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Abstract

Out-of-order issue superscalar processors can achieve very high degrees of instruction
level parallelism by using a memory dependence predictor to guide dynamic instruction
scheduling. With the help of the memory dependence predictor the scheduler can spec-
ulatively issue load instructions at the earliest possible time without causing signi�cant
amounts of memory order violations. For maximum performance, the scheduler must also
allow full out-of-order issuing of store instructions since any super
uous ordering of stores
results in false memory dependencies which adversely a�ect the timely issuing of dependent
loads. Unfortunately, simple techniques of detecting memory order violations do not work
well when store instructions issue out-of-order since they yield many false memory order

violations.
By using a novel memory order violation detection mechanism that is employed in the

retire logic of the processor and delaying the checking for memory order violations, we are
able to allow full out-of-order issuing of store instructions without causing false memory
order violations. In addition to eliminating the false dependencies that arise because of
store ordering in the instruction window, our mechanism can take advantage of data value
redundancy. We present an implementation of our technique using the store set memory
dependence predictor and illustrate that our technique improves the performance of the
predictor substantially at high issue widths. Our technique reduces the dynamic instances
of loads and stores that need a predictor table entry by as much as 12 % and the amount of
false dependencies by as much as 42 %. An out-of-order superscalar processor that uses our
technique delivers an IPC which is within 100, 96 and 85 % of a processor equipped with
an ideal memory disambiguator at issue widths of 8, 16 and 32 instructions respectively.

Keywords: Memory disambiguation, store-set, wide-issue superscalar, instruction
window, speculative execution.
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1. Introduction

In order to get high performance, out-of-order superscalar processors must issue load instruc-
tions as early as possible without causing memory order violations. One way to accomplish
this task is to use a memory dependence predictor to guide instruction scheduling. By
caching the previously observed load/store dependencies, a dynamic memory dependence
predictor guides the instruction scheduler so that load instructions can be initiated early,
even in the presence of a large number of unissued store instructions in the instruction
window. Work in this area has produced increasingly better results [3, 8, 7, 2]. The prob-
lem of memory disambiguation and the communication through memory has been studied
extensively by Moshovos and Sohi [7]. Dynamic memory disambiguators proposed mainly
used associative structures aiming to precisely identify the load/store pairs involved in the
communication. Chrysos and Emer [2] introduced the store set concept which allowed using
direct mapped structures without explicitly aiming to identify the load/store pairs precisely,
yielding much more eÆcient utilization of the predictor space. Various patents [11, 3] also
exist that are aimed at identifying those loads and stores that cause memory order viola-
tions and synchronizing them when they are encountered. Although these techniques aim to
eÆciently predict memory dependencies, reducing the false memory dependencies remains
an area which still has room for improvement.

False memory dependencies may be imposed by memory dependence predictors due to
the changes in the dependency behavior of the program as the program executes, aliasing
in the predictor tables, or signi�cantly because store instructions are not allowed to issue
fully out-of-order. While it is possible to alleviate the e�ects of changing program behavior
by periodically discarding accumulated history and aliasing by using better indexing func-
tions or larger tables, existing techniques are inadequate for the elimination of the false
dependencies resulting from ordering of the store instructions. We refer to this type of de-
pendencies as store-store induced dependencies and focus on the false memory dependencies
of this type.

Introduction of store-store induced false memory dependencies into the instruction
stream by memory dependence predictors is not without a reason. Simple memory vio-
lation detection schemes yield false memory order violations when store instructions are
allowed to issue fully out-of-order since they cannot correctly detect the memory order vi-
olations in such a setting. It is the complexity of memory order violation detection with
out-of-order issuing of stores that makes memory disambiguators impose at least a partial
ordering of store instructions in the issue window [2]. Unfortunately, such ordering of store
instructions in the issue window creates false dependency chains which prohibits the de-
pendent load instructions from issuing. When the predictor relies only on the load/store
program counter values, the problem becomes a serious problem with loops that contain
spill code as well as loops where only a few instances of the loop iteration are actually de-
pendent on another iteration. This is because, such memory dependence predictors cannot
distinguish between multiple instances of the same load or store instruction and make such
instances dependent on each other. As a result, signi�cant amounts of instruction level
parallelism is lost leading to more pronounced performance losses at higher issue widths.

In this paper, we experimentally demonstrate that ordering store instructions in the
issue window yields low performance for high issue out-of-order superscalar processors.
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We present a simple and e�ective scheme for the detection of memory order violations
that allows full out-of-order issuing of store instructions in the instruction window. Our
technique works by delaying the checking for memory order violations and identifying the
dependencies in order during retire time. Once the processor is equipped with our algorithm,
we can allow unrestricted issuing of store instructions in the instruction window. Since no
ordering of store instructions in the instruction window is imposed, no super
uous ordering
of dependent loads occurs even when we use a predictor that relies only on the program
counter values of the load and store instructions. As a result, our approach signi�cantly
reduces the false memory dependencies. We apply our solution to the highly successful
store set memory disambiguator [2] and demonstrate that with a simple modi�cation to
the predictor algorithm and using our processor back-end, we can greatly enhance the
performance of the algorithm at high issue widths. Furthermore, our approach can take
advantage of the value redundancy of store instructions to the same memory locations,
achieving even greater degrees of instruction level parallelism.

The key characteristics of our memory violation detection algorithm are:

1. Our scheme handles the problem of false memory dependencies e�ectively even when
the predictor relies only on load/store program counter values and the store instruc-
tions are allowed to issue fully out-of-order.

2. It is a simple scheme that allows out-of-order issuing of store instructions in the
instruction window without causing false memory order violations.

3. Finally, our approach takes advantage of value redundancy of stored data values with-
out explicit value prediction.

In the remainder of the paper, in Section 2, we �rst summarize the store set algorithm
and present a thorough analysis of its performance. We illustrate that because the al-
gorithm orders store instructions in the instruction window it su�ers from false memory
dependencies in loops with spill code and with occasional dependencies. We demonstrate
that the e�ect of false memory dependencies increases signi�cantly as the issue width of
the machine is increased. In Section 3, we �rst discuss the problem of false memory order
violations and its relation to the false memory dependencies. Next, we give an analysis of
the underlying causes of false memory order violations and present our novel memory order
violation detection algorithm that eliminates false memory order violations completely, and
reduces false dependencies signi�cantly. In section 4, we present an in depth performance
analysis of the proposed solution and �nally we conclude with a brief discussion of related
work.

2. Store Set Algorithm: Performance Evaluation and Analysis

The store-set algorithm proposed by Chrysos and Emer [2] is a simple and very e�ective
memory disambiguator that relies on the fact that the future memory dependencies can be
correctly identi�ed from the history of memory order violations. In this respect, a store
set is de�ned to be the set of store instructions on which a load has been observed to be
dependent. The algorithm starts with empty sets, and speculates load instructions around
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stores blindly. When memory order violations are detected, o�ending store and the load
instructions are allocated store sets and placed to their respective sets. Since a load may
depend upon multiple stores and multiple loads may depend on a single store, an eÆcient
implementation of the concept may be diÆcult. In order to use direct mapped structures,
Chrysos and Emer propose certain simplifying assumptions in their implementation which
limit a store to be in at most one store set at a time as well as the total number of loads
that can have their own store set. Furthermore, stores within a store set are constrained to
execute in order. With these simpli�cations, only two directly mapped structures shown in
Figure 1 are needed to implement the desired functionality.

Load/Store PC

Store Set ID Table
   (SSIT)

SSID

Store inum

Last Fetched Store Table
(LFST)

Index

Figure 1: Store Set Implementation

When new load and store instructions are fetched, they access the store set id table
(SSIT) to fetch their store set identi�ers (SSIDs). If the load/store has a valid SSID, it
belongs to a store set. Store instructions access the last fetched store table (LFST) to
obtain a hardware pointer to the last store instruction that is a member of the same store
set which was fetched before the current store instruction. Current store instruction is
made dependent on this store. Following, recently fetched store instruction puts its own id,
that is, a hardware pointer to itself, into the table. Similarly, load instructions are made
dependent upon the store instruction whose id is found in the LFST table. As a result, the
algorithm orders stores within a store set in program order, but allows multiple loads to be
dependent on a single store.

The algorithm is reported to require modest table sizes. This is attributable to high
locality of memory dependencies as well as the algorithm's approach to the store set creation.
It has been indicated that the algorithm performs superbly using 4K or more SSITs and 128
or more entries of LFST. At an issue width of 8 instructions per cycle, the performance of
the algorithm is within few percentages of what can be accomplished using an ideal memory
disambiguator which has perfect knowledge of load and store dependencies.

The Evaluation. We have implemented the store set algorithm as well as a base processor
that implements an \ideal" memory disambiguator using the ADL language [9] and simu-
lated the SPEC95 benchmarks at various issue widths. The ideal memory disambiguator
identi�es the provider store instruction instance for each of the load instruction instances.
Hence, for a given load, the ideal disambiguator indicates whether or not the store instruc-
tion on which the load is truly dependent has been issued. The disambiguator uses memory
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address traces augmented with load/store sequence numbers to identify such dependencies
with perfect accuracy.

Load

Integer division

Integer multiply

Other integer

Float multiply

Float addition

Float division

Other float

2
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Issue width ** 2
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Functional Units Issue width Symmetric
Functional units.

Instruction fetch

Memory ports Issue width / 2

Dcache Perfect 

Perfect

Figure 2: Machine Con�gurations.

In order to evaluate the performance of the memory disambiguator, we kept the machines
with ideal and store set disambiguators identical in all other aspects except the memory
disambiguator. Both superscalar processors employ an ideal instruction fetcher that has
perfect branch prediction and delivers issue width instructions every cycle. Similarly, the
issue window is a large central window implementation which can schedule instructions as
soon as the data dependencies for an instruction are satis�ed. In order to show the e�ects of
the predictor table size on the performance, we report the performance of the algorithm at
both 4K entry tables as well as 64K tables which experience very few destructive aliasing.
Other machine parameters used in the simulations are shown in Figure 2.

Our results for an 8 issue machine are shown in Figures 3(a) and 3(b). These results
con�rm the published performance of the store set algorithm with some minor di�erences.
Although most benchmarks with the exception of 110.applu have been reported to perform
well in the original study, we observed that all benchmarks show performance losses com-
pared to the ideal disambiguator with the exception of 107.mgrid and 145.fpppp. With
4K tables, benchmarks 110.applu, 141.apsi, 145.fpppp and 146.wave5 demonstrate sig-
ni�cant performance losses. However, with 64K tables the algorithm closely matches the
performance of the ideal disambiguator. Di�erences between our results and the published
performance of the store set algorithm are attributable to using an ideal front end as well
as using a di�erent ISA (MIPS versus Alpha) and using di�erent compilers (gcc versus DEC
cc). On the average, the store set algorithm achieves over 97% of the performance of the
ideal disambiguator for 
oating point benchmarks and over 98% for the integer benchmarks
with 64K tables. With 4K tables, the corresponding values drop to 80% for 
oating point
benchmarks and 96% for integer benchmarks.

When we simulated the same machine con�gurations for the issue widths of 16 and 32,
we observed that performance loss as a result of non-ideal memory disambiguation becomes
quite signi�cant (see Figures 3(c)-3(f)). Among the integer benchmarks, both 126.gcc and
147.vortex show signi�cant performance losses at an issue width of 16 and above and
only 130.li continues to perform well as the issue width is increased. A similar behav-
ior is observed among the 
oating point benchmarks. With the exception of 107.mgrid
and 125.turb3d, all benchmarks indicate signi�cant performance losses compared to an
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Figure 3: IPC values Store Set and Ideal cases
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ideal disambiguator. At an issue width of 16 and 64K tables, store set can achieve about
85% and 82% of the performance of the ideal disambiguator for integer and 
oating point
benchmarks respectively. With 4K tables, the algorithm can achieve about 69% of the ideal
performance for integer benchmarks and 61% for 
oating point benchmarks. At an issue
width of 32 and 64K tables, performance drops further to 67% and 64%. When harmonic
means are used, an additional 3 to 4% performance loss is observed with respect to the ideal
disambiguator. With 4K tables, the algorithm can provide only 35% of the performance
of the ideal disambiguator for 
oating point benchmarks and 50% for integer benchmarks.
These results indicate that there is a signi�cant room for improvement, especially at issue
widths of 16 and above.

The Analysis. Although the cost of restart increases as the instruction window is en-
larged, this is not the main reason behind the poor performance of the algorithm at high
issue widths. The algorithm experiences performance losses because it forces the issuing of
store instructions within a store set to be in-order. In-order issuing of the stores within a
store set in turn causes dependent loads to issue in-order. While this restriction may not be
signi�cant for a number of cases, it creates signi�cant degrees of false memory dependencies
with two types of loops.

One of them is the case where certain iterations of a loop occasionally become dependent
on another iteration as in the case of 110.applu. The other involves loops with register
spill code. In both cases, the algorithm essentially serializes loop iterations once appropri-
ate store set entries are created since the algorithm cannot distinguish between multiple
instances of the same load and store instructions. In this case, all the instances of the same
store instruction become members of the same set and are forced to issue in-order. Limita-
tions of the algorithm become more pronounced at high issue widths because at small issue
widths there is still ample amount of unexploited parallelism to hide the e�ects of serializa-
tion. At large issue widths, the available parallelism in the program is already being fully
exploited. Therefore, the e�ects of the serialization of the operations cannot be hidden by
other operations from the pool of available instructions.

Let us now examine in detail how the algorithm executes such loops. In Figure 4(a), an
example loop that contains spill code is illustrated. When such a code sequence is executed
using suÆcient resources to issue more than one load operation per cycle, it takes only
a few iterations to be unrolled before a memory order violation occurs. This is because,
when there is no dependency information stored in the tables, any of the loads can issue
once they compute their addresses. As a result, any load which is truly dependent on the
store at the same iteration may issue before that store. Once this happens, a memory order
violation is detected and the store set entries are allocated. From this point on, future
instances of these loads and stores share the information stored in SSIT and LFST which
yields the dependence graph shown in Figure 4(b). The algorithm correctly makes a load
dependent on the proper store by means of the LFST table. However, since the algorithm
forces stores within the same store set to issue in order, for the given set of loads and
stores the generated schedule allows at most one load instruction to execute per cycle (see
Figure 4(d)). In contrast, an ideal disambiguator would allow fully parallel operation of the
multiple instances of the loop body, given suÆcient resources (see Figure 4(e)).
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Figure 4: Example spill code and its schedule

In order to measure the e�ect of the serialization on the load latency, we have conducted
experiments that studied the dynamic load latency and degree of load serialization. The
results of these experiments are as follows:

Dynamic load latency. We measured the number of cycles it takes from the moment
a load instruction is ready to issue to the moment it has the loaded value. We de�ne this
duration to be the dynamic load latency. We de�ne the average dynamic load latency as the
arithmetic average of the dynamic load latencies of all load instructions which did not result
in a memory order violation. Although the dynamic load latency is e�ected by a number of
factors such as data cache misses, with an ideal memory subsystem, dynamic load latency
is only a function of the dependencies imposed upon load instructions. In this respect, it
is a cumulative quantity that includes both the true dependencies of the program as well
as scheduling/disambiguation imposed dependencies. To obtain the contribution of the
falsely imposed dependencies, we normalized the dynamic load latency values by dividing
it with the dynamic load latency value obtained using an ideal memory disambiguator (see
Figure 5). In addition to the normalized dynamic load latencies, we have computed the
standard deviation of dynamic load latency across all load instructions executed by the
benchmark programs both for the store set algorithm and the ideal memory disambiguator.
We then normalized the standard deviation values for the store set algorithm by dividing
it with the corresponding value of the ideal memory disambiguator (see Figure 6).

As shown in Figure 5, the measurements of the normalized dynamic load latencies exhibit
large values for those benchmarks which perform poorly whereas benchmarks which perform
well have very small values. Similar behavior is observed in the standard deviation values
shown in Figure 6. These results are indicative of long chains of dependent instructions that
create large 
uctuations in the average load latency. We also observed that the harmonic
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Figure 6: Normalized Standard Deviation Values for Dynamic Load Latencies
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mean values of the load latencies are uniform across the benchmark spectrum and quite close
to the ideal disambiguator. On the other hand, the arithmetic means show great degrees of

uctuation, and they have the worst values for those benchmarks whose performance does
not scale.

Load serialization. We determined the degree of the serialization of load instructions
through load-store-store dependency chains. We measured the amount of serialization of
load instructions by identifying the dynamic load instructions which are blocked from issuing
for one or more cycles although their predicted provider store instruction is ready to issue.
In Figure 7, we report the percentage of total dynamically executed load instructions which
have been serialized.

Measurements of the dynamic percentage of serialized load instructions also consistently
support the previous observations. As it can be seen from the experimental results shown
in Figure 7, the three benchmarks, namely, 107.mgrid, 125.turb3d, and 130.li which
perform well as the issue width is increased have very low percentages of serialized load
instructions. All the remaining benchmarks which perform poorly at high issue widths
have signi�cant percentage of the load instructions serialized.

3. Out-of-order Store Issue Algorithm

We have shown through a detailed analysis that for high performance we need to allow full
out-of-order issuing of store instructions so that dependent load instructions can also issue
fully out-of-order. Unfortunately, without at least a partial ordering of store instructions
in the instruction window the algorithm would have su�ered much more signi�cant levels
of performance losses because of false memory order violations.

False memory order violations. When the load and store instructions are allowed to
issue fully out of order from the instruction window, we face with a new problem. At
the time a load instruction issues, it is possible that there are preceding store instructions
in the instruction window which have not computed their addresses yet. Therefore, the
processor has to remember that the load instruction has been issued speculatively, and as
prior store instruction addresses become available, compare those addresses with that of
the speculated load instruction. Such state about a speculated load instruction must be
kept until all preceding store instructions complete their address computation and their
addresses are compared with those of the speculated load instructions. We refer to the
bu�er where the state about the speculated load instructions is kept as speculative loads
table.

Unfortunately, this simple mechanism for memory violation detection which checks the
store address with respect to load addresses of the speculatively issued loads when a store
instruction is issued will result in false memory order violations. In this approach false
memory order violations occur because this mechanism cannot decisively �gure out the
set of store instructions which should participate in the memory order violation detection
process for a given load.

To illustrate why this is the case, let us reconsider the example shown in Figure 4 and
suppose that we remove the dependence edges between the store instructions when we are
using the store set disambiguator, allowing store instructions to issue fully out-of-order. In
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this case, a store belonging to an earlier iteration may be blocked whereas a store belonging
to a later iteration may have a chance to proceed. For example, in Figure 4(c) the store from
the second iteration, ST-2, may proceed before ST-1 which belongs to the �rst iteration.
When ST-2 issues it makes its dependent load LD-2 eligible to issue in the next cycle. When
LD-2 issues, it gets the correct value from the forwarding bu�er. The processor however
remembers that the load has been issued speculatively and makes an entry regarding this
load in the speculative loads table. When the store ST-1 issues, it �nds that a load with a
sequence number greater than its own that computed the same address has issued before
the store. In this case, an exception is 
agged which is in fact a false memory order
violation. In other words, removing the store ordering in the instruction window

would convert all store ordering induced false memory dependencies to false

memory order violations. On the other hand, when the memory disambiguator imposes
an ordering on those stores which may have the same e�ective address, false memory order
violations will not be observed since a load instruction which is dependent on a later store
instruction would not issue before all store instructions preceding the store instruction it is
dependent on issue.

Precisely detecting memory order violations. In order to detect memory order vi-
olations correctly when store instructions are allowed to issue freely, we need to identify
precisely the set of store instructions which should participate in the memory order viola-
tion detection process. If an issuing store instruction is not the member of this set with
respect to a given speculatively issued load instruction, we should not let this particular
store instruction raise a memory order violation for the load instruction in question.

ST-1

ST-2

ST-3
.
. .
. . .

. .

Seq

1

2

Ready

No

Yes

No

3

p Yes ST-p

p+1 Yes

p+2 No

ST-p+1

ST-p+2

p+3 Yes LD-s

(a) Dynamic code sequence

S
T

-3

S
T

-2

S
T

-1

A
ddr/V

alue
V0101

S
eq

(b) Forwarding Buffer Contents

S
T

-p

p+
1

S
T

-p+
1

p 3 2 1

0 1

p+
2

S
T

-p+
2

p+
3

LD
-s

S
eq

A
ddr

(c) Speculative Loads Table

prior
uncompleted
stores

Provider store

stores
relevant
to detection

Figure 8: Speculative issuing of loads

In order to see how we can identify the set of store instructions which must participate
in the decision process, let us consider the sequence of store instructions and the load
instruction shown in Figure 8(a). Given this dynamic sequence of instructions, assume that
the load LD-s is predicted to be dependent on the store ST-p which is indicated through the
dependence edge. In this con�guration, store instructions which are above the provider store
instruction ST-p should not participate in the memory order violation detection process for
the speculatively issued load instruction LD-s assuming that the addresses of ST-p and
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LD-s match. Only store instructions which follow the provider store instruction, namely,
ST-p+1 and ST-p+2 should raise an exception if they compute an e�ective address that
is the same as the load LD-s. In other words, the provider store instruction splits the
set of uncompleted stores into two sets, and only the ones that follow the provider store
instruction should participate in the decision process. In the case that the load instruction
obtains its value from the memory, all the prior stores should be involved for checking the
memory order violations with respect to the speculatively issued load LD-s.

One possible solution in this case is to include the sequence number of the provider store
(or a special identi�er if it is memory) in the speculative loads table. In this case, issuing
store instructions may check their sequence numbers against the sequence number of the
provider as well as the sequence number of the load instruction to decide that if they fall
into the shaded region in Figure 8(a). If that is the case and the address generated by the
store instruction matches to that of the load, an exception may be raised.

A straightforward implementation of the above mechanism leads to a complex piece of
hardware due to the following reasons. First of all, maintaining explicit temporal infor-
mation through sequence counters is not a trivial task because counters must be of �nite
size and when they over
ow, the boundary conditions must be properly handled. Second,
for any given store instruction the processor must execute the above algorithm in parallel
against all the speculatively issued load instructions, which means that the required hard-
ware must be replicated. Finally, executing the above algorithm on the critical path of the
processor is very likely to slow down the processor clock. Next, we present a simpler and
yet more e�ective solution.

Delayed exception handling and value matching. Our solution to the detection
problem builds on two observations. First, the temporal information needed is implicitly
available during the retire phase of the instruction execution. In other words, if we can delay
the detection of the memory order violations to the retire phase, we do not need to maintain
the temporal information explicitly. Since the processor experiences very few exceptions due
to memory order violations when equipped with a good memory dependence predictor, the
additional penalty of late restart is not high. Once we move the detection logic to the retire
phase, memory violation detection entails deciding whether or not the provider store has
retired. If that is the case, following store instructions are from the shaded region and they
should check for memory exceptions. Of course, if the provider is the memory, the provider
store has already retired, and in this case all retiring store instructions will be involved in
the checking. Second, for correctness, we do not need to identify the exact store instruction
that provided the value. We only need to verify that given a set of store instructions, the
load has obtained the same value as the value stored by the last store instruction to the
same memory address. This technique eliminates the need for special handling of the case
where memory is the provider. Furthermore, as it will be seen shortly, this method can take
advantage of the data redundancy available in the programs. Given these observations, we
can now devise the following scheme that works quite well:

1. We delay the checking for exceptions in case of memory references until the store
instruction retires.
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2. We expand the speculative loads table to contain a value �eld where the value the load
instruction has obtained is stored.

3. We allow an exception bit associated with the load instructions stored in the reorder
bu�er or in speculative loads table be set or reset by store instructions as they retire.
In other words, each retiring store instruction compares the value it has stored, as well
as the address into which the data has been stored, to with that of the speculative
loads:

If the addresses match and values di�er, it sets the exception bit associated with the
load instruction.

If the addresses match and values match, it resets the exception bit associated with
the load instruction.

If the addresses do not match, no action is taken.

4. Once the load instruction is ready to retire, it checks its exception bit. If the bit is
set, a roll-back is initiated and the fetch starts with the excepting load instruction.
Otherwise, the load instruction's entry is deallocated from the speculative loads table.

Please note that setting and canceling of exception bits as store instructions retire in
this manner handles the problem of identifying the provider store instruction automatically.
When the actual provider store instruction retires, both the address and the values will
match, and the exception bit is reset. In other words, this instruction will serve as a
sentinel signaling the beginning of the group of store instructions which should participate,
nullifying the e�ects of all unrelated prior store instructions.

Now let us reconsider the example shown in Figure 8. Suppose that load LD-s has already
been speculatively issued and obtained its value from the store ST-p. Further, assume that
the store ST-1 has now been issued and has computed the same address as LD-s. Since ST-1
retires �rst in program order, it will raise the exception bit associated with the load LD-s.
Any of the stores between store ST-1 and store ST-p may take the same action upon an
address match and a value mismatch. However, when �nally store ST-p retires, it will have
both an address and a value match and will reset the exception. When the store ST-p+1
retires, if it computes the same address but the value is di�erent, this is a true exception.
The exception will be taken when the load instruction retires. Please note that if any of
the store instructions ST-p+1 or ST-p+2 in the shaded region have the same address as
well as the same value, no exception will be raised and the machine will take advantage of
the available data redundancy. The same observation holds for the values coming through
memory.

Since we now have an e�ective solution to the problem of false memory order violations,
we can completely eliminate false memory dependencies arising from store-store induced
dependencies. To achieve this, we only need to introduce a small change to the original store
set algorithm. We let load instructions become dependent on the store instruction they �nd
in the LFST table entry, but we do not chain the store instructions which are members of the
same store set, allowing all the store instructions to issue fully out-of-order constrained only
by their own register dependencies. Load instructions however wait for the store instruction
that they have been predicted to be dependent on. Thus no load instructions are serialized
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unnecessarily. Although we continue to use a memory dependence prediction mechanism
that relies only on the load and store program counter values, we can e�ectively handle
problems arising from multiple instances of the same load or store instruction.

Taking advantage of value redundancy. We have presented a simple technique that
correctly indicates if a memory order violation has occurred by matching the value each
retiring store instruction stores with that of the speculatively issued loads. Although there
is nothing novel about the common-sense technique of determining correctness of speculated
instructions by matching actual data values, the use of this approach in the context of the
store set disambiguator is unique and yields high performance beyond what is achievable
by an ideal disambiguator that faithfully observes the true memory dependencies. A review
of the workings of the store set algorithm should explain why.

During the initial start-up, there is no information in the SSIT and LFST tables to guide
the scheduling. Because of the blind speculation of loads, loads acquire values either from
the forwarding bu�er or directly from the memory. When the actual store instruction that
the load is truly dependent on retires with a value that is the same as the load instruction's
value, the speculation is successful and no new entries are created in the SSIT and LFST
tables. In other words, the load speculates and executes successfully before the

store it is actually dependent on. The machine will continue to speculate the same
load instruction until a violation occurs. Once a violation occurs, the load instruction will
not be speculated further since it will wait for its producer store. In other words, the
machine takes advantage of the value redundancy as long as it is bene�cial to do so. By
speculating in this manner we do not incur any performance overhead compared to an
address only approach. Instead, those load instructions that can take advantage of the
data redundancy are automatically selected by the algorithm. Although this process is
not directed intelligently as in [1], we obtain similar bene�ts by not paying the penalties
associated with a technique that speculates indiscriminately. The net e�ect of the technique
is reduced load access latency.

In the next section, we demonstrate quantitatively that for most benchmarks, the tech-
nique indeed reduces the load access latency below what is possible with an ideal disam-
biguator which faithfully observes the true dependencies.

4. Performance Evaluation

In order to assess the performance potential of store set memory disambiguator with our
modi�ed back-end we have designed a series of experiments. We have fully implemented
the algorithm and executed the SPEC95 benchmarks with their training or test inputs. The
processor parameters have been kept as before (see Figure 2). In these experiments, we
compare the performance of the out-of-order memory disambiguator with both the ideal
disambiguator as well as the original store set algorithm when it is appropriate.

Dynamic load latencies. Normalized average dynamic load latencies for out-of-order
disambiguator for a 16 issue processor are shown in Figure 9. It is interesting to note
that for with the exception of 110.applu and 107.mgrid, all normalized dynamic load
latencies for 
oating point benchmarks are below 1.0 for 64 K tables. In other words, when
equipped with a large predictor table, out-of-order disambiguator yields better dynamic
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load latencies than the ideal memory disambiguator. This is expected, especially with
those programs with signi�cant degrees of data redundancy. Such data redundancy occurs
when the actual store instruction that a load is truly dependent on is data redundant
with respect to the stale value in the memory, or other issued but not yet committed
store instructions. Since the ideal disambiguator makes a load wait for precisely the exact
producer store instruction, in those cases where the store instruction is data redundant it
makes the load instruction wait much longer. Although not to the same level of uniformity,
a similar behavior is observed also among integer benchmarks. Our technique results in a
signi�cantly longer dynamic load latency only in case of 129.compress. Nevertheless, the
�gure is still well below of the original store set algorithm (2.23 versus 1.79). 124.mk88ksim
shows an outstanding performance providing a dynamic load latency which is only a fraction
of the ideal disambiguator (0.355). Normalized standard deviation values follow a similar
trend (Figure 10) indicating that the success of the technique is uniform throughout the
benchmark's execution.

Another interesting aspect of the dynamic load latencies with the out-of-order store
issuing is the behavior of benchmarks 101.tomcatv, 104.hydro2d and 126.gcc. These bench-
marks actually yield lower dynamic load latencies with 4K SSIT tables than with 64 K,
but not a higher IPC. The reason for this behavior is the signi�cant degrees of aliasing in
predictor tables at small sizes. With a smaller table, predictor information about the actual
dependency may be lost. When a load does not have the correct dependency information,
it may issue at an earlier time. If this issuing of the load results in no violation because
of data redundancy, average load latency will be reduced. Please note that if the data
redundancy is consistent, this will actually result in signi�cant performance improvement.
One such benchmark is 124.m88ksim, which shows no sensitivity to the predictor table size,
and yields only a fraction of the load latency of the perfect disambiguator. Unfortunately,
such is not the case for the above mentioned benchmarks. These benchmarks experience a
100 fold increase in memory order violations with 4K tables, indicating that the dynamic
load latency �gure alone may be misleading and should be used together with the number
of misspeculations as well as the ultimate IPC performance.

We have performed experiments to determine the extent to which the redundancy of
data values can reduce the number of misspeculations resulting from load speculation. The
results are shown in Figures 11(a) and 11(b). As we can see, for an 8-issue processor, the
reductions in mispredictions are substantial (12-24%). As the issue width is increased to
16-issue, the degree of speculation performed by the processor increases and therefore the
reductions in mispredictions achieved by exploiting value redundancy are even greater.

Instructions per cycle. For the measurement of the instructions per cycle �gures we
compare the harmonic means of the IPC values observed for the 
oating point and inte-
ger benchmarks. When we analyze the instructions per cycle �gures, the bene�ts of
using our approach become increasingly clear as the issue width is increased. At an issue
width of 8, the out-of-order algorithm slightly out-performs the ideal memory disambigua-
tor. With 
oating point benchmarks, out-of-order disambiguator is better than the ideal
memory disambiguator by 0.01% and with integer benchmarks it is better than the ideal
disambiguator by about 1.8%. The out-of-order algorithm shows better performance than
the original store set algorithm by 4% with both the 
oating point and integer benchmarks.
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Figure 9: Normalized Average Dynamic Load Latencies
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Figure 10: Normalized Standard Deviation Values for Dynamic Load Latencies
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In case of 124.m88ksim, out-of-order algorithm is better than both techniques by about
18% (see Figures 12(a) and 12(b)).

When we increase the issue width to 16, the out-of-order algorithm out-performs the
original store set algorithm by as much as 18% with integer benchmarks, and 22% with

oating point benchmarks (see Figures 12(c) and 12(d)). The performance di�erence further
widens to 42% and 52% with 
oating point and integer benchmarks when the issue width
is increased to 32 instructions (see Figures 12(e) and 12(f)). In both cases, highly data
redundant 124.m88ksim continues to out-perform the ideal disambiguator and the out-of-
order disambiguator closely follows the ideal disambiguator for other benchmarks, even at
very high issue widths.

Scalability for di�erent table sizes. In order to further compare the performance of
our approach to that of the original algorithm, we executed both algorithms at predictor
table sizes of 4K, 8K, 16K, 32K and 64K entries. We observed experimentally that the size
of the LFST table is not critical and in these runs it was left to be suÆciently large.

As it can be seen from the graphs in Figure 13(a) and Figure 13(b), the original store set
algorithm can out-perform our algorithm only when the original store set algorithm has a
32K entry table and the out-of-order disambiguator has a 4K entry table. For both integer
and 
oating point benchmarks, with 8K entries our algorithm always out-performs the
original algorithm even when the latter has 64K entry tables. When our algorithm is given
a large predictor space, it matches the performance of the ideal disambiguator up to the issue
width of 16, and very closely follows the ideal curve with slight performance loss. This small
performance loss (about 10 % at an issue width of 32) originates from the cost of restarts.
The cost of restarts are largely paid for by the gains we obtain through the exploitation of the
data redundancy. Unfortunately, at these high issue widths the exploited value redundancy
is not suÆcient to compensate for all the restart costs. Nevertheless, it is natural to expect
that our algorithm will out-perform the ideal disambiguator at all issue widths if the cost
of restarts can be reduced by employing a mechanism which selectively reissues e�ected
instructions instead of squashing a window-full of instructions. Such re-execution recovery
is quite feasible with memory order violations. In case of memory order violations, the
validity of the instructions are not questioned. Therefore, only a few instructions which
uses the wrong value can be reissued instead of throwing away a window-full of instructions.

We observed that when we employ smaller predictor tables, the performance gap be-
tween the out-of-order disambiguator and the original store set algorithm widens further,
indicating our success in reducing the false memory dependencies. The false memory de-
pendencies were also measured directly and the comparison of the original store set and our
algorithm is given in Figure 14.

The false memory dependencies are reduced because of two reasons. The �rst reason is
the preciseness of our approach in creating the store sets. When a conventional approach
is used to detect the memory order violations, it may take some number of iterations
and a number of false memory order violations before the true store instruction that a
load is dependent on is discovered. In our case, this happens the �rst time a violation is
encountered. Second, because our approach also takes advantage of value redundancy, it
creates fewer number of table entries. In order to verify that this is indeed the case, we
measured the number of dynamic instances of load and store instructions for which there is
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Figure 13: Scalability of Out-of-order Algorithm
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Figure 14: Normalized False Memory Dependencies
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Figure 15: Normalized Counts of Load/Store Instructions Synchronized Via SSIT Table
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a matching SSIT entry. We normalized this number by dividing it with the values produced
by the original store set algorithm. The results of these experiments are shown in Figure 15.

5. Implementation Issues and the Impact of Delayed Checking

An important feature of the proposed algorithm is that most structure accesses such as
accessing the speculative loads table, comparing the data values and setting the exception
bit are all done at the retire phase. In other words, these operations happen o� the critical
path of the processor which is a signi�cant advantage for the technique. We therefore believe
that the impact of the technique on the clock cycle time will be minimal.

On the other hand, it is possible that a processor implementation that implements the
delayed checking will have a longer retire path than a processor that does not. For a large
issue processor, this can potentially result in a large number of instructions to be squashed.
Fortunately, this is not so. For the range of processor con�gurations studied, it has been
observed that the number of exceptions is quite low (SPEC95 average is 0.04%). In this
case, the bene�ts of out-of-order store issuing far out-weighs the impact of delayed checking.

6. Conclusion

We have presented an e�ective mechanism for reducing false memory dependencies when
using a memory dependence predictor. We have shown that we can allow full out-of-order
issuing of store instructions in the instruction window using our memory order violation
detection mechanism. We have also shown that we can take advantage of value redundancy
even when we are not performing explicit value prediction. Our solution is an orthogo-
nal solution that can be utilized with other types of memory dependence predictors. For
example, the scheme proposed by Moshovos and Sohi based on MDPT/MDST associative
structures [7] either forces a load to wait for all dependences predicted, or, MDPT entries
are augmented to contain control 
ow information for each load/store pair. Using our
scheme, there would not be any need to force a load to wait for all dependences predicted
or any need for augmenting predictor entries with control 
ow information. Similarly, our
approach can be used together with value prediction techniques [5, 6, 4, 1]. Speci�cally, a
machine may employ selective value prediction to a subset of loads, whereas the remaining
ones would synchronize through the dependence predictor employing our scheme. The veri-
�cation mechanism our scheme uses would work properly with value prediction mechanisms
without modi�cations.

Finally, we would like to mention a study by Reinman and Calder that studied per-
formance gains that can be obtained using various predictive techniques for load value
speculation including the store set as well as value predictors [10]. Given that in their
store-set study store instructions are not allowed to issue out-of-order and out-of-order dis-
ambiguator presented in this paper out-performs both the original store set algorithm as
well as an ideal memory dependence predictor, further studies are needed to verify their
conclusion that the value prediction out-performs all other techniques.

21



Acknowledgments

The authors would like to thank George Z. Chrysos and Joel Emer for clarifying certain
issues which arose when we implemented the original store set algorithm.

References

[1] Brad Calder, Glenn Reinman, and Dean M. Tullsen. Selective value prediction. In
Proceedings of the 26th International Conference on Computer Architecture, pages 64{
74, May 1999.

[2] George Z. Chrysos and Joel S. Emer. Memory dependence prediction using store sets.
In Proceedings of the 25th International Conference on Computer Architecture, pages
142{153, June 1998.

[3] J. Hesson, J. LeBlanc, and S. Ciavaglia. Apparatus to dynamically control the Out-
Of-Order execution of Load-Store instructions. US. Patent 5,615,350, Filed Dec. 1995,
Issued Mar. 1997.

[4] Stephan Jourdan, Ronny Ronen, Michael Bekerman, Bishara Shomar, and Adi Yoaz.
Predictive techniques for aggressive load speculation. In The 31st Annual IEEE-ACM
International Symposium on Microarchitecture, pages 216{225, December 1998.

[5] Mikko H. Lipasti and John Paul Shen. Exceeding the data
ow limit via value pre-
diction. In Proceedings of the 29th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 226{237, 1996.

[6] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. Value locality and
load value prediction. In Proceedings of the 6th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS-VII),
pages 138{147, October 1996.

[7] Andreas I. Moshovos. Memory Dependence Prediction. PhD thesis, University of
Wisconsin - Madison, 1998.

[8] Andreas I. Moshovos, Scott E. Breach, T. N. Vijaykumar, and Gurindar S. Sohi. Dy-
namic speculation and synchronization of data dependences. In Proceedings of the 24th
International Conference on Computer Architecture, pages 181{193, June 1997.

[9] Soner �Onder and Rajiv Gupta. Automatic generation of microarchitecture simulators.
In IEEE International Conference on Computer Languages, pages 80{89, Chicago, May
1998.

[10] Glenn Reinman and Brad Calder. Predictive techniques for aggressive load speculation.
In The 31st Annual IEEE-ACM International Symposium on Microarchitecture, pages
127{137, December 1998.

[11] S. Steely, D. Sager, and D. Fite. Memory reference tagging. US. Patent 5,619,662,
Filed Aug. 1994, Issued Apr. 1997.

22


