encoding
branch history into the program counter. As shown in Fig-
ure 2, extra copies of blocks are made to differentiate
interesting branch histories, i.e. histories that contain
branch correlation. Thus, improved prediction accuracy
comes at the cost of increased program size.

Young and Smith [33] showed that SCBP does
improve overall prediction accuracy over that achievable
with simple profiling with reasonable (30-110%) code
expansion. They also showed that, by increasing the his-
tory depthk and thus allowing for greater code expansion,
one can achieve even better prediction accuracies. What
was beyond the scope of that initial paper was the effect of
prediction accuracy and code expansion on performance.

Code expansion during compile-time optimizations is
not a new problem. Many compile-time optimizations
aimed at exploiting instruction-level parallelism also
increase the size of the program text. Loop optimizations,
including loop peeling and loop unrolling [23], and soft-
ware pipelining [5] produce reordered code that is larger
than the original. Aggressive function inlining [13]
increases the overall code size, even though some savings
in code space are realized through the removal of the pro-
cedure call overhead and through the enabling of further
intra-procedural optimizations. Speculative execution and
global instruction scheduling [1, 15, 17, 21, 27] move
instructions across basic block boundaries, and this code
motion may result in code duplication that expands the

Figure 2. Example illustrating the (simplified) functioning
of SCBP. The second IF-block is correlated with the
action of the first IF-block. SCBP duplicates the second
IF-block so that it can appropriately set the branch pre-
diction bits in the second IF-block.

Before After

size of the program executable. All of these methods
increase both the static size and the dynamic memory
footprint of the optimized program, placing greater
demands on the instruction memory system. Surprisingly,
very few of these studies examine the interaction between
the code-expanding optimizations and the instruction
memory system. Often, studies of these techniques simply
assume a perfect instruction memory system and examine
only the change in CPU cycle count due to the compile-
time optimization (and possibly data cache effects).

A few studies have considered the impact of object
code size on instruction memory performance. The earli-
est of these studies, e.g. Steenkiste [29] and Davidson and
Vaughan [7], investigated the relationship between
instruction cache performance and code density due to
instruction encoding. A later study by Chen et al. [6],
fixed the instruction set and examined the impact of code
expanding optimizations on the design of instruction
caches. They found that several code expanding optimiza-
tions noticeably increased the miss ratio of 8 kilobyte and
16 kilobyte caches, and this change resulted in an effec-
tive loss of performance after program transformation.

To try and improve the performance of instruction
caches, a small number of papers [14, 19, 24] subse-
quently examined how programs use the instruction mem-
ory system and proposed methods to improve its overall
performance. Each of the proposed methods uses profiles
of previous program runs either to exclude certain por-
tions of the instruction stream from the instruction cache
[19] or to reorganize the code layout to avoid conflict
misses and improve the spatial and temporal locality of
the cache [14, 24]. Since it is often difficult to selectively
exclude code from today’s instruction caches, we concen-
trate on the code layout techniques, and in particular on
the approach described by Pettis and Hansen [24].1

Pettis and Hansen’s approach is based on finding an
ordering of the procedures of a program such that groups
of procedures with frequent calls between them are placed
at nearby addresses. They introduce the term “fluff” to
refer to code that is not reached during the profiling run or
runs. Such code is viewed as error-handling code (or code
that handles very rare cases), and they recommend that
this fluff be moved to the end of the program in order to
compact the part of the program that is actually executed.
By compacting the executed part of the program, their
approach improves spatial locality and reduces the poten-
tial for conflict misses. Pettis and Hansen also describe a
method for setting the branch conditions for the taken and

1. The code layout approach by Hwu and Chang [14] is similar, but
since it also employs function inlining, it is more appropriate as a
compile-time rather than link-time optimization. Our experimental
setup modifies object files, and thus link-time optimizations are easier
for us to implement than compile-time optimizations.

4

fall-through paths of branches such that each branch falls
through more frequently than it takes. If correctly-pre-
dicted taken branches still result in a misfetch penalty (as
in the DEC Alpha 21164 [10]), this branch alignment step
results in fewer cycles lost due to misfetch penalties and
an increase in the average length of straight-line executed
code which improves spatial locality. To offset the cache
effects of code expansion in SCBP, we have implemented
each of these code layout techniques in our experimental
system.

Both SCBP and Pettis and Hansen’s layout technique
rely on good training data. Fisher and Freudenberger [8]
found that different data sets are reasonable predictors of
other data sets of a program. Needless to say, bad training
sets which exercise only small subsets of program features
make for bad results.

3 Methodology

We briefly describe the structure of the system that per-
forms our SCBP and code layout transformations, and we
discuss the way in which we obtain our measurements.
We also outline the influence of the pipeline structure and
the instruction cache organization on the performance
tradeoffs in branch prediction. Table 1 provides informa-
tion on the benchmarks that we use in our experiments.

3.1 Experimental system

We use one of two production-quality compilers to
generate object files for the DEC Alpha architecture. We
then use the ATOM instrumentation tool [28] to generate
traces of basic blocks and branch conditions. These traces
are needed for both the SCBP and code layout algorithms.
Next, we build a procedure call graph and control flow
graphs for each procedure using the information in the
object files. This step poses some problems for us since it
is not always easy to determine the targets of dynamic
jumps (i.e. jumps where the target address is computed at
runtime), which arise from procedure calls. As a result,
the procedure call graph used for the procedure ordering
algorithm may not always be complete, and the code lay-
out based on this information may not be optimal in all
cases. Finally, the procedure call graph, the control flow
graphs, and the profile information are fed to our SCBP
and code layout algorithms. After applying SCBP, we use
the layout techniques described by Pettis and Hansen [24].
In Section 4, we lump procedure positioning, procedure
ordering, procedure placement, and procedure splitting
(fluff removal) under the term “code layout”, and we refer
to basic block placement with the term “branch align-
ment” (after Calder and Grunwald [2], who solved a simi-
lar problem).

The output of the various code transformation algo-
rithms is a set of basic blocks with addresses, static pre-
diction information, and CFG information linking these
blocks together. This information allows a trace-driven
simulator to generate the statistics on branch and instruc-
tion cache behavior that we present in Section 4. We use a
simulator instead of running the transformed code on an
actual machine for two reasons. From a pragmatic point of
view, there are currently very few commercially-available
systems that have a processor with static prediction bits.
The PowerPC architecture [22] is one of the few incorpo-
rating this general functionality, and its most recent pro-
cessors implement a dynamic branch prediction scheme
that takes precedence over the static prediction bits (Pow-
erPC designers believe that dynamic branch prediction
schemes perform better than static ones). From an experi-
mental point of view, we want to have the freedom to
evaluate performance under several different machine

Benchmark and Data Set
Descriptions

D
yn

am
ic

In
st

ru
ct

io
ns

D
yn

am
ic

B
ra

nc
he

s

S
ta

tic
B

ra
nc

he
s

O
rig

in
al

P
ro

g.
 S

iz
e

awk [aw]: pattern-directed scanning/processing, GNU ver. 2.15.5
a extensive test of features 18 M 2.5 M 1393

294 KB
c2 analysis of branch profiles 50 M 6.1M 1031
compress [co]: compression using adaptive Lempel-Ziv, SPECint92
in SPECint92 reference input 87 M 11 M 277

63 KB
ps 15-page postscript paper 18 M 2.0 M 268
diff [di]: differential file comparator, GNU version 2.6
a two C files with 3 diffs 5.7 M 432 K 646

174 KB
b two latex files w/many diffs 3.3 M 275 K 704
eqntott [eq]: boolean equation to truth table conversion, SPECint92
fx 8-bit fix to fp encoder 275 M 29 M 533

87 KB
tb MIPS R2000 branch decode199 M 19 M 528
espresso [es]: boolean minimization, SPECint92
ml SPECint92 short input 71 M 11 M 1751

247 KB
z5 SPECint92 short input 25 M 3.8 M 1646
gcc1 [gc]: cc1 program from gcc 2.6.3
co compress.c from SPEC92 29M 3.1M 5050

866KB
in interp.c from SPEC92 sc 36M 3.9M 5144
grep [gr]: pattern searching program, GNU version 2.0
re3 search for reg. exp. (21 hits) 2.1 M 325 K 878

135 KB
re5 search for reg. exp. (1K hits) 4.0 M 575 K 827
sc [sc]: spreadsheet program, SPECint92
l1 SPECint92 reference input 129 M 23 M 1614

254 KB
l4 modified SPECint92 ref. in. 28 M 5.4 M 1519
xlisp [li]: lisp interpreter, SPECint92
n sqrt() via Newton’s method 1.1 M 106 K 550

140 KB
q4 4 queens problem 3.6 M 413 K 605

Table 1: Benchmark and data set descriptions. The results
in this paper were derived from trace-driven simulations.
We collected the traces using ATOM v1.1 [28]. We
compiled the SPECint92 benchmarks using cc version
2.0.0 and the optimization level specified in the SPEC
makefiles. The additional benchmarks were compiled
using gcc v2.6.0 (-O3). All of the experiments were
performed on a DEC 3000/400 running OSF/1 version 2.0.

5

organizations where we vary only the cache and branch
penalties.

3.2 Measuring the influence on performance

To measure the impact of SCBP (and code layout) on
performance, we present a metric quantifying the average
number of cycles saved per 1000 instructions executed.
Unless stated otherwise, the baseline for these numbers is
the identical machine microarchitecture under test with
profiled branch prediction and no code layout (and hence
no code expansion since SCBP was not performed). All of
our profile-driven experiments train and test on different
inputs.2 Our performance metric is computed as a
weighted sum of the number of mispredicted branches,
the number of misfetched branches, and the number of
first level (L1) cache misses. The weights in this equation
are the branch misprediction and branch misfetch penal-
ties, which are related to the pipeline organization, and the
L1 cache miss penalty, which is assumed to be the average
amount of time that it takes to fetch the missing block
from the rest of the memory system. The larger the ratio of
the branch mispredict penalty to the cache miss penalty,
the more code expansion the system can tolerate for an
improvement in prediction accuracy. For hardware
schemes, a larger ratio would shift the optimal balance (all
other things being equal) of prediction table size versus
cache size in favor of larger prediction tables.

The calculation of our metric assumes that the proces-
sor stalls during an instruction cache miss (i.e. the proces-
sor does not overlap branch stalls with instruction cache
stalls). Even though our metric does not represent overall
performance, it is a much better metric than code expan-
sion or even change in instruction cache miss rate. Fur-
thermore, our metric is independent of the rest of the
processor organization. It does not matter if the processor
issues one instruction per cycle or four instructions per
cycle, though obviously, a four-issue machine will benefit
more from improvements in prediction accuracy since the
cycles saved will be a larger percentage of the total cycles
it takes to execute 1000 instructions on a four-issue
machine than on a single-issue machine.

For all of the experiments in Section 4, we simulate
either an 8 kilobyte or 16 kilobyte direct-mapped instruc-
tion cache, each with a 32-byte line size. We chose these
design points because the vast majority of high-speed
microprocessors include a direct-mapped L1 instruction
cache of one of these two sizes. Our results do improve

2. For the results in Section 4, we report the result obtained by running
on one data set (the testing data set), after having trained on the other
(the training data set). The data set listed in the label on the result is
the testing data set, e.g. “eq.fx” indicates that the “fx” data set was the
testing data set and that “tb” was the training data set for this experi-
ment.

with increasing line size, as expected from the results of
the previous papers on code layout, and thus we do not
include these simulations in this paper. Since conflict
misses occur more often in a direct-mapped rather than a
set-associative cache, our results are conservative for an
organization with a set-associative L1 instruction cache.

4 Results

To illustrate the combined effects of cache behavior
and branch prediction on processor performance, we will
present results for three different machine organizations
that closely correspond to several recently announced
commercial systems. Before we present these perfor-
mance results however, Sections 4.1 and 4.2 report the
effect of SCBP on the code size, the instruction cache
miss rate, and the branch misprediction rate. These results
provide the background information necessary to under-
stand the performance results presented in Section 4.3.

4.1 Code expansion and cache miss rates

We have measured the code expansion both in terms of
the increase of the total program size (Figure 3) and in
terms of the increase in the size of the code that is exe-
cuted during the profiling run (Figure 4). We see that, as
the history depthk increases, code expansion increases.
Since SCBP does not expand those parts of the code that
were not executed (i.e. those parts without profile infor-
mation), the relative increase in the size of the code that is
actually fetched into the instruction cache is often much
greater than the overall code expansion ratio, especially at
large values ofk. It is this code expansion effect that actu-
ally impacts performance.

As a first measure of this performance impact, Figure 5
shows the resulting increase in cache misses caused by
code expansion in an 8 kilobyte instruction cache. There

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAAAAAAAAAAAAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

1.0

1.5

2.0

2.5

3.0

3.5

2 4 6 8 10 12 14

History Depth (k)

E
xp

an
si

on
 F

ac
to

r

es.z5

gr.re3

sc.l1

sc.l4
gr.re5

di.b
co.ps
eq.fx
co.in
eq.tb
di.a
aw.a
aw.c2
li.q4
li.n

es.ml

gc.in

gc.co

Figure 3. Code expansion of the entire executable due to
SCBP. Without SCBP (k = 0), the expansion factor is 1.0.

6

are some anomalies in this data that can be explained by
conflict misses. Even though we try to remove hot spots
from the cache, they still occur occasionally, especially
since the behavior of the profiling inputs is different from
that of the testing inputs. Overall, the cache miss rate
drops after code layout, but then basically increases ask
increases. The increase, however, is not as dramatic as the
code expansion numbers in Figure 4. This effect is due in
large part to the code layout routines. Figure 5 demon-
strates the significant benefits of code layout via profiling
information; often the cache miss rate after code expan-
sion with a large value ofk is less than the cache miss rate
of the original program with procedures in source code
order (the first data point in each series of Figure 5).

Finally, Table 2 shows the size of the cache footprint
(the number of compulsory misses times the line size) for
no layout optimizations and for the endpoint values ofk
with code layout and branch alignment. This table (in

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

2 4 6 8 10 12 14

History Depth (k)

E
xp

an
si

on
 F

ac
to

r
es.z5

gr.re3

sc.l1

sc.l4
di.b
co.ps
gr.re5
co.in
eq.fx

di.a
eq.tb
aw.c2
aw.a

li.q4
li.n

es.ml

gc.in
gc.co

Figure 4. Code expansion due to SCBP in the executed
portions of the benchmarks.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAAAAAAAAAAAAAA

0

1

2

3

4

5

6

7

original 2 6 10 14

History Depth (k)

In
st

ru
ct

io
n

C
ac

he
 M

is
s

R
at

e
(%

)

aw.c2

co.ps

aw.a

sc.l1

co.in

es.z5

others

sc.l4
es.ml

li.n
li.q4
gr.re5
gr.re3

gc.co

gc.in

Figure 5. Instruction cache miss rates of untransformed
(“original”) and transformed (k >_ 0) executables. Results
are for a direct-mapped instruction cache of 8KB with a
32 byte line. At k = 0, we performed code layout and tra-
ditional static branch prediction (no SCBP).

combination with Figure 5) shows that, even when the
cache footprint is several times larger than our primary
instruction cache, code layout is a more important deter-
minant of the cache miss rate (and thus performance) than
is the executable size.

4.2 Branch prediction accuracy

Figure 6 shows the misprediction rates for two sets of
branch prediction schemes: our SCBP scheme, ranging
from uncorrelated (k=0) to various degrees of correlation
(k=2 throughk=14), and the dynamic gshare scheme, with
tables ranging in size from 256 bytes (k=10) to 8 kilobytes
(k=15). We chose these prediction table sizes to cover the
spectrum of design trade-offs. At 256 bytes, a hardware
prediction table is an insignificant hardware cost when
compared to the cost of a typical L1 instruction cache. On
the other hand, a hardware branch prediction table of 8
kilobytes is the point where an area tradeoff between the
branch prediction table and the L1 cache reportedly
becomes relevant [12].

Figure 6 illustrates that the prediction accuracy
achieved by SCBP is generally not as good as that of
gshare. In fact, there are some cases, such asawk, eqntott,
and xlisp, where the prediction accuracy is much worse
under SCBP. Young et al. [34] discuss a range of reasons
why SCBP and gshare achieve different prediction accu-
racies, and hence, we do not repeat that discussion here.
The misprediction rates under SCBP do not monotoni-
cally decrease ask increases because we train and test on

Benchmark
Original

Program Size

Size after SCBP, code layout,
and branch alignment

k=0 k=14

aw.a 76064 70080 80416
aw.c2 56992 48704 67200
co.in 14944 12352 35392
co.ps 14336 11616 29632
di.a 33504 28160 47936
di.b 35904 30688 50528
eq.fx 29600 24832 40608
eq.tb 29440 24448 43296
es.ml 89504 78656 290400
es.z5 85888 74336 348476
gc.co 297152 268256 571552
gc.in 291456 275808 566560
gr.re3 41024 34560 60384
gr.re5 39456 32608 58560
sc.l 87776 78432 168352
sc.l4 83648 74144 160000
li.n 36096 30912 39136
li.q4 39840 34304 40544

Table 2: Cache footprint of executable in bytes. The cache
footprint represents the total number of unique bytes read
into the instruction cache (calculated by multiplying the
number of compulsory misses times the 32 byte line size).

7

0

5

10

15

20

25

aw.a aw.c2 co.in co.ps di.a di.b eq.fx eq.tb es.ml es.z5 gc.co gc.in gr.re3 gr.re5 sc.l1 sc.l4 li.n li.q4

M
is

pr
ed

ic
t R

at
e

Figure 6. Branch misprediction rates under SCBP and gshare. Each white set of bars depicts the range of values
for SCBP with history depths (k) ranging from 0 to 14, in steps of 2. Each black set of bars depicts the range of
values for gshare with history depth taking values 10, 12, 14, and 15.

different data sets. In fact, the use of more specific infor-
mation from the training data set (i.e. largerk values) can
sometimes result in increasingly worse prediction accura-
cies (e.g.eq.tb). For this paper, the important aspect of
Figure 6 is that the component of the performance metric
due to prediction accuracy will typically be greater under
gshare than under SCBP since the prediction accuracy of
gshare is typically better than SCBP.

4.3 Evaluating performance

Section 3.2 describes a performance metric, cycles
saved per 1000 instructions executed, that focuses on the
performance effects of branch prediction, code layout, and
code expansion. Through the experiments in the previous
subsection, our system can generate the total number of
mispredictions saved over a static profiled scheme without
branch correlation, the total number of misfetches saved
over an executable without branch alignment, and the
increase in the number of cache misses over an executable
without code expansion and code layout. To evaluate the
effects of these changes, we need to choose values for the
branch mispredict penalty, the branch misfetch penalty,
and the L1 cache miss penalty. Table 3 presents the values
that we choose for our simulations. We chose these
machine models because their high misprediction penal-
ties demand aggressive branch prediction schemes. Given
our limited compile-time use of the branch prediction
information, we hypothesized processors with low branch
mispredict penalties will not benefit from the few percent-
age point improvement in prediction accuracy generated
by SCBP. Preliminary studies based on a MIPS R2000-
like machine, which has less than one cycle of branch
misprediction penalty (depending on how the branch
delay slot is filled), verified this hypothesis, and so we
concentrated our efforts on the next generation of machine
models.

Recently announced processors, like the DEC Alpha
21164 [10] and the Intel P6 [11], have implementations
more favorable to trading cache misses for mispredictions.
The 21164 has a five cycle mispredict penalty and a one
cycle misfetch penalty (penalty for correctly predicted
taken branches). It incorporates a small 8KB L1 instruc-
tion cache and a 96KB on-chip L2 cache with a L1 miss
penalty of 6 cycles. The P6 has a branch misprediction
penalty of at least 11 cycles and 256KB of on-module,
requested-word-first, L2 cache, which reportedly results in
a L1 miss penalty of 3 cycles3. Other recently announced
processors like the HP PA-8000 also benefit from an
SCBP scheme since their very large (greater than 256KB)
L1 cache is only slightly influenced by the code expan-
sions listed above. Since the cache footprints of almost all
of our benchmarks fit completely into a 256KB cache, the
few additional cache misses that occur are almost exclu-

3. Our experiments assume that the processor stalls for the entire cache
miss penalty. Chen et al. [6] show that the use of requested-word-first
miss handling and sequential prefetching can overcome a significant
portion of the negative cache effects of code-expanding optimizations.
In our P6-like simulations, we assume that the requested-word-first
technique hides all but the 3 cycles required to access the L2 cache.

Processor model
Mis-

predict
penalty

Misfetch
penalty

Cache
miss

penalty

Size of
L1

Cache

DEC Alpha 21164-like 5 1 6 8KB

Intel P6-like 11 0 3 16KB

HP PA-8000-like 5 2 30 256KB

Table 3: Processor models used in our simulations. The
models basically correspond to recently announced
microprocessors. We use a L1 instruction cache size of
16KB in our Intel P6-like model since Gwennap [12]
reports that Intel could have used a 16KB instruction cache
in their P6 processor if they had not implemented a
hardware BHT.

8

sively compulsory misses due to the differences between
the last two columns (labeledk=0 andk=14) in Table 2.

Table 4 shows all of the detail for our performance cal-
culation using the DEC Alpha 21164-like model in
Table 3; Table 5 and Table 6 show the same for the P6-like
and PA8000-like machine models. The baseline simula-
tion in Table 4 is a 21164-like machine model with pro-
filed branch prediction (no branch correlation) and no
code layout or branch alignment. The numbers in each
row correspond to the change in cycles per 1000 instruc-
tions due to the component in the row label. Rows labeled
“Cache” show the cycles saved (or lost if negative) due to
fewer (or more) cache misses. The code layout (procedure
ordering and fluff code removal) algorithms lead to cycles
saved while code expansion due to the SCBP algorithm
potentially lead to cycles lost. Overall, cycles saved due to
fewer cache misses typically begins positive atk=0 since
there is no code expansion and code layout improves the
performance of the instruction cache. Ask increases
though, the “Cache” numbers decrease and often become
negative at high values ofk. This trend corresponds to the
increasing cost of SCBP’s code expansion.

Rows labeled “Predict” show the cycles saved due to
fewer branch mispredictions. As expected, the number of
cycles saved typically increases as we increasek. In
benchmarks that exhibit only weak branch correlation
(e.g.diff), there is very little benefit from SCBP. Further-
more, the benefit of SCBP may fluctuate ask increases
due to the fact that we train and test on different data sets
(the “Prediction” row always improves with increasingk
when training and testing on the same data set).

Rows labeled “Align” show the benefit due to rear-
ranging the code to make taken branches less frequent.
This row contains non-zero numbers only when a machine
model, such as the 21164-like model of Table 3, has a
non-zero misfetch penalty. In Table 4, branch alignment
contributes a large improvement in almost all cases (even
though the misfetch penalty is only a single cycle), and
the improvement appears to be weakly correlated withk.
This suggests that the improved predictions under SCBP
also improve the effect of branch alignment.

The “Total” row shows the sum of the previous three
rows. Overall, the combination of SCBP, layout, and
branch alignment often improves performance of the DEC
Alpha 21164-like machine model of Table 3. The maxi-
mum value in the “Total” row often occurs at ak greater
than 0, i.e. performance benefits from SCBP. For an 8
kilobyte instruction cache, just the six experiments,aw.c2,
es.z5, gc.*,and sc.*, exhibit their best performance
tradeoff atk=0. The large cache footprints and the large
code expansion values for these programs are the main
reasons why performance does not improve under SCBP
even though the mispredict rates improve with increasing

k. By enlarging the instruction cache size to 16 kilobytes,
the maximum performance benefit occurs atk=2 foraw.c2
and occurs atk=4 for es.z5. Unfortunately,gcc1and sc do
not benefit from SCBP even at this larger cache size.

Figures 7 through 9 plot three rows from Table 4 that
are representative of the types of behavior exhibited by
our benchmarks. The three columns perk value corre-
spond to the values in each “Cache”, “Predict”, and
“Align” row. The line shows the total of the three compo-
nents. In general, we see a bell-shaped curve that attains a
maximum at some particular value ofk. In Figure 7,
which plots the values forli.n, the best performance
occurs atk=6. In other benchmarks, likees.ml (Figure 8),
the total line goes negative at high values ofk. At these
high k values, the penalty due to code expansion greatly
outweighs the benefits of the other components. As men-
tioned above, a few experiments, likesc.l1 (Figure 9), per-
form best atk=0.

For the Intel P6-like machine model, we found that the
maximum value in the “Total” row occurred atk greater
than zero for all benchmark runs (Table 5). This result is

-100

-50

0

50

100

0 2 4 6 8 10 12 14

Cy
cle

s S
av

ed
 pe

r 1
00

0 I
ns

tru
cti

on
s

cache predict align total

Figure 7. Performance change on the li.n benchmark
for the 21164-like machine model (8KB cache).

-100

-50

0

50

100

0 2 4 6 8 10 12 14

Cy
cle

s S
av

ed
 pe

r 1
00

0 I
ns

tru
cti

on
s

cache predict align total

Figure 8. Performance change on the es.ml bench-
mark for the 21164-like machine model (8KB cache).

9

not surprising given that the misprediction penalty has
increased while the cache miss rates and miss penalties
have gotten smaller. Figure 10 re-plots thesc.l1 results
under the P6-like machine model. The total line now
peaks atk=2. Also, Figure 10 shows that the magnitude of
benefits due to improved branch prediction is comparable
to the benefits from code layout in the P6-like model. This
trend is a consequence of the bigger ratio of the P6 branch
misprediction penalty to cache miss penalty.

In the PA-8000-like simulation, we found that the max-
imum value in the “Total” row occurred atk greater than
zero for all experiments exceptdiff.*, where the perfor-
mance is fairly uniform for all values ofk. Because of the
large misfetch penalty and the fact that our executables
can all fit into the L1 cache after code layout, we found
that the majority of the benefit in the PA-8000-like simula-
tions comes from the contributions of the code layout

-50

0

50

100

150

0 2 4 6 8 10 12 14

Cy
cle

s S
av

ed
 pe

r 1
00

0 I
ns

tru
cti

on
s

cache predict align total

Figure 9. Performance change on the sc.l1 benchmark
for the 21164-like machine model (8KB cache).

-50

0

50

100

150

0 2 4 6 8 10 12 14

Cy
cle

s S
av

ed
 pe

r 1
00

0 I
ns

tru
cti

on
s

cache predict align total

Figure 10. Performance change on the sc.l1 bench-
mark for the P6-like machine model (16KB cache).
Note that there are no “align” bars because the P6
model does not have a branch misfetch penalty.

techniques and avoided misfetches, rather than from the
avoided mispredictions.

4.4 Profiling for performance

It appears that the combination of code layout, SCBP,
and branch alignment gives performance benefits at a
number of different points in the pipeline and cache
design space. Since dynamic correlated branch prediction
schemes often achieve better prediction accuracies than
SCBP, it is interesting to investigate the performance of a
scheme where we replace SCBP by a dynamic correlated
branch prediction scheme, such as gshare, and yet retain
the benefits of code layout and branch alignment. Figure
11 presents the results of this study for each of our three
machine models.

For the 21164-like model, Figure 11 shows that gshare
performs significantly better when the executable is first
processed by the code layout and branch alignment rou-
tines. Without these profile-driven optimizations, the best
SCBP scheme (from Table 4) always outperforms gshare.
Note that this performance comparison does not penalize
gshare for the cost of the 8 kilobyte BHT.

For the P6-like model, Figure 11 shows some, but not
much, benefit in gshare when the executable is first pro-
cessed for code layout and branch alignment. This is a
result of the small miss rate (due to a large L1 instruction
cache) in the P6-like model. Because code layout is rela-
tively unimportant in the P6-like model, the slightly better
branch prediction accuracies under gshare result in notice-
ably better performance figures than under SCBP.

For the PA-8000-like model, Figure 11 shows that
gshare still benefits from code layout, but not quite as
much as in the 21164-like model. This is a result of the
smaller miss rate in the PA-8000. In all benchmarks
exceptawk, the best SCBP scheme outperforms gshare
without code-layout optimizations.

The key to the effective use of SCBP is the ability to
select the proper value ofk. We believe that it is possible
to build a compile-time algorithm that is able to select a
value ofk that is close to the best value ofk for each par-
ticular application, and thus find a balance between code
expansion and prediction accuracy that maximizes perfor-
mance.

10

0

50

100

150

200

250

aw
.a

aw
.c2 co
.in

co
.ps di.

a

di.
b

eq
.fx

eq
.tb

es
.m

l

es
.z5

gc
.co gc
.in

gr.
re3

gr.
re5 sc.

l1

sc.
l4 li.n li.q
4

Best SCBP
gshare w/o layout
gshare w/layout

0

50

100

150

200

250

aw
.a

aw
.c2 co
.in

co
.ps di.

a

di.
b

eq
.fx

eq
.tb

es
.m

l

es
.z5

gc
.co gc
.in

gr.
re3

gr.
re5 sc.

l1

sc.
l4 li.n li.q
4

Best SCBP
gshare w/o layout
gshare w/layout

Figure 11. Comparison of performance benefits due to
SCBP (including code layout), gshare without layout,
and gshare with layout. The contribution due to code lay-
out for gshare is the difference of the “gshare w/o layout”
and “gshare w/layout” bars in each group.

0

50

100

150

200

250

aw
.a

aw
.c2 co
.in

co
.ps di.

a

di.
b

eq
.fx

eq
.tb

es
.m

l

es
.z5

gc
.co gc
.in

gr.
re3

gr.
re5 sc.

l1

sc.
l4 li.n li.q
4

Best SCBP
gshare w/o layout
gshare w/layout

C
yc

le
s

S
av

ed
 p

er
 1

00
0

In
st

ru
ct

io
ns

C
yc

le
s

S
av

ed
 p

er
 1

00
0

In
st

ru
ct

io
ns

C
yc

le
s

S
av

ed
 p

er
 1

00
0

In
st

ru
ct

io
ns

21164-like machine model

P6-like machine model

PA-8000-like machine model

5 Conclusion

In this study, we go beyond prediction accuracy to
evaluate the performance of SCBP and to quantify the
negative effects of code expansion under SCBP. We find
that SCBP can improve application performance, espe-
cially when coupled with profile-driven code layout and
branch alignment techniques. These layout techniques
control and minimize the effects of code expansion on the
performance of an instruction cache. In fact, we find a
synergistic relationship between SCBP and branch align-
ment in that SCBP also increases the performance
improvements resulting from branch alignment. As
expected, SCBP achieves the biggest performance gains
on machine organizations with high mispredict/misfetch
penalties and low cache miss rates/penalties.

In summary, compile-time transformations that maxi-
mize prediction accuracy do not necessarily maximize
application performance. When small incremental
improvements in prediction accuracy result in large
amounts of code expansion, there is the potential to
improve application performance by limiting the amount
of branch correlation exploited by SCBP. To achieve even
better performance improvements from incremental
changes in prediction accuracy, the next step is to couple
SCBP with aggressive ILP techniques like global instruc-
tion scheduling, which were not employed in the results of
this study.

We also find that a dynamic branch prediction scheme
like gshare can benefit significantly from the application
of profile-driven code layout and branch alignment tech-
niques. Without the benefit of these profile-driven layout
techniques, the performance of gshare may drop mark-
edly. In fact, we find that SCBP with code layout and
branch alignment can perform better than gshare without
profile-driven layout and alignment. This result is true
even when gshare achieves a noticeably lower branch
misprediction rate.

6 Acknowledgments

We thank Hewlett-Packard and Digital Equipment Cor-
poration for their generous donation of several HP 9000
Series 700 and DECstation 3000 Series workstations on
which we ran our tracing and analysis tools. D. Levitan
and M. Surya of IBM Austin provided us with informa-
tion about PowerPC implementation decisions. Cliff
Young is funded by a Graduate Fellowship from the
Office of Naval Research. Michael D. Smith is supported
by a National Science Foundation Young Investigator
award, grant number CCR-9457779.

11

7 References

[1] D. Bernstein, D. Cohen, and H. Krawcztyk, “Code Duplica-
tion: An Assist for Global Instruction Scheduling,”Proc. 24th
Annual ACM/IEEE Intl. Symp. and Workshop on Microarchitec-
ture, Nov. 1991.

[2] B. Calder and D. Grunwald, “Reducing Branch Costs via
Branch Alignment”,Proc. 6th Annual Intl. Conf. on Architec-
tural Support for Prog. Lang. and Operating Systems, Oct. 1994.

[3] P. Chang, E. Hao, T. Yeh, and Y. Patt, “Branch Classifica-
tion: a New Mechanism for Improving Branch Predictor Perfor-
mance,” in Proc. 27th Annual ACM/IEEE Intl. Symp. and
Workshop on Microarchitecture, Nov. 1994.

[4] P. Chang, S. Mahlke, and W. Hwu, “Using Profile Informa-
tion to Assist Classic Compiler Code Optimizations,”Software
Practice and Experience, Vol. 21, No. 12, Dec. 1991.

[5] A. Charlesworth, “An Approach to Scientific Array Pro-
cessing: The Architectural Design of the AP-120B/FPS-164
Family,” Computer, 14(9), Sep. 1981.

[6] W. Chen, P. Chang, T. Conte, and W. Hwu, “The Effect of
Code Expanding Optimizations on Instruction Cache Design,”
Technical Report CRHC-91-17, Coordinated Science Lab, Uni-
versity of Illinois, Urbana, IL, May 1991.

[7] J. Davidson and R. Vaughan, “The Effect of Instruction Set
Complexity on Program Size and Memory Performance,”Proc.
Second Int. Conf. on Architectural Support for Prog. Lang. and
Operating Systems, Oct. 1987.

[8] J. Fisher and S. Freudenberger, “Predicting Conditional
Branch Directions From Previous Runs of a Program,”Proc. 5th
Annual Intl. Conf. on Architectural Support for Prog. Lang. and
Operating Systems, Oct. 1992.

[9] L. Gwennap, “Digital Leads Pack with 21164,”Micropro-
cessor Report, MicroDesign Resources, 8(12), Sep. 12, 1994.

[10] L. Gwennap, “Intel’s P6 Uses Decoupled Superscalar
Design,”Microprocessor Report, MicroDesign Resources, 9(2),
Feb. 16, 1995.

[11] L Gwennap, “New Algorithm Improves Branch Predic-
tion,” Microprocessor Report, MicroDesign Resources, 9(4),
Mar. 27, 1995.

[12] W. Hwu and P. Chang, “Inlining Function Expansion for
Compiling C Programs,”Proc. ACM SIGPLAN 1989 Conf. on
Prog. Lang. Design and Implementation, Jun. 1989.

[13] W. Hwu and P. Chang, “Achieving High Instruction Cache
Performance with an Optimizing Compiler,”Proc. of 16th
Annual Int. Symp. on Computer Architecture, May 1989.

[14] W. Hwu, et al., “The Superblock: An Effective Technique
for VLIW and Superscalar Compilation”,The Journal of Super-
computing, Kluwer Academic Publishers, 1993.

[15] J. Lee and A. Smith, “Branch Prediction Strategies and
Branch Target Buffer Design,”Computer, 17(1), Jan. 1984.

[16] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, R.
Nix, J. O’Donnell, and J. Ruttenbeg, “The Multiflow Trace
Scheduling Compiler,”The Journal of Supercomputing, Kluwer
Academic Publishers, 1993.

[17] S. McFarling, “Combining Branch Predictors,”WRL Tech-
nical Note TN-36, Digital Equipment Corp., Jun. 1993.

[18] S. McFarling, “Program Optimization for Instruction
Caches”,Proc. 2nd Annual Intl. Conf. on Architectural Support
for Prog. Lang. and Operating Systems, Oct. 1994.

[19] S. McFarling and J. Hennessy, “Reducing the Cost of
Branches,”Proc. of 13th Annual Intl. Symp. on Computer Archi-
tecture, Jun. 1986.

[20] S. Moon and K. Ebcioglu, “An Efficient Resource-Con-
strained Global Scheduling Technique for Superscalar and
VLIW Processors,”Proc. 25th Annual ACM/IEEE Intl. Symp. on
Microarchitecture, Dec. 1992

[21] Motorola Corporation,PowerPC 601 RISC Microprocessor
User’s Manual, Motorola, 1993.

[22] D. Padua and M. Wolfe, “Advanced Compiler Optimiza-
tions for Supercomputers,”Comm. of the ACM, 29(12), Dec.
1986.

[23] K. Pettis and R. C. Hansen, “Profile Guided Code Position-
ing”, Proc. SIGPLAN ‘90 Conf. on Prog. Lang. Design and
Implementation, Jun. 1990.

[24] S. Pan, K. So, and J. Rahmeh, “Improving the Accuracy of
Dynamic Branch Prediction Using Branch Correlation,”Proc.
5th Annual Intl. Conf. on Architectural Support for Prog. Lang.
and Operating Systems, Oct. 1992.

[25] J. Smith, “A Study of Branch Prediction Strategies,”Proc.
8th Annual Intl. Symp. on Computer Architecture, Jun. 1981.

[26] M. Smith, “Architectural Support for Compile-Time Specu-
lation,” The Interaction of Compilation Technology and Com-
puter Architecture, edited by David Lilja and Peter Bird, Kluwer
Academic Publishers, 1994.

[27] A. Srivastava and A. Eustace, “ATOM: A System for
Building Customized Program Analysis Tools,”Proc. SIGPLAN
‘94 Conf. on Prog. Lang. Design and Implementation, Jun. 1994.

[28] P. Steenkiste, “The Impact of Code Density on Instruction
Cache Performance,”Proc. 16th Annual Int. Symp. on Computer
Architecture, Jun. 1989.

[29] T. Yeh and Y. Patt, “Two-Level Adaptive Branch Predic-
tion,” Proc. 24th Annual ACM/IEEE Intl. Symp. and Workshop
on Microarchitecture, Nov. 1991.

[30] T. Yeh and Y. Patt, “A Comparison of Dynamic Branch Pre-
dictors that use Two Levels of Branch History,”Proc. 20th
Annual Intl. Symp. on Computer Architecture, May 1993.

[31] T. Yeh, “Two-Level Adaptive Branch Prediction and
Instruction Fetch Mechanisms for High Performance Supersca-
lar Processors,” Computer Science and Engineering Div. Tech.
Report CSE-TR-182-93, Univ. of Michigan, Ann Arbor, MI,
Oct. 1993.

[32] C. Young and M. Smith, “Improving the Accuracy of Static
Branch Prediction Using Branch Correlation,”Proc. 6th Annual
Intl. Conf. on Architectural Support for Prog. Lang. and Operat-
ing Systems, Oct. 1994.

[33] C. Young, N. Gloy, and M. Smith, “A Comparative Analy-
sis of Schemes for Correlated Branch Prediction,”Proc. 22nd
Annual Intl. Symp. on Computer Architecture, June1995.

12

History Depth (k): 0 2 4 6 8 10 12 14

aw

a

Cache 65 113 99 67 80 73 37 27

Predict 0.0 0.2 0.5 0.5 0.6 0.8 0.8 0.8

Align 0.0 14 13 13 13 13 0.0 0.0

Total 65 128 113 81 94 88 37 27

c2

Cache 142 136 54 115 84 120 87 95

Predict 0.0 2.0 2.4 2.1 2.0 1.9 1.8 1.8

Align 27 27 27 28 28 28 28 28

Total 169 166 84 146 115 151 118 126

co

in

Cache 0.1 0.1 0.1 0.1 0.1 -2.0 -65 -134

Predict 0.0 4.0 7.4 8.1 8.7 12 15 14

Align 34 34 35 35 35 36 36 36

Total 34 38 43 43 43 46 -13 -83

ps

Cache 0.1 0.1 0.1 0.1 0.1 -58 -57 -238

Predict 0.0 2.1 5.4 2.8 2.8 5.3 4.0 4.1

Align 24 24 25 25 25 26 25 25

Total 24 26 30 28 28 -27 -28 -208

di

a

Cache 22 22 22 22 22 22 21 20

Predict 0.0 0.4 0.4 0.4 0.4 0.4 0.5 0.5

Align 11 9.6 9.6 11 11 12 12 12

Total 34 32 32 34 34 34 34 33

b

Cache 49 49 49 47 46 46 44 45

Predict 0.0 1.3 0.9 1.1 0.1 -0.1 -0.2 -0.1

Align 17 15 15 17 17 17 17 17

Total 66 65 66 66 64 63 62 62

eq

fx

Cache 118 118 118 95 118 118 116 113

Predict 0.0 18 20 20 18 18 18 17

Align 22 25 26 26 26 25 25 25

Total 141 162 164 142 163 162 160 157

tb

Cache 74 77 72 77 77 76 74 74

Predict 0.0 17 16 16 16 15 13 13

Align 19 21 21 21 21 21 21 21

Total 94 116 110 114 114 114 109 109

es

z5

Cache 30 6.2 5.2 -22 -37 -72 -94 -111

Predict 0.0 13 21 24 25 26 26 26

Align 13 15 16 16 18 18 18 18

Total 44 34 43 18 6.2 -28 -49 -66

ml

Cache 22 22 -6.4 -14 -16 -45 -57 -98

Predict 0.0 15 21 23 23 24 24 24

Align 15 18 20 20 20 20 20 20

Total 37 56 35 28 27 -0.7 -12 -54

gc

co

Cache 83 31 -27 -68 -95 -132 -154 -169

Predict 0.0 8.3 13 17 19 20 21 22

Align 31 33 34 34 35 35 35 35

Total 115 72 20 -16 -40 -76 -96 -110

in

Cache 79 44 -0.4 -68 -77 -109 -121 -124

Predict 0.0 10 14 18 20 20 22 22

Align 31 32 33 34 34 34 35 35

Total 111 88 47 -16 -22 -53 -63 -66

gr

re3

Cache 6.6 -6.3 -2.9 -4.1 -11 -11 -10 -12

Predict 0.0 4.7 9.0 12 12 12 13 13

Align 13 18 19 19 19 19 19 19

Total 20 16 25 28 21 20 22 20

re5

Cache 49 48 48 22 18 11 9.7 16

Predict 0.0 1.3 2.1 2.6 2.5 2.5 2.5 2.5

Align 12 12 13 13 13 13 13 13

Total 61 62 63 37 33 27 25 31

sc

l1

Cache 90 72 30 41 14 17 -21 -20

Predict 0.0 10 12 14 17 16 14 14

Align 43 47 47 48 48 49 48 48

Total 133 130 90 104 80 82 42 43

l4

Cache 62 43 19 14 -30 -1.9 -17 -30

Predict 0.0 4.5 5.9 9.3 12 16 17 18

Align 45 50 51 51 50 50 50 50

Total 107 98 76 74 32 65 51 38

li

n

Cache 51 39 47 47 24 22 12 17

Predict 0.0 12 13 13 13 13 13 13

Align 19 21 22 22 22 22 22 22

Total 71 74 83 82 60 58 48 53

q4

Cache 56 39 48 39 44 43 45 45

Predict 0.0 13 8.5 8.5 8.5 8.5 8.5 8.5

Align 30 32 32 32 32 32 32 32

Total 87 84 88 80 84 83 86 85

Table 4: Cycles saved per 1000 instructions under SCBP and code layout.
The machine model assumed is the DEC Alpha 21164-like processor
with 8KB of direct-mapped instruction cache (32 byte line size). The base
line is the same machine model with profiled prediction (k=0) and no code
layout or branch alignment.

History Depth (k): 0 2 4 6 8 10 12 14

aw

a

Cache 18 16 23 6.1 8.4 3.0 3.6 0.1

Predict 0.0 0.4 1.1 1.1 1.3 1.8 1.7 1.7

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 18 17 24 7.2 9.6 4.8 5.3 1.9

c2

Cache 20 31 13 27 17 20 -3.9 3.4

Predict 0.0 4.4 5.2 4.7 4.4 4.3 4.0 4.0

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 20 35 18 32 22 25 0.1 7.4

co

in

Cache 0.0 0.0 0.0 0.0 0.0 -0.5 -2.0 -33

Predict 0.0 8.8 16 17 19 26 33 30

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 0.0 8.9 16 18 19 26 31 -2.2

ps

Cache 0.0 0.0 0.0 0.0 0.0 0.0 -0.4 -24

Predict 0.0 4.6 11 6.1 6.1 11 8.8 8.9

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 0.0 4.7 11 6.2 6.2 11 8.4 -15

di

a

Cache 0.4 0.3 0.2 0.1 0.1 0.0 0.0 -0.1

Predict 0.0 0.9 0.9 0.8 0.8 0.8 1.1 1.1

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 0.4 1.2 1.2 0.9 0.9 0.8 1.1 1.0

b

Cache 6.9 6.5 6.7 6.4 6.3 6.2 6.1 6.0

Predict 0.0 2.8 1.9 2.5 0.3 -0.3 -0.4 -0.3

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 6.9 9.4 8.6 8.9 6.5 5.9 5.7 5.7

eq

tb

Cache 8.4 8.4 6.1 8.4 8.4 8.4 7.7 8.0

Predict 0.0 37 35 35 35 35 30 30

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 8.4 46 41 43 43 43 37 38

fx

Cache 12 12 11 0.8 12 12 12 12

Predict 0.0 40 45 45 40 39 39 39

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 12 52 57 45 53 52 51 51

es

z5

Cache 6.5 4.1 -2.0 -5.2 -14 -15 -26 -41

Predict 0.0 33 48 50 52 53 53 52

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 6.5 37 46 45 37 37 26 11

ml

Cache 4.8 0.7 0.3 -12 -10 -28 -34 -46

Predict 0.0 29 47 53 56 57 57 58

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 4.8 30 47 41 45 28 23 11

gc

co

Cache 32 18 -15 -23 -41 -54 -66 -74

Predict 0.0 18 29 38 42 45 48 50

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 32 36 14 14 1.8 -9.1 -18 -24

in

Cache 35 13 5.1 -15 -23 -42 -46 -50

Predict 0.0 23 31 39 43 46 48 50

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 35 36 36 23 20 4.0 2.3 -0.4

gr

re3

Cache 1.7 -3.3 -2.7 -2.4 -5.6 -5.0 -4.5 -4.6

Predict 0.0 10 19 28 27 27 28 28

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 1.7 7.1 17 26 22 22 24 24

re5

Cache 1.8 1.4 1.3 1.2 0.8 0.8 0.6 0.7

Predict 0.0 2.9 4.5 5.6 5.5 5.6 5.6 5.6

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 1.8 4.2 5.8 6.8 6.3 6.3 6.2 6.2

sc

l1

Cache 35 24 18 12 3.2 4.2 -3.7 -0.2

Predict 0.0 22 27 31 37 36 32 32

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 35 46 45 44 40 40 28 32

l4

Cache 24 16 7.8 2.7 -16 -0.9 -9.2 -11

Predict 0.0 9.8 12 20 26 35 39 41

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 24 26 20 23 10 34 30 29

li

n

Cache 13 11 12 12 12 12 11 10

Predict 0.0 27 29 30 30 30 30 30

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 13 39 42 42 42 42 41 40

q4

Cache 12 5.9 8.3 5.1 7.2 6.6 19 21

Predict 0.0 28 18 18 18 18 18 18

Align 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 12 34 27 23 26 25 38 40

Table 5: Cycles saved per 1000 instructions under SCBP and code layout.
The machine model assumed is the Intel P6-like processor with 16KB of
direct-mapped instruction cache (32 byte line size). The base line is the
same machine model with profiled prediction (k=0) and no code layout or
branch alignment.

13

History Depth (k): 0 2 4 6 8 10 12 14

aw

a

Cache 0.39 0.25 0.05 -0.10 -0.22 -0.35 -0.49 -0.43

Predict 0.00 0.18 0.49 0.50 0.58 0.83 0.78 0.79

Align 28 29 28 28 28 28 28 28

Total 28 30 28 28 28 28 28 28

c2

Cache 0.16 0.11 0.03 -0.03 -0.08 -15 -27 -0.19

Predict 0.00 2.00 2.36 2.14 2.00 1.94 1.82 1.82

Align 56 57 57 58 58 58 58 58

Total 56 59 60 60 60 45 33 60

co

in

Cache 0.03 0.03 0.03 0.02 0.00 -0.04 -0.11 -0.22

Predict 0.00 4.01 7.44 8.15 8.70 12 15 13

Align 69 69 71 71 70 72 74 73

Total 69 73 78 79 79 84 89 87

ps

Cache 0.14 0.13 0.10 0.00 -0.02 -0.20 -0.43 -0.76

Predict 0.00 2.09 5.36 2.78 2.78 5.29 4.01 4.07

Align 49 49 50 51 51 51 51 51

Total 49 51 56 53 53 57 54 54

di

a

Cache 0.95 0.27 -0.06 -0.68 -1.20 -1.73 -2.01 -2.28

Predict 0.00 0.40 0.42 0.36 0.36 0.37 0.51 0.50

Align 22 20 20 23 23 24 24 24

Total 23 21 20 23 22 23 23 22

b

Cache 1.58 0.33 -0.45 -1.18 -2.40 -3.03 -3.76 -4.08

Predict 0.00 1.29 0.86 1.12 0.12 -0.14 -0.18 -0.15

Align 35 32 32 36 36 36 36 36

Total 36 34 33 36 33 32 32 31

eq

tb

Cache 0.02 0.01 -0.01 -0.01 -0.02 -0.03 -0.06 -0.07

Predict 0.00 17 16 16 16 15 13 13

Align 39 43 43 43 43 43 42 42

Total 39 60 59 59 59 59 56 56

fx

Cache 0.02 0.01 0.00 -0.01 -0.02 -0.02 -0.03 -0.04

Predict 0.00 18 20 20 18 18 18 17

Align 44 51 52 52 52 51 51 51

Total 44 69 72 72 70 69 69 69

es

z5

Cache 0.13 -0.04 -0.19 -0.46 -0.80 -1.31 -5.85 -27

Predict 0.00 15 21 23 23 24 24 24

Align 32 38 40 41 41 41 41 41

Total 32 53 62 63 64 64 59 38

ml

Cache 0.40 -0.07 -0.43 -1.02 -1.76 -3.15 -16 -32

Predict 0.00 13 21 24 25 25 26 26

Align 29 32 34 34 37 37 38 38

Total 29 45 55 58 61 60 48 32

gc

co

Cache 53 22 15 -88 -39 -135 -91 -115

Predict 0.00 8.33 13 17 19 20 21 22

Align 64 66 68 70 70 70 71 71

Total 117 97 97 -1.04 50 -44 1.67 -20

in

Cache 49 31 -21 -32 -72 -72 -127 -121

Predict 0.00 10 14 17 19 20 22 22

Align 63 66 67 69 69 69 70 70

Total 112 108 61 54 17 18 -34 -28

gr

re3

Cache 2.87 -1.15 -3.01 -4.25 -6.72 -7.49 -8.25 -8.42

Predict 0.00 4.73 9.00 12 12 12 13 12

Align 27 36 38 39 39 39 39 39

Total 30 40 44 48 45 44 44 44

re5

Cache 1.56 -0.04 -1.16 -1.75 -2.74 -3.70 -4.13 -4.47

Predict 0.00 1.31 2.06 2.55 2.50 2.53 2.54 2.53

Align 24 25 25 26 25 25 25 25

Total 26 26 26 26 25 24 24 24

sc

l1

Cache 0.06 -0.04 -0.11 -0.26 -1.35 -2.02 -2.01 -4.64

Predict 0.00 9.99 12 14 17 16 14 14

Align 89 96 97 98 98 99 98 98

Total 89 106 109 112 113 113 111 108

l4

Cache 0.30 -0.18 -0.46 -0.88 -1.43 -3.05 -7.58 -9.89

Predict 0.00 4.45 5.85 9.30 12 16 17 18

Align 93 102 103 103 102 102 102 103

Total 93 106 108 111 113 116 112 111

li

n

Cache 4.57 3.15 2.06 1.09 0.61 0.36 -1.09 -2.59

Predict 0.00 12 13 13 13 13 13 13

Align 38 43 44 44 44 44 44 44

Total 43 59 59 58 58 58 56 55

q4

Cache 1.46 1.04 0.71 0.43 0.31 0.38 0.05 -0.15

Predict 0.00 12 8.50 8.48 8.53 8.49 8.51 8.53

Align 61 64 64 64 64 64 64 64

Total 63 78 73 73 73 73 72 72

Table 6: Cycles saved per 1000 instructions under SCBP and code layout.
The machine model assumed is the HP PA8000-like processor with
256KB of direct-mapped L1 instruction cache (32 byte line size). The base
line is the same machine model with profiled prediction (k=0) and no code
layout or branch alignment.

14

Benchmark
History depth k

2 4 6 8 10 12 14

awk.a 1.052 1.080 1.110 1.131 1.166 1.182 1.196

awk.c2 1.040 1.060 1.082 1.104 1.113 1.137 1.189

com.in 1.025 1.045 1.092 1.101 1.188 1.300 1.457

com.ps 1.022 1.028 1.047 1.069 1.139 1.283 1.525

diff.a 1.052 1.091 1.117 1.186 1.226 1.279 1.310

diff.b 1.073 1.119 1.195 1.305 1.415 1.488 1.608

eqn.tbra 1.065 1.108 1.131 1.182 1.218 1.235 1.340

eqn.fx2fp 1.070 1.128 1.159 1.195 1.239 1.365 1.502

esp.mlp4 1.089 1.156 1.300 1.485 1.900 2.518 3.499

esp.z5 1.087 1.163 1.330 1.531 1.847 2.394 3.255

grep.re3 1.206 1.441 1.600 2.318 2.669 2.941 3.047

grep.re5 1.205 1.279 1.376 1.749 1.858 2.018 2.014

sc.load1 1.146 1.311 1.489 1.178 2.072 2.348 2.613

sc.load4 1.125 1.251 1.369 1.638 1.856 2.005 2.119

li.new 1.023 1.046 1.053 1.054 1.055 1.064 1.073

li.qu4 1.024 1.045 1.053 1.056 1.058 1.074 1.090

Table 7: Code expansion of the entire executable
due to SCBP. Figure 3 was created from this data.

Benchmark
History Depth k

2 4 6 8 10 12 14

awk.a 1.177 1.291 1.425 1.507 1.645 1.721 1.797

awk.c2 1.136 1.227 1.332 1.421 1.472 1.646 1.844

com.in 1.077 1.167 1.413 1.464 1.777 2.292 2.992

com.ps 1.063 1.093 1.188 1.296 1.635 2.310 3.519

diff.a 1.237 1.354 1.481 1.759 1.910 2.125 2.269

diff.b 1.290 1.469 1.865 2.352 2.755 3.059 3.528

eqn.tbra 1.186 1.323 1.409 1.588 1.724 1.791 2.010

eqn.fx2fp 1.229 1.420 1.552 1.685 1.848 2.321 2.841

esp.mlp4 1.222 1.402 1.717 2.157 3.106 4.607 7.170

esp.z5 1.219 1.435 1.791 2.298 3.143 4.569 6.779

grep.re3 1.535 2.011 2.572 4.087 4.822 5.053 5.180

grep.re5 1.452 1.759 2.047 2.808 3.038 3.182 3.214

sc.load1 1.298 1.616 2.122 2.783 3.409 4.094 4.650

sc.load4 1.297 1.624 2.010 2.555 3.020 3.429 3.742

li.new 1.066 1.174 1.236 1.243 1.248 1.295 1.325

li.qu4 1.063 1.155 1.211 1.231 1.241 1.305 1.382

Table 8: Code expansion of the executed portions of the benchmarks due to
SCBP. Figure 4 was created from this data.

15

Benchmark Original
program

SCBP with profiled code layout and branch alignment

k=0 2 4 6 8 10 12 k=14

awk.a 3.770 2.608 1.870 2.092 2.578 2.387 2.485 3.043 3.196

awk.c2 6.786 4.311 4.416 5.683 4.738 5.212 4.652 5.160 5.038

com.in 0.001 0.001 0.001 0.001 0.001 0.001 0.032 1.019 2.079

com.ps 0.003 0.002 0.002 0.002 0.002 0.002 0.918 0.901 3.708

diff.a 0.396 0.020 0.024 0.025 0.029 0.030 0.034 0.037 0.054

diff.b 0.860 0.047 0.054 0.044 0.077 0.093 0.100 0.125 0.117

eqn.fx2fp 1.894 0.001 0.002 0.014 0.368 0.005 0.009 0.031 0.081

eqn.tbra 1.237 0.042 0.001 0.074 0.004 0.006 0.016 0.047 0.047

esp.mlp4 1.231 0.766 1.146 1.169 1.598 1.836 2.369 2.707 2.972

esp.z5 1.174 0.831 0.833 1.296 1.430 1.454 1.907 2.093 2.743

grep.re3 0.232 0.127 0.332 0.279 0.299 0.413 0.417 0.395 0.426

grep.re5 0.833 0.036 0.051 0.054 0.479 0.542 0.641 0.677 0.573

sc.load1 2.587 1.150 1.430 2.092 1.923 2.341 2.307 2.896 2.880

sc.load4 2.184 1.195 1.499 1.890 1.973 2.689 2.246 2.497 2.719

li.new 1.133 0.317 0.509 0.382 0.390 0.750 0.787 0.949 0.861

li.qu4 1.517 0.614 0.885 0.748 0.881 0.813 0.825 0.788 0.798

Table 9: Instruction cache miss rates of untransformed and transformed (code layout and SCBP)
executables. Results are for a direct-mapped instruction cache of 8KB with a 32 byte line. Figure 5 is
based on this data.

Benchmark Original
program

SCBP with profiled code layout and branch alignment

k=0 2 4 6 8 10 12 k=14

awk.a 1.498 0.865 0.917 0.714 1.247 1.179 1.343 1.326 1.431

awk.c2 3.065 2.311 1.974 2.524 2.093 2.389 2.304 3.060 2.836

com.in 0.003 0.001 0.001 0.001 0.001 0.001 0.015 0.064 1.023

com.ps 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.015 0.750

diff.a 0.029 0.016 0.020 0.021 0.025 0.026 0.029 0.030 0.032

diff.b 0.259 0.030 0.044 0.039 0.048 0.053 0.055 0.057 0.061

eqn.fx2fp 0.268 0.001 0.001 0.013 0.367 0.002 0.001 0.002 0.002

eqn.tbra 0.389 0.001 0.001 0.073 0.001 0.001 0.002 0.022 0.013

esp.mlp4 0.493 0.308 0.436 0.453 0.845 0.800 1.353 1.531 1.902

esp.z5 0.455 0.293 0.371 0.565 0.665 0.954 0.989 1.327 1.802

grep.re3 0.113 0.059 0.217 0.199 0.191 0.294 0.275 0.258 0.260

grep.re5 0.086 0.028 0.042 0.045 0.047 0.061 0.061 0.066 0.064

sc.load1 1.524 0.407 0.761 0.935 1.115 1.417 1.384 1.627 1.518

sc.load4 1.402 0.621 0.890 1.161 1.325 1.941 1.451 1.721 1.794

li.new 0.562 0.135 0.199 0.175 0.180 0.177 0.179 0.199 0.228

li.qu4 0.775 0.377 0.586 0.507 0.609 0.541 0.561 0.166 0.095

Table 10: Instruction cache miss rates of untransformed and transformed (code layout and SCBP)
executables. Results are for a direct-mapped instruction cache of 16KB with a 32 byte line.

